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Abstract

In this paper, we introduce ballooning multi-armed bandits (BL-MAB ), a novel extension of the

classical stochastic MAB model. In the BL-MAB model, the set of available arms grows (or bal-

loons) over time. In contrast to the classical MAB setting where the regret is computed with respect

to the best arm overall, the regret in a BL-MAB setting is computed with respect to the best avail-

able arm at each time. We first observe that the existing stochastic MAB algorithms result in linear

regret for the BL-MAB model. We prove that, if the best arm is equally likely to arrive at any time

instant, a sub-linear regret cannot be achieved. Next, we show that if the best arm is more likely to

arrive in the early rounds, one can achieve sub-linear regret. Our proposed algorithm determines

(1) the fraction of the time horizon for which the newly arriving arms should be explored and

(2) the sequence of arm pulls in the exploitation phase from among the explored arms. Making

reasonable assumptions on the arrival distribution of the best arm in terms of the thinness of the

distribution’s tail, we prove that the proposed algorithm achieves sub-linear instance-independent

regret. We further quantify explicit dependence of regret on the arrival distribution parameters.

We reinforce our theoretical findings with extensive simulation results. We conclude by showing

that our algorithm would achieve sub-linear regret even if (a) the distributional parameters are

not exactly known, but are obtained using a reasonable learning mechanism or (b) the best arm is

not more likely to arrive early, but a large fraction of arms is likely to arrive relatively early.

1 Introduction

The classical stochastic multi-armed bandit (MAB) problem provides an elegant abstraction to a num-

ber of important sequential decision making problems. In this setting, the planner chooses (or pulls)
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from a fixed pool of finitely many actions (i.e., arms), a single arm at each discrete time instant upto

arbitrary time horizon. Each arm, when pulled, generates a reward from a fixed but a priori un-

known stochastic distribution corresponding to the pulled arm. The planner’s goal is to minimize

the regret, that is, the loss incurred in the expected cumulative reward due to not knowing the re-

ward distribution of the arms beforehand. The MAB problem encapsulates the classical exploration

versus exploitation dilemma, in that the planner’s algorithm has to arrive at an optimal trade-off

between exploration (pulling relatively unexplored arms) and exploitation (pulling the best arms

according to the history of pulls thus far). This problem has been extensively studied in the liter-

ature. These studies include analysis of the achievable lower bound on regret [LR85], bandit algo-

rithms [AO10; Tho33; GC11], empirical studies [CL11; DK17; RVRK+18], and several extensions to

the standard model [Sli19; BCB12]. Many papers show that some of the well known algorithms such

as UCB1 [ACBF02] , THOMSON SAMPLING [AG12; KKM12], KL-UCB [GC11] are known to attain

asymptotically optimal regret guarantee upto a problem-dependent constant. The above list is far

from exhaustive. We refer the reader to [Sli19; LS20] for a book exposition on the topic.

The theoretical results in MAB are complemented by a wide variety of modern applications such

as internet advertising [BSS09; NTGR18], crowdsourcing [JGB+18], clinical trials [VBW15], and wire-

less communication [MS14], which can be modeled in the MAB setup. Due to a wide range of ap-

plications and an elegant theoretical foundation, several variants of the MAB problem have been

proposed. Contributing to the long line of work that studies different variants of bandits, in this

paper, we introduce a novel variant of MAB which we call Ballooning multi-armed bandits (BL-MAB

). In contrast to the classical MAB where the set of available arms is fixed throughout the run of an

algorithm, the set of arms in BL-MAB grows (or balloons) over time.

To see that the traditional algorithms are not regret-optimal in the BL-MAB setting, consider

the following thought experiment. Let a new arm arrive at each time instant in decreasing order of

mean rewards and let the MAB algorithm run for a total of T time instants. The traditional MAB

algorithms (such as UCB1, MOSS, etc.) would pull the newly arrived arm at each time instant, thus

incurring a regret of O(T ). Note in the above example that even while the best arm appeared at the

first time instant itself, traditional algorithms end up pulling all other arms at least once, which leads

to a high regret. As the set of available arms expands over time, the traditional algorithms could not

sufficiently explore each of the arms to identify the best arm. Also, note that the regret in BL-MAB

depends not only on the mean reward of the arms, but also on when they arrive. Hence, any BL-MAB

algorithm ought to be aware of the arrival of the arms.

It is clear from the above example that traditional algorithms cannot provide sublinear regret

guarantees in BL-MAB setup as there is not enough time spared for exploitation. Further, as the

number of arms increases (potentially linearly) with time, an optimal algorithm must ignore (or drop)

a few arms. Hence, in addition to achieving an optimal trade-off between the number of exploratory

pulls and exploitative pulls, the algorithm must also ensure that it does not drop too many (or too

few) arms.

1.1 Motivation

The BL-MAB framework is directly applicable in any scenario where the set of options grows

over time, and, the objective is to choose the best option available at any given time. We motivate the

practical significance of BL-MAB with a few applications.
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A contemporary example is provided by question and answer (Q&A) platforms such as Reddit,

Stack Overflow, Quora, Yahoo! Answers, and ResearchGate, where for a given question, the plat-

form’s goal is to discover the highest quality answer that should be displayed in the most prominent

slot. Each answer post is modeled as a distinct arm of a BL-MAB instance, and the rewards are

distributed according to a Bernoulli distribution parameterized by the quality of the posted answer.

Note that this quality is a priori unknown to the platform and hence needs to be learnt. For this,

the platform employs certain endorsement mechanisms with indicators such as upvotes, likes, and

shares (or re-posts). If a user likes the answer displayed to her, then she may endorse the answer.

Each display of a posted answer corresponds to a pull of the corresponding arm. At each time in-

stant, a new user observes the existing answer posts shown by the platform, and decides whether to

endorse them. Further, the user may also choose to post her own answer, thus increasing the number

of available arms. Hence, the number of available arms (answers) monotonically increases over time.

The problem of learning qualities of the answers on Q&A forums has been modeled under the

MAB framework in various studies [GH13; TH19; LH18]. However, these studies resort to the exist-

ing MAB variations which are not well suited for Q&A forums. For instance, in [GH13], the problem

is modeled with a classical MAB framework by limiting the number of arms via strategic choice of an

agent, by assuming that a user incurs a certain cost for posting an answer and hence posts it only if

she derives a positive utility by doing so. However, a user’s behavior on the platform may be driven

by simple cognitive heuristics rather than a well calibrated strategic decision [BAG+16]. In another

work [LH18], the number of arms is limited by randomly dropping some of the arms from consid-

eration. The regret is then computed with respect to only the considered arms. That is, they do not

account for the regret incurred due to the randomly dropped arms.

Some of the other applications of BL-MAB framework are in various websites that feature user

reviews, such as Amazon and Flipkart (product reviews), Tripadvisor (hotel reviews), IMDB (movie

reviews), and so on. As time progresses, the reviews for a product (or a hotel or a movie) keep

arriving, and the website aims to display the most useful reviews for that product (or hotel or movie)

at the top. The usefulness of a review is estimated using users’ endorsements for that review, similar

to that in Q&A forums. BL-MAB is also applicable in scenarios where users comment on a video or

news article, on a video or news hosting website, where the website’s objective is to display the most

popular or interesting comment at the top.

