Header menu link for other important links
X
Ballooning multi-armed bandits
, S. Dhamal, S. Jain, S. Gujar, Y. Narahari
Published in Elsevier B.V.
2021
Volume: 296
   
Abstract
In this paper, we introduce ballooning multi-armed bandits (BL-MAB), a novel extension of the classical stochastic MAB model. In the BL-MAB model, the set of available arms grows (or balloons) over time. In contrast to the classical MAB setting where the regret is computed with respect to the best arm overall, the regret in a BL-MAB setting is computed with respect to the best available arm at each time. We first observe that the existing stochastic MAB algorithms result in linear regret for the BL-MAB model. We prove that, if the best arm is equally likely to arrive at any time instant, a sub-linear regret cannot be achieved. Next, we show that if the best arm is more likely to arrive in the early rounds, one can achieve sub-linear regret. Our proposed algorithm determines (1) the fraction of the time horizon for which the newly arriving arms should be explored and (2) the sequence of arm pulls in the exploitation phase from among the explored arms. Making reasonable assumptions on the arrival distribution of the best arm in terms of the thinness of the distribution's tail, we prove that the proposed algorithm achieves sub-linear instance-independent regret. We further quantify explicit dependence of regret on the arrival distribution parameters. We reinforce our theoretical findings with extensive simulation results. We conclude by showing that our algorithm would achieve sub-linear regret even if (a) the distributional parameters are not exactly known, but are obtained using a reasonable learning mechanism or (b) the best arm is not more likely to arrive early, but a large fraction of arms is likely to arrive relatively early. © 2021 Elsevier B.V.
About the journal
JournalData powered by TypesetArtificial Intelligence
PublisherData powered by TypesetElsevier B.V.
ISSN00043702