Header menu link for other important links
X
Chemiresistive DNA hybridization sensor with electrospun nanofibers: A method to minimize inter-device variability
S. Tripathy, V. Bhandari, P. Sharma, ,
Published in Elsevier Ltd
2019
PMID: 30903938
Volume: 133
   
Pages: 24 - 31
Abstract
Chemiresistive platforms are best suited for developing DNA hybridization detection systems, owing to their ease of fabrication, simple detection methodology and amenability towards electronics. In this work, we report development of a generic, robust, electrospun nanofiber based interdigitated chemiresistive platform for DNA hybridization detection. The platform comprises of interdigitated metal electrodes decorated with electrospun nanofibers on the top. Two approaches viz., drop casting of graphene doped Mn 2 O 3 nanofibers (GMnO) and direct electrospinning of polyaniline/polyethylene oxide (PANi/PEO) composite nanofibers, have been utilized to decorate these electrodes. In both approaches, inter-device variability, a key challenge for converting this proof-of-concept into a tangible prototype/product, has been addressed using a shadow masking technique. Consequently, the relative standard deviation for multiple PANi/PEO nanofiber based chemiresistors has been brought down from 17.82% (without shadow masking) to 4.41% (with shadow masking). The nanofibers are further modified with single-stranded probe DNAs, to capture a desired hybridization event. To establish the generic nature of the platform, detection of multiple target DNAs has been successfully demonstrated. These targets include dengue virus specific consensus primer (DENVCP) and four DNAs corresponding to Staphylococcus aureus specific genes, namely nuc, mecA, vanA and protein A. The chemiresistive detection of DENVCP has been performed in the concentration range of 10 fM – 1 µM, whereas the detection of the other targets has been carried out in the range of 1 pM – 1 µM. Using a 3σ method, we have estimated the limit of detection for the chemiresistive detection of DENVCP to be 1.9 fM. © 2019 Elsevier B.V.
About the journal
JournalData powered by TypesetBiosensors and Bioelectronics
PublisherData powered by TypesetElsevier Ltd
ISSN09565663