The BL-MAB setting thus provides a natural framework to be considered in such type of ap-

plications. It needs an independent investigation owing to a number of reasons. For instance, one

of the MAB variants that holds some similarity with BL-MAB is sleeping multi-armed bandit (S-

MAB) [KNMS10; CGJ+17], where a subset of a fixed set of base arms is available at each time instant.

Though the S-MAB framework captures the availability of a small subset of arms at each time, it

assumes that the set of base arms is fixed and is small as compared to the time horizon. In contrast,

the BL-MAB framework allows for the number of available arms to increase, potentially linearly

with time. Hence, an optimal sleeping bandits algorithm such as AUER [KNMS10] would end up

incurring a linear regret in BL-MAB setting.

Another MAB variant with some similarities to BL-MAB is the many-armed (potentially infi-

nite) bandit [WAM09; CV15; BCZ+97], where the number of arms could be potentially equal to or

greater than the time horizon. Berry et al. [BCZ+97] consider the case of an infinite arm bandit with

Bernoulli reward distribution. However, they assume that the optimal arm has a quality of 1, which
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is seldom the case in practical applications. Other investigations considering infinitely many arms

[WAM09; CV15] make certain assumptions on the distribution of the near optimal arm, in order to

achieve sub-linear regret. A further difference is that in the many-armed bandit setting, researchers

usually assume the existence of a smooth function relating the mean rewards of the arms (for instance,

[CV15]). Here, we consider that the reward distributions are independent with arbitrary means. This

rules out any side information that could be gathered from the pulls of other arms. Finally, all the

above works consider that all the arms are available in all time instants, and hence use the tradi-

tional notion of regret. In our case, the regret incurred by an algorithm in a given time instant is the

difference between the quality of the best available arm during that time and the quality of the arm

pulled by the algorithm (same as the notion of regret considered in sleeping bandits). The BL-MAB

framework is thus an interesting blend of both the sleeping bandit model and the many-armed bandit

model.

1.2 Our Contributions

Following are the main contributions of this paper:

• We introduce the BL-MAB model that allows the set of arms to grow over time.

• For the BL-MAB model, we show that, without any distributional assumptions on the arrival

time of the highest quality arm, the regret grows linearly with time (Theorem 1).

• We propose an algorithm (BL-MOSS) which determines: (1) the fraction of the time horizon

until which the newly arriving arms should be explored at least once and (2) the sequence

of arm pulls during the exploitation phase. Our key finding is that BL-MOSS achieves sub-

linear regret under practical and minimal assumptions on the arrival distribution of the best

arm, namely, sub-exponential tail (Theorem 3) and sub-Pareto tail (Theorem 4). Note that we

make no assumption on the arrival of the other arms. As the regret depends on the qualities

of the arms and the sequence of their arrivals, it is interesting that with sub-exponential and

sub-Pareto assumption on only the best arm’s arrival pattern, we can achieve sub-linear regret.

• We carry out a pertinent simulation study to empirically observe how the expected regret varies

with the time horizon. We find a strong validation for our theoretically derived regret bounds.

• We study the cost of parametric uncertainty, which we define to be the loss incurred due to not

knowing the parameters of the best arm’s arrival distribution exactly (Theorems 5 and 6). We

also show that our algorithm is applicable to the setting which does not make distributional

assumptions on the arrival time of the best arm, but instead, on the rate of arrival of arms with

time (Theorem 7).

The paper is organized as follows. In Section 2, we present our proposed BL-MAB model. In

Section 3, we show that no algorithm can achieve sub-linear regret in the most general setup. Hence,

an additional assumption on the arrival of arms is warranted. We define two distributional assump-

tions on the arrival time of the best arm which would enable us to achieve sub-linear regret. Next,

we present some preliminaries in Section 4, followed by our proposed algorithm and its theoretical

analysis in Section 5. Section 6 presents our simulation results. We study two extensions in Section 7,

namely, relaxing the distributional assumption on the arrival of the best arm, and deducing the cost
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of parametric uncertainty. We conclude with related work (Section 8) and future directions (Section

9).

2 The Model

A classical MAB instance is given by the tuple 〈K, (Di)i∈K〉. Here, K is a fixed set of arms and Di

is the reward distribution corresponding to an arm i. Denote by qi, the mean of distribution Di.

Consider that each of the distributions Di is supported over a finite interval and is unknown to the

algorithm. Throughout the paper, without loss of generality, we consider that Di is supported over

[0, 1]. Further, we will refer to qi as the quality of arm i. A MAB algorithm is run in discrete time

instants, and the total number of time instants is denoted by time horizon T . In each time instant

aka round, the algorithm selects a single arm and observes the reward corresponding to the selected

arm. The arms which are not selected, do not give any reward. More precisely, a MAB algorithm is a

mapping from the history of arm pulls and obtained rewards, to a distribution over the set of arms.

At each time instant, a BL-MAB algorithm chooses a single arm from the set of available arms

and receives a reward generated randomly according to the reward distribution Di of the chosen arm

i. New arms may spring up at each time instant. Throughout the paper, we consider that at most

one new arm arrives at each time, and the arms are never dropped. Let K(t) denote the set of arms

available at round t. In the BL-MAB model, this set of available arms grows by at most one arm per

round, i.e., K(t) ⊆ K(t + 1) and |K(t)| ≤ |K(t + 1)| ≤ |K(t)| + 1. A BL-MAB instance, therefore, is

given by 〈T, (K(t), (Di)i∈K(t))
T
t=1〉.

Similar to the notion of regret in the sleeping stochastic MAB model [KNMS10], we introduce

the notion of regret in BL-MAB setting that takes into account the availability of the arms at each

time t. Let it denote the arm pulled by the algorithm and i⋆t be the best available arm at time t, i.e.,

i⋆t = argmaxi∈K(t) qi. Further, let I denote a BL-MAB instance and A be a BL-MAB algorithm. The

distribution-dependent regret of A is given by

RA(T, I) = E
[

T∑

t=1

(qi⋆t − qit)
]
.

Throughout the paper, we consider distribution-free regret given as RA(T ) = supI RA(T, I). Note

that the distribution-free regret bound is a worst case regret bound over all the arrival sequences of

the arms and all possible reward distributions. In the next section, we show that for the BL-MAB

setting, it is not possible to achieve sublinear distribution-free regret bound.

3 Lower Bound on Regret

As pointed out in Section 1, it is clear that UCB-style algorithms (which pull arms based on uncer-

tainty) would pull each incoming arm at least once, leaving no rounds for exploitation. Hence, they

incur linear regret in the ballooning bandit setup1. However, it is not obvious that a different, more

sophisticated algorithm (such as the one which randomly drops some arms) would not be able to

achieve sub-linear regret. Our first result (Theorem 1) shows that no algorithm can attain sub-linear

regret without any distributional assumption on the best arm’s arrival.

1
In particular, when |K(t)| = t.
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Theorem 1. There exists a BL-MAB instance J such that any MAB algorithm ALG satisfies

RALG(T,J ) = Ω(T )

Proof. We prove the theorem in three steps. In the first step, we construct a BL-MAB instance J such

that J has a single best arm and all the suboptimal arms have the same quality parameter. Further,

we consider that each arm is equally likely to be the best arm, i.e., the probability that an arriving

arm is the best arm is 1
T for all t = {1, 2, . . . , T}. Next, in Step 2, we simulate any BL-MAB algorithm

ALG by simulation algorithm SIM such that RALG(T,J ) = RSIM(T,J ). Finally, in Step 3, we show

RSIM(T,J ) = O(T ) for every simulated algorithm SIM. We begin with the construction of a BL-MAB

instance J .

Step 1: A new arm arrives at each discrete time instant t, till the predetermined time horizon T . There

is a single best arm i⋆ with quality parameter qi⋆ = 1/2 + ε. Here, ε > 0 is a problem-independent

constant. Each suboptimal arm i 6= i⋆ has qi = 1/2. Further, each arm is equally likely to be the best

arm, i.e., P(i = i⋆) = 1
T for all i ∈ [T ]. Next, we show an important property of the BL-MAB instance

J (Claim 1). In particular, we show that for any algorithm, there exists a corresponding arm-pulling

strategy which pulls the arms in the order of their arrival and has the same expected reward.

Step 2: Consider a single run of any BL-MAB algorithm ALG on instance J and let G denote the set

of distinct arms pulled till time T , i.e., G = {i ∈ [T ]|NALG
i,T > 0}, with g = |G|. Here, NALG

i,t is the

number of times arm i is pulled till (and excluding) time instant t by ALG. We drop the superscript

when the algorithm is clear from the context. Further, let Mn = {1, 2, . . . , n} be the collection of the

first2 n arms. We simulate ALG on J as using a simulation SIM such that RALG(T,J ) = RSIM(T,J ).

For any arm pull it at time t, we pull arm i
′

t in the simulation SIM as follows.

SIM

i
′

t =







it if it ∈Mg

min{i ∈Mg|N SIM
i,t = 0} if it ∈ G \Mg and NALG

it,t
= 0

i
′

ℓ if it ∈ G \Mg and NALG
it,t

> 0

(ℓ = min{m < t : N SIM
it,m+1 = 1})

Whenever ALG pulls an arm it ∈ G \Mg for the first time, SIM assigns a corresponding i
′

t ∈ Mg. Let

us say that ALG pulls 3 distinct arms in its run (i.e., G = {1, 4, 6}) and the sequence of arms pulled

is given by (1, 1, 1, 4, 4, 6, 6, 4, 1, 6, . . . , 1). In this case, SIM will pull arms 1, 2 and 3 in sequence,

(1, 1, 1, 2, 2, 3, 3, 2, 1, 3, . . . , 1). That is, all the arm pulls of arms from set {1, 2, 3} are retained and all

the arms from outside this set that are pulled are replaced by the arms from this set as follows: the

least index arm is assigned to the first arm encountered from outside the set, i.e., whenever ALG pulls

2
In the order of their arrival.
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arm 4, SIM pulls arm 2 (similarly, whenever ALG pulls arm 6, SIM pulls arm 3). We now prove that

both ALG and SIM have the same expected rewards.

Claim 1. RALG(T,J ) = RSIM(T,J ).

Proof.

RALG(T,J ) = ❊
[

T∑

t=1

X⋆
it
−Xit

]
=

T∑

t=1

❊ALG

[
qi⋆t − qit

]

=

T∑

t=1

❊ALG∆(i⋆t , it)

If i
′

t = it, we immediately have that ∆i
⋆
t ,it

= ∆
i
⋆
t ,i

′

t

. Hence, without loss of generality, let i
′

t 6= it.

We have

∆i
⋆
t ,it

=
[
(1/2 + ε) · P(i∗ has arrived before t) + 1/2 · P(i∗ arrive after time t)

]

−
[
(1/2 + ε) ·P(it = i⋆) + 1/2 · P(it 6= i∗)

]

=
[
(1/2 + ε) ·

(
t∑

ℓ=1

P(iℓ = i⋆)
)
+ 1/2 ·

(
1−

t∑

ℓ=1

P(iℓ = i⋆)
)]

−
[
(1/2 + ε) ·P(it = i⋆) + 1/2 · (1−P(it = i⋆))

]

=
[
(1/2 + ε) ·

(
t∑

ℓ=1

P(i
′

ℓ = i⋆)
)
+ 1/2 ·

(
1−

t∑

ℓ=1

P(i
′

ℓ = i⋆)
)]

−
[
(1/2 + ε) ·P(i

′

t = i⋆) + 1/2 · (1−P(i
′

t = i⋆))
]

(As P(iℓ = i⋆) = P((i
′

ℓ = i⋆)) = 1/T for all ℓ ∈ [T ])

= ∆
i
⋆
t ,i

′

t

This completes the proof.

Henceforth, we will focus only on the simulation algorithms.

Step 3: Let G denote the set of arms pulled by the algorithm SIM in its run. The regret of SIM can be

written as

RSIM(T ) = ❊G

[ |G|
∑

i=1

P(i⋆ ∈ G, i 6= i⋆)❊[Ni,T ] · ε+
T∑

i=|G|+1

P(i = i⋆)(T − i) · ε
]

.

The outer expectation is with respect to the number of arms pulled by any (possibly randomized)

algorithm SIM. For a fixed value of G, the inner expectation represents the number of times arms i ∈
G are pulled till the time horizon T . Using a classical result from [LR85], we have ❊[Ni,T ] ≥ η log(T )
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for some η > 0 that depends on the suboptimality of the arm i. Using this, we have

RSIM(T ) ≥ ❊
[ |G|
∑

i=1

P(i 6= i⋆|i⋆ ∈ G) ·P(i⋆ ∈ G)η log(T ) +

T∑

i=|G|+1

P(i = i⋆)(T − i)
]

· ε

= ❊
[ |G|
∑

i=1

|G| − 1

|G| · |G|
T
η log(T ) +

T∑

i=|G|+1

T − i

T

]

· ε

= ❊
[∑

|G|(|G| − 1) · η log(T ) + (T − |G| − 1)(T − |G|)
2

]

· ε
T

= ❊
[

(1 + 2η log(T ))|G|2 − (2(T − η log(T ))− 1)|G|+ T 2 − T
]

· ε

2T

≥ min
|G|∈[0,T ]

[

(1 + 2η log(T ))|G|2 − (2(T − η log(T ))− 1)|G|+ T 2 − T
]

· ε

2T
.

Note that the above expression is quadratic in |G|. For T ≤ 1/2+η log(T ), the minimum occurs when

the value of |G| is 1. In this case, the regret is Ω(T ). For T > 1/2 + η log(T ), the minimum occurs

when |G| = 2(T−η log(T ))−1
2(1+2η log(T )) . For this case, we have

RA(T ) ≥
[(2(T − η log(T ))− 1)2

4(1 + 2η log(T ))
− (2(T − η log(T ))− 1)2

2(1 + 2η log(T ))
+ T 2 − T

]

· ε

2T

=
[

T 2 − T − (T − η log(T )− 1/2)2

(1 + 2η log(T ))

]

· ε

2T

>
[(T − 1/2)

2

2η log(T )

1 + 2η log(T )
− 1/4

]

· ε

= Ω(T ).

Theorem 1 provides a strong impossibility result on the achievable distribution-free regret bound

under BL-MAB setting. However, one can still achieve sub-linear regret by imposing appropriate

structure on the BL-MAB instances. Observe that the regret depends on the arrival of arms, i.e.,

(K(t))Tt=1, and their reward distributions (Di)i∈K(t). We impose restrictions on the arrival of the best

arm i⋆ = argmaxi∈K(T ) qi so that the probability that i⋆ arrives early is large enough; this would

allow a learning algorithm to explore the best arm enough to estimate the true quality of that arm

with high probability. As noted previously, the other arms may arrive arbitrarily. Further, note that

we make no assumption on the qualities of individual arms.

3.1 Arrival of the Best Arm

Let X be the random variable denoting the time at which the best arm arrives. Further, let

FX(t) denote the cumulative distribution function of X . In our first result, we use the following

sub-exponential tail assumption on the arrival time of the best arm.

Sub-exponential tail: There exists a constant λ > 0 such that the probability of the best arm arriving later

than t rounds, is upper bounded by e−λt, i.e., FX(t) > 1− e−λt.

8



Next, we consider a relaxed condition on the tail probabilities, i.e., when the tail does not shrink

as fast as in the sub-exponential case. We consider the family of distributions whose tail is thinner

than that of Pareto distribution.

Sub-Pareto tail: There exists a constant β > 0 such that the probability of the best arm arriving later than t

rounds, is upper bounded by t−β , i.e., FX(t) > 1− t−β .

The aforementioned assumptions naturally arise in the context of Q&A forums as observed in

extensive empirical studies on the nature of answering as well as voting behavior of the users. An-

derson et al. [AHKL12] observe that high reputation users hasten to post their answers early. One

possible explanation for this phenomenon could be that the users who are motivated by the visibility

that their answers receive, tend to be more active on the platform and also provide high quality an-

swers early on, which explains their reputation scores. Thus, it is reasonable to assume that the best

answer arrives, with high probability, in early rounds.

Note that the uniform distribution is the limiting case of the sub-exponential case, when λ = 0.

We will show that, while the uniform distribution results in linear regret (Theorem 1), a sub-linear

regret can be achieved for BL-MAB instances having the best arm arrival distribution with even

slightly thinner tail than that of uniform distribution (Section 5).

4 Preliminaries

We now present some essential concepts which will be useful for our analysis in the remainder of the

paper.

4.1 Lambert W Function

Definition 1. For any x > −e−1, the Lambert W function, W (x), is defined as the solution to the

equation wew = x, i.e., W (x)eW (x) = x.

It is easy to check that in the non-negative domain, Lambert W function satisfies the following

regularity properties [HH08]. The detailed proofs are provided in Appendix B.

Property 1. The LambertW function can be equivalently written as the inverse of the function f(x) :=

xex, i.e., W (xex) = x.

Property 2. For any x ≥ e, we have log(x)/2 < W (x) ≤ log(x).

Property 3. For any x ∈ [0,∞), the Lambert W function is unique, non-negative, and strictly increas-

ing.

It can be noted that it is easy to numerically approximate W (x) for a given x, using Newton-

Raphson’s or Halley’s method. Moreover, there exist efficient numerical methods for evaluating it to

arbitrary precision [CGH+96].
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4.2 MAB Algorithms

We now review some of the MAB algorithms, starting with UCB1, perhaps the most famous

stochastic MAB algorithm. We then review THOMPSON SAMPLING [Tho33] which presents an al-

ternate Bayesian approach to the MAB problem. In this paper, we use MOSS (Minimax Optimal

Strategy in the Stochastic case) [AB10] as an underlying learning algorithm; the MOSS algorithm uses

UCB-style indexing of the arms. In principle, one could use any underlying learning algorithm in a

BL-MAB setup. However, as we shall discuss, one needs to carefully tune the thresholding parameter

for the learning algorithm in question.

UCB1

UCB1, proposed in [ACBF02], is perhaps the most famous stochastic MAB algorithm. At each time

t, UCB1 maintains a UCB index for each arm and pulls an arm with the highest UCB index. In

particular, UCB1 pulls an arm it such that

it ∈ argmax
i∈K

[

q̂i,Ni,t
+

√

2 log(t)

Ni,t

]

.

Here, K = {1, 2, . . . , k} denotes the set of arms and Ni,t is the number of times arm i was pulled

before (and excluding) round t and q̂i,Ni,t
are the empirical estimates of the arm i from Ni,t samples.

THOMSON SAMPLING

First proposed in [Tho33], the theoretical regret guarantee of THOMPSON SAMPLING remained an

open problem for over 80 years before [AG12] and [KKM12] independently showed that THOMPSON

SAMPLING achieves asymptotically optimal regret guarantee (upto problem-dependent constant).

This Bayesian approach maintains a conjugate prior distribution for each arm. We refer the reader to

[AG12] for the detailed algorithm as well as a regret analysis of THOMPSON SAMPLING.

MOSS

For a fixed number of k arms, the MOSS algorithm pulls an arm it at time t where

it ∈ argmax
i∈K

[

q̂i,Ni,t
+

√
√
√
√

max(log( T
k·Ni,t

), 0)

Ni,t

]

.

Each arm is pulled once in the beginning, and ties are broken arbitrarily.

In contrast to other popular MAB algorithms such as THOMPSON SAMPLING [Tho33], UCB1

[ACBF02] and KL-UCB [GC11], MOSS simultaneously achieves the optimal instance-dependent as

well as optimal instance-independent regret guarantee [AB10]. However, the time horizon is as-

sumed to be known to the algorithm a priori. The problem of achieving simultaneous optimal any-

time regret guarantees had remained open until recently, when modified versions of KL-UCB algo-

rithms, namely, KL-UCB++ [MG17] and KL-UCB-SWITCH [GHMS18], were proven to be simulta-

neously optimal. However, the instance-independent regret bound of these algorithms still depends

linearly on the number of available arms (Theorem 1 in [MG17] and Theorem 4 in [GHMS18], respec-

tively).
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Algorithm 1: BL-MOSS

Input: Time horizon T , Distributional parameter λ > 0 or β > 0
1

Set α :=







W (2λT )
2λT under sub-exponential tail property

T
−2β
1+2β under sub-Pareto tail property

for t = 1, 2, . . . T do
Input: A newly arriving arm at time t

2 if |K(t)| ≤ ⌈αT ⌉ then

3 MOSS(K(t))

4 else

5 MOSS(K(⌈αT ⌉))
6 end

7 end

As we shall see in Algorithm 1 in the next section, we need a threshold parameter α which sig-

nifies the fraction of arms that a learning algorithm should explore. This parameter must be tuned

based on the regret guarantees of the learning algorithm, i.e., the internal regret in the BL-MAB frame-

work and the external regret. We choose MOSS for its simplicity and optimality (both in terms of num-

ber of arms and the time horizon). For instance, MOSS achieves an optimal instance-independent re-

gret guarantee of O(
√
kT ). Other algorithms such as THOMPSON SAMPLING, UCB1 or KL-UCB may

also be employed as underlying learning algorithms, albeit with a slight (O(
√

log(T ))) increase in

internal regret. We leave the determination of the threshold parameter and the corresponding regret

analysis of BL-MAB using other algorithms as an interesting direction for future work.

5 The BL-MOSS Algorithm and Regret Analysis

5.1 The BL-MOSS Algorithm

We now present our algorithm, BL-MOSS (Algorithm 1), that uses MOSS as the underlying learn-

ing algorithm. The number of arms explored by BL-MOSS is dependent on the distribution of arrival

of the best arm. In particular, BL-MOSS considers only the first ⌈αT ⌉ arms in its execution (α ∈ (0, 1]).

Later in this section, we show how to derive the value of α for distributions with sub-exponential and

sub-Pareto tails. Observe that the proposed BL-MOSS algorithm is a simple extension of MOSS and

is practically easy to implement. Further, MOSS does not assume any structure on the arrival of

suboptimal arms. Thus, we are able to obtain sub-linear regret with minimal assumptions.

5.2 Regret Analysis of BL-MOSS

We begin with an upper bound on the expected regret of the MOSS algorithm. Note that MOSS

achieves optimal (up to a constant factor) regret bound. Throughout the paper, we use the notation

MOSS(k) to denote that the MOSS algorithm is run with k arms.

Theorem 2. [AB10] For any time horizon T ≥ 1, the expected regret of MOSS is given by RMOSS(k)(T ) ≤
6
√
kT .

11



For a given BL-MAB instance I, let j⋆ = argmaxi∈K(⌈αT ⌉) qi and i⋆ = argmaxi∈K(T ) qi. Clearly,

we have that qi⋆ ≥ qj⋆ . As stated earlier, the regret of the algorithm can be decomposed into internal

regret, i.e., the regret incurred by the learning algorithm considering only ⌈αT ⌉ arms and external

regret, i.e., the regret incurred by BL-MOSS due to the fact that BL-MOSS might have ignored the

best arm. Write ∆(i, j) = qi − qj and let ti be the time of arrival of arm i. Further, let i⋆t denote the

best arm till time t. The distribution-dependent regret RBL-MOSS (T, I) is given as

P(i⋆ = j⋆)
[
t
j
⋆−1
∑

t=1

∆(i⋆t , it) +
T∑

t=t
j
⋆

∆(j⋆, it)

︸ ︷︷ ︸

R
int
BL-MOSS (T )

]

+ P(i⋆ 6= j⋆)
[
t
i
⋆−1
∑

t=1

∆(i⋆t , it) +
T∑

t=t
i
⋆

∆(i⋆, it)
]

︸ ︷︷ ︸

R
ext
BL-MOSS (T )

(1)

The first and the second terms respectively denote the internal regret and the external regret of

BL-MOSS. We ignore the ceiling in ⌈αT ⌉ throughout this section to avoid notation clutter.

Note that RMOSS(L)(T ) ≤ RMOSS(K)(T ) for all L ⊆ K and for any any time horizon T . From

Theorem 2, we have the following observation about the internal regret of BL-MOSS.

Observation 1. For the value of α computed by BL-MOSS, we have Rint
BL-MOSS (T ) ≤ RMOSS(αT )(T ) ≤

6
√
αT .

The first inequality in Observation 1 follows from the fact that in a classical MAB setting, all the

arms are available at all times, whereas in a BL-MAB setting, arms arrive online. Hence, the best arm

is available at all times in MAB, whereas in BL-MAB, the arrival of the best arm is delayed.

To bound the overall regret, we begin with the following lemma which explicitly shows the re-

lation between the expected regret of the algorithm and FX(·). Recall that the random variable X

denotes the time of arrival of the best arm.

Lemma 1. The upper bound on the expected regret for any BL-MAB instance is given by RBL-MOSS(T ) ≤
T (1− (1− 6 · √α)FX(αT )), with BL-MOSS exploring only the first αT arrived arms.

Proof. For a given BL-MAB instance I, let ti denote the time at which arm i becomes available for

the first time. Let i⋆ denote the best arm till T rounds, i.e., i⋆ = argmaxi∈K(T ) qi. Further, let j⋆

be the best arm among the arms considered by BL-MOSS, i.e., j⋆ = argmaxj∈K(αT ) qi. Notice that

K(αT ) ⊆ K(T ). This implies qi⋆ ≥ qj⋆ .

RBL-MOSS(T, I) ≤ E
[

αT∑

t=1

(qj⋆ − qit) +
T∑

t=αT+1

(qi⋆ − qit)
]

(∵ qi⋆ > qj⋆)

= P(i⋆ = j⋆)
[ T∑

t=1

(qj⋆ − qit)
]

+ P(i⋆ 6= j⋆)
[ αT∑

t=1

(qj⋆ − qit) +
T∑

t=αT+1

(qi⋆ − qit)
]
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≤ 6P(i⋆ = j⋆)
√
αT · T +

T∑

t=1

(qi⋆ − qit)P(i
⋆ 6= j⋆)

(From Observation 1 and since qi⋆ ≥ qj⋆)

≤ 6T
√
α · P(i⋆ = j⋆) + P(i⋆ 6= j⋆)T (∵

∑T
t=1(qi⋆ − qit) ≤ T )

= 6T
√
α · P(ti⋆ ≤ αT ) + (1− P(ti⋆ ≤ α · T ))T

= T (1− (1− 6 ·
√
α)P(ti⋆ ≤ αT ))

= T (1− (1− 6 ·
√
α)FX(αT ))

Note that the above inequality holds for any BL-MAB instance and hence we have RBL-MOSS(T ) =

supI RBL-MOSS(T, I) ≤ T (1− (1− 6 · √α)FX(αT ))

5.2.1 Sub-exponential tail distribution

We now show that under the sub-exponential tail property on X , BL-MOSS achieves sub-linear re-

gret. We begin with the following lemma that lower bounds the probability of the arrival of the best

quality arm in the initial αT rounds.

Lemma 2. Let the arm arrival distribution of the best arm satisfy sub-exponential tail property for some λ ≥ 0.

Then for any c > 0 and α ≥ W (λT/c)
λT/c , we have that FX(αT ) > (1− αc).

Proof. Note that from the Property 2 of the Lambert W function we have log(x)
2 ≤ W (x) ≤ log(x) for

x ≥ e. We have,

α ≥ W (λT/c)

λT/c
=⇒ αλT

c
≥W (λT/c) =⇒ W

(αλT

c
· eαλT/c

)
≥W (λT/c) ( by Property 1)

=⇒ αλT

c
· eαλT/c ≥ λT/c

So, we have 1−αc ≤ 1− e−λ(αT ) < FX(αT ). The last inequality follows from the sub-exponential tail

property.

Theorem 3. Let the arrival distribution of the best arm satisfy the sub-exponential tail property for some

λ ≥ 0, and let T be large enough such that T > 36c log(36)
λ for some c > 0. Then with α = W (λT/c)

λT/c , the

upper bound on the expected regret of BL-MOSS, RBL-MOSS (T ), is O
(

T ·max
(
e−cW (λT/c), e−

W (λT/c)
2

))

.

The upper bound on the expected regret is minimized when c = 1/2 and is given by O
(√

T log(2λT )
2λ

)

.

Proof. From Lemma 2, we have FX(αT ) > 1− αc for all α ≥ W (λT/c)
λT/c . Thus, from Lemma 1, we have

RBL-MOSS(T ) < T (1− (1− 6 · √α)(1− αc)).

Note that for achieving sub-linear regret, it is necessary that (1 − 6 · √α) is strictly positive, for

which it is necessary that α < 1/36. From Lemma 2, we also have α ≥ W (λT/c)
λT/c . Since such a feasible

α may not exist for small values of T , we consider that T is large enough. It can be easily shown that
W (λT/c)
λT/c < 1/36 ⇐⇒ T > 36c log(36)

λ ≈ 129c
λ (see Claim 2 in Appendix A).
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Thus, for 1/36 > α ≥ W (λT/c)
λT/c , we have: RBL-MOSS(T ) < T (6 · √α + αc − 6 · αc+1/2). Recall that

by definition, we have α ≤ 1. Thus when c ∈ (0, 1/2], the term αc dominates the other terms in the

regret expression, whereas when c > 1/2, the term
√
α dominates. We analyze these cases separately.

Case 1 (c ∈ (0, 1/2]): In this case, the regret is given by RBL-MOSS (T ) = O(αcT ). Note that the

regret is minimized for the lowest feasible value of α, i.e., α = W (λT/c)
λT/c , resulting in RBL-MOSS (T ) =

O
(

T
(W (λT/c)

λT/c

)c
)

= O(T · e−cW (λT/c)). The last equality follows from the equivalent definition of

Lambert W function (Property 1).

Case 2 (c ∈ [1/2,∞)): In this case, the regret is given by RBL-MOSS (T ) = O(
√
αT ). Again, the regret is

minimized when α = W (λT/c)
λT/c . The regret in this case is given by RBL-MOSS (T ) = O

(

T ·
√

W (λT/c)
λT/c

)

=

O
(
T · e

−W (λT/c)
2 ).

Further, we have that in Case 1, e−cW (λT/c) > e
−W (2λT )

2 for any c ∈ (0, 1/2) (see Claim 3 in Ap-

pendix A). For Case 2, we have from Property 3 that, W (λT/c) is decreasing in c, which gives us

that e
−W (2λT )

2 < e
−W (λT/c)

2 for any c ∈ (1/2,∞). This shows that the minimum regret is achieved

when c = 1/2, and the regret is given by RBL-MOSS (T ) = O
(√

T ·W (2λT )
2λ

)

= O
(√

T log(2λT )
2λ

)

. The last

inequality follows from Property 2, since 2λT ≥ e (∵ T > 36c log(36)
λ where c = 1/2).

If we absorb λ (which is a constant with respect to T ) in order notation, we have RBL-MOSS =

O(
√

T log(T )).

5.2.2 Sub-Pareto tail distribution

We now prove the sub-linear regret of BL-MOSS under the sub-Pareto tail property.

Lemma 3. Let the arm arrival distribution of the best arm satisfy sub-Pareto tail property for some β > 0.

Then for any c > 0 and α ≥ T
−β
c+β , we have that FX(αT ) > (1− αc).

Proof. First note that α ≥ T
−β
c+β ⇐⇒ αc ≥ (αT )−β . This implies that (1− αc) ≤ 1− (αT )−β . Further,

from the sub-Pareto tail property, we have that 1− (αT )−β < FX(αT ).

Theorem 4. Let the arrival distribution of arms satisfy the sub-Pareto tail property for some β > 0, and let T

be large enough such that T > (36)
c+β
β for some c > 0. Then with α = T

−β
β+c , the upper bound on the expected

regret of BL-MOSS, RBL-MOSS (T ), is O(max(T
c+β(1−c)

c+β , T
2c+β
2(c+β) )). The upper bound on the expected regret

is minimized when c = 1/2 and is given by O(T
1+β
1+2β ).

Proof. From Lemmas 1 and 3, we have RBL-MOSS(T ) < T (1 − (1 − 6 · √α)(1 − αc)). For achieving

sub-linear regret, it is necessary that (1 − 6 · √α) is strictly positive. So, we should have α < 1/36.

Further, from Lemma 3, we have α ≥ T
−β
c+β . So, for a feasible α to exist, it is necessary that T

−β
c+β <

1/36 ⇐⇒ T > (36)
c+β
β , i.e., T is large enough. Thus, for 1/36 > α ≥ T

−β
c+β , we have RBL-MOSS(T ) <

T (6 · √α+ αc − 6 · αc+1/2). As earlier, we analyze two cases.
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Case 1 (c ∈ (0, 1/2]): In this case, the regret is given by RBL-MOSS (T ) = O(αcT ). The minimum regret

is obtained when α = T
−β
β+c and is given by O(T

1− cβ
c+β ).

Case 2 (c ∈ [1/2,∞)): In this case, the regret is given by RBL-MOSS (T ) = O(
√
αT ). Again, the regret

is minimum when α = T
−β
β+c and is given by O(T

2c+β
2(c+β) ).

Furthermore, it is easy to see that in Case 1, T
1+β
1+2β < T

β+c(1−β)
c+β for any c ∈ (0, 1/2). Similarly, in

Case 2, T
1+β
1+2β < T

2c+β
2(c+β) for any c ∈ (1/2,∞). This shows that the minimum regret is achieved when

c = 1/2.

5.3 Important Observations

We conclude the section with some key observations and remarks.

Observation 2. If the best arm arrival satisfies sub-exponential tail property with parameter λ, then

1. RBL-MOSS(T ) → 0 as λ→ ∞

2. RBL-MOSS(T ) → O(T ) as λ→ 0

Proof. Recall that, from Equation (1), we have

RBL-MOSS(T ) =

P(i⋆ = j⋆)
[
t
j
⋆−1
∑

t=1

∆(i⋆t , it) +
T∑

t=t
j
⋆

∆(j⋆, it)

︸ ︷︷ ︸

R
int
BL-MOSS (T )

]

+ P(i⋆ 6= j⋆)
[
t
i
⋆−1
∑

t=1

∆(i⋆t , it) +
T∑

t=t
i
⋆

∆(i⋆, it)
]

︸ ︷︷ ︸

R
ext
BL-MOSS (T )

Note that, for large enough λ such that W (2λT )
2λT ≤ 1

T , we have that ⌈αT ⌉ = 1 and the algorithm pulls

arm 1 at all times i.e. it = 1 for all t ≤ T . Furthermore, as ⌈αT ⌉ = 1, we have j⋆ = 1. Hence, the

internal regret is zero. The total regret of the algorithm is, hence,

RBL-MOSS(T ) = Rext
BL-MOSS(T )

= P(i⋆ 6= 1)
[
t
i
⋆−1
∑

t=1

∆(i⋆t , 1) +
T∑

t=t
i
⋆

∆(i⋆, 1)
]

≤ P(i⋆ 6= 1)

T∑

t=1

∆(i⋆, 1) (∵ ∆(i⋆t , 1) ≤ ∆(i⋆, 1))

≤ T (1− FX(1))

≤ Te−λ ≈ 0 (∵ λ→ ∞)

The last inequality follows from the sub-exponential tail assumption.

If λ → 0, we have that FX(t) > 1 − e−λt → 0. Hence, the arrival distribution of the best arm

captures the uniform distribution, i.e., FX(t) = 1
T as well. Hence, from Theorem 1, we have that a

regret of O(T ) is unavoidable.
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Observation 3. If the best arm arrival satisfies sub-Pareto tail property with parameter β, then

1. RBL-MOSS(T ) → O(
√
T ) as β → ∞

2. RBL-MOSS(T ) → O(T ) as β → 0

Proof. Note that under sub-Pareto tail assumption, we have 1− FX(2) < 2−β . Hence, as β → ∞, we

have that FX(2) → 1. The internal regret of Moss is upper bounded by 6
√
2T , whereas the external

regret is given as

Rext
BL-MOSS(T ) ≤

T∑

t=3

P(it = i⋆)(T − t) ≤ (T − 3)(1− (1− 2−β)) ≈ 0.

Hence, the total regret is O(
√
T ).

The proof of the second part follows on similar line as the second part of Observation 2.

6 Simulation Study

So far, we focused on deriving upper bounds on regret for distributions (on the arrival time of the

best arm) having sub-exponential and sub-Pareto tail with different values of λ and β, respectively.

In particular, for the case of sub-Pareto tail, we deduced that the extent of sublinearity of the regret

(the exponent of T in the order of the regret) depends on the value of β. On the other hand, the upper

bound on regret for the case of sub-exponential tail had the same order with respect to T for any

reasonable value of λ, albeit with different multiplicative and additive terms for different values of

λ. In this section, we aim to illustrate how the expected regret varies with the time horizon T , and

how the empirical exponents compare with their theoretical bounds for different values of β and λ,

for time horizons up to 106 rounds.

6.1 Simulation Setup

Note that in a traditional MAB setup, a simulation for a larger time horizon T ′′ could be conducted

as an extension of a simulation for a smaller time horizon T ′ < T ′′. In other words, after obtaining the

results for time horizon T ′, the results for time horizon T ′′ can be obtained by running simulations

for an additional T ′′−T ′ rounds. However, in the BL-MAB setup where new arms continue arriving

with time and the desired time horizon is known, we have seen that the optimal value of α and hence

⌈αT ⌉ depends on the time horizon. Owing to different values of ⌈αT ⌉ for different time horizons T ,

the simulation for a time horizon T ′ are not extendable to time horizon T ′′ > T ′. So even if we have

simulation results for time horizon T ′, it is necessary to run a fresh set of simulations for obtaining

results for time horizon T ′′ > T ′. In our simulation study, we consider the following values of time

horizon: {1, 2, 5, 7} × 104, {1, 2, 5, 7} × 105, 106.

We consider that a new arm arrives in each round, and the probability that the arm arriving at

time t is the best arm is determined by the distribution function FX(t). Thereafter, this best arm

(i⋆) is assigned a quality (qi⋆) between 0 and 1 uniformly at random, and the rest of the arms are

assigned quality parameters between 0 and qi⋆ uniformly at random. Given a time horizon T , the

value of α and hence ⌈αT ⌉ are obtained based on our theoretical analysis. The arm to be pulled in a
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Figure 1

Expected regret as a function of time horizon for various sub-exponential tails

round is determined by Algorithm 1, wherein the pulled arm generates unit reward with probability

equal to its quality, and no reward otherwise (i.e., as per Bernoulli distribution). The regret in each

round is computed as the difference between the quality of the best arm available in that round and

the quality of the pulled arm. The overall regret is the sum of the regrets over all rounds from 1

till T . Note that we are concerned with the regret irrespective of the numerical values of the arms’

qualities. So, for a given instance of the arrival of the best arm, we consider the worst-case regret

over 50 sub-instances, where the quality parameters assigned to the arms in different sub-instances

are independent of each other. Also, since different instances would have the best arm arriving in

different rounds, the expected regret is obtained by simulating over 1000 such random instances and

averaging over the corresponding worst-case regret values.

Our primary objective is to observe how the expected regret varies with the time horizon T . In

order to observe the influence of various sub-exponential and sub-Pareto tail distributions over the

arrival time of the best arm, we conduct simulations for different values of parameters λ and β:

{0.10, 0.25, 0.50, 0.75, 1, 2, 10}. The other objective is to determine the empirical exponent of the plots

(i.e., the value of γ such that the expected regret is approximately a constant multiple of T γ). To

achieve this, we first estimate the constant factor ξ by dividing the expected regret for T = 106 by T γ ,

for a given value of γ. We then compute the squared error when attempting to fit the expected regret

with ξT γ . Considering candidate values of γ to be between 0 and 1 with intervals of 0.01, we deduce

the empirical exponent to be the value of γ which results in the least squared error. We also consider

another method for determining the empirical exponent: we produce the line of best fit for the scatter

plot of log(T ) versus the log of the expected regret for that T ; the slope of this line gives the empirical

exponent. The empirical exponents obtained using the two methods are almost identical (differing

by less than 0.01).

6.2 Simulation Results

As mentioned at the end of our theoretical analysis, for the sub-exponential tail case when λ→ ∞,

the upper bound on the expected regret goes to 0. In our simulations with the maximum observed

time horizon of 106, the expected regret was observed to be uniformly zero, even for λ = 10 (see
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Expected regret as a function of time horizon for various sub-Pareto tails
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Empirical exponents vs. theoretical bounds for time horizons up to 10
6

Figure 1). Further, for other considered values of λ, the plots exhibit a prominent sub-linear nature.

In particular, considering the maximum observed time horizon of 106, the empirical exponents for

different values of λ were consistently observed to be between 0.45 and 0.5 (Theorem 3 showed the

order of the regret with respect to T , for reasonable values of λ, to be bounded by
√

T log(T ), which

is an exponent close to 0.5).

For the sub-Pareto tail case illustrated in Figure 2, note that we have no result for β = 0.10 because

the value of T for obtaining a feasible α should be greater than 366, which is beyond our maximum

observed time horizon of 106. Moreover, we have partial results for β = 0.25 because the value of T

for obtaining a feasible α should be greater than 363; so the plot starts with T = 0.5 × 105. It can be

seen, in general, that the plots in Figure 2 follow a far less sub-linear nature and exhibit a much higher

expected regret than those in Figure 1. This is intuitive from our analysis that the sub-exponential tail

case is likely to result in a much lower regret than the sub-Pareto tail case. In particular, the empirical

exponent for β = 0.25 was deduced to be 0.8, which is close to linear (its theoretical upper bound as
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per our analysis is 0.83). In general, considering the maximum observed time horizon of 106, it can

be seen from Figure 3 that the upper bound on the theoretical exponent (which is 1+β
1+2β from Theorem

4) and the empirical exponent are close to each other.

Note that the gap between the empirical exponents and the corresponding theoretical upper

bounds could be attributed to the fact that it is difficult to find the worst-case distribution over the re-

ward parameters of the arms. Hence, it is unlikely that the worst-case (or distribution-free) expected

regret could be attained in the simulations with a random reward structure. Since the gap is not very

significant, the simulation results suggest that the bounds derived in our regret analysis of BL-MOSS

(in Section 5.2) are, in all probability, tight.

6.3 Additional Notes on Simulation

It is to be noted that our theoretical analysis holds for any arbitrary time horizon as long as the

time horizon is known to BL-MOSS. In our simulations, we considered time horizons up to 106

for computational reasons. The regret is averaged over 1000 random instances with same arrival

distribution of the best arm. In practice, as only one instance is realized, the computational overhead

is not an impediment in the real world applicability of the proposed algorithm.

Note also that the standard MAB algorithms (e.g., the UCB family) which are oblivious to the

structure on the arrival of arms, would incur linear regret. Also, since these algorithms explore each

incoming arm at least once, they would incur linear regret even with sub-exponential or sub-Pareto

assumption, when the number of arms grows linearly with time. Our simulations aimed to observe

the order of sublinearity of regret (exponent of T ). Since existing algorithms would give linear regret,

the exponent of T is trivially 1.

7 Extensions

In this section, we discuss possible extensions and relaxations of the BL-MAB setting studied in the

paper. Thus far, we assumed that the true parameter of the arrival distribution of the best arm (i.e.,

λ or β) is known a priori to the BL-MOSS algorithm. We relax this assumption and consider that

the parameter (λ or β) is known only approximately correctly. We show that the proposed algorithm

achieves sublinear regret guarantees even with this relaxation. Next, we relax the assumption that

the best arm arrives early, and instead consider that a large fraction of arms arrive early. We show

that our algorithm is applicable even with this alternative assumption; we validate this assumption

with real-world datasets.

7.1 Unknown Distributional Parameters of Best Arm’s Arrival

So far, we have assumed that the distributional parameters (β and λ) are known to the algorithm

designer. In most practical settings, these parameters are not known but can be learnt using previous

data. In this section, we show the effect on the regret bound if learned parameters are used instead

of the true parameters.
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7.1.1 Sub-exponential tail distribution

Let (Xi)
n
i=1 be a collection of i.i.d. random variables sampled from an exponential distribution with

parameter λ truncated at T . Further, let T be large enough such that FX(T ) = 1− e−λT ≈ 1. Let X =
1
n

∑n
i=1Xi denote the empirical average over n questions posted. Let λ̂ be the estimated parameter

of the n i.i.d. exponential random variables; then X ≈ 1
λ̂

. Further, let there be two parameters µ and

δ such that the Hoeffding’s inequality [H+56] gives us the following:

P

(∣
∣
∣
∣

1

λ̂
− 1

λ

∣
∣
∣
∣
≥ µ

)

≤ δ (2)

Here, µ and δ denote how close the learned parameter and the true parameter are. The value of

these parameters depend on the number of samples that we select. For example, in order to achieve

confidence of 1− δ, we need δ ≤ 2e
− 2nµ

2

T
2 =⇒ n ≥ T

2
ln ( 2

δ )
2µ

2 , where n is the number of samples used

to learn parameter λ̂.

In Algorithm 1, we will now choose α = W (2λ̂T )

2λ̂T
instead of W (2λT )

2λT (which is the regret opti-

mal α, from Theorem 3). Choosing this α would not change Lemma 1 and we would still have

RBL-MOSS (T ) ≤ T (1− (1− 6
√
α)FX(αT )). We now have the following theorem on regret.

Theorem 5. If BL-MOSS (Algorithm 1) is run with a learned parameter λ̂ that satisfies Inequality (2), then

with probability at least 1− δ, the regret under sub-exponential tail distribution assumption is upper bounded

by O

(

T
1+µλ

2

(√
W (2λ̂T )

2λ̂

)1−µλ
)

if µλ < 1 and O

(
√

T ·W (2λ̂T )

2λ̂

)

otherwise. The regret is sub-linear in both

the cases.

Proof. Recall that α is the fraction of arms explored by BL-MOSS. The following is true with proba-

bility at least 1− δ.

α ≥ W (λ̂T/c)

λ̂T/c
= e−W (2λ̂T ) (∵ c = 1/2 is regret optimal (Theorem 3))

=⇒ logα ≥ −W
(

2T λ̂
)

=⇒W

(

log

(
1

α

)

elog(
1
α
)

)

≤W (2T λ̂) (Property 1 of Lambert W function)

=⇒ log

(
1

α

)

≤ 2αT λ̂ (Property 3 of Lambert W function)

=⇒ αT ≥ log(1/α)

2λ̂

=⇒ FX(αT ) > 1− e−
λ log(1/α)

2λ̂ = 1− α
λ

2λ̂ (sub-exponential tail assumption)
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Thus, by Lemma 1, we have

RBL-MOSS (T ) ≤ T
(
1− (1− 6

√
α)FX(αT )

)

< T
(

1− (1− 6
√
α)(1− α

λ

2λ̂ )
)

= T
(

6
√
α+ α

λ

2λ̂ − 6α
1
2
+ λ

2λ̂

)

< T
(

6
√
α+ α

λ

2λ̂

)

Since α < 1 and 1
λ̂
≥ 1

λ − µ, we have

RBL-MOSS (T ) =







O(T
√
α), if µλ ≥ 1

O(Tα
1−µλ

2 ), if µλ < 1

Case 1 (µλ < 1):

RBL-MOSS (T ) = O(Tα
1−µλ

2 )

= O



T

(

W (2λ̂T )

2λ̂T

) 1−µλ
2





= O




T

1+µλ
2





√

W (2λ̂T )

2λ̂





1−µλ





Since µλ < 1 in this case, the above expression is sub-linear in T . If we absorb the constant param-

eters (λ̂, λ, and µ), we have RBL-MOSS (T ) = O
(

T
1+µλ

2
(√

log T
)1−µλ

)

≤ O
(

T
1+µλ

2
(√

log T
))

(since

µ > 0). Note also that if the learned mean parameter 1
λ̂

is close to the true mean parameter 1
λ (i.e., µ

is close to zero), we recover the original regret guarantee which is O(
√

T log(T )), with probability at

least 1− δ.

Case 2 (µλ ≥ 1): Here, α
λ

2λ̂ ≤ √
α (∵ α ≤ 1), and hence,

RBL-MOSS (T ) ≤ O(T
√
α)

= O

(

T

√

W (2λ̂T )

2λ̂T

)

= O

(√

T ·W (2λ̂T )

2λ̂

)

If we absorb the constant parameter λ̂ in order notation, we have RBL-MOSS (T ) = O(
√

T log(T ),

that is, we recover the original regret guarantee with probability at least 1− δ.
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7.1.2 Sub-Pareto tail distribution

Let β̂ be the learned parameter of the sub-Pareto tail distribution. Like in the sub-exponential case,

let there be two parameters µ and δ such that

P

(∣
∣
∣
∣
∣

β̂

β̂ − 1
− β

β − 1

∣
∣
∣
∣
∣
≥ µ

)

≤ δ (3)

Note that for sub-Pareto tail distribution, mean is defined only for β > 1, and thus we assume that

β > 1 in the rest of the analysis. We can further derive the number of samples required as in the sub-

exponential case, which will turn out to be the same for the given values of µ and δ. In Algorithm 1,

we will now choose α = T
−2β̂

1+2β̂ instead of T
−2β
1+2β (which is the regret optimal α, from Theorem 4). We

now have the following theorem on regret.

Theorem 6. Let β̂ be a learned distributional parameter such that it satisfies Inequality (3). If BL-MOSS

(Algorithm 1) is run with β̂, then with probability at least 1− δ, the regret under sub-Pareto tail distribution

assumption is upper bounded by O

(

T
1−

β(1−µβ+µ)
1+2β−3µβ+3µ

)

if β̂ > β and by O

(

T
1+β+2µ(β−1)
1+2β+3µ(β−1)

)

if β̂ ≤ β. In both

the cases, the regret is sub-linear.

Proof. For c = 1/2 (regret optimal value in Theorem 4), the following is true with probability at least

1− δ.

α ≥ T
−β̂

β̂+1/2

=⇒ α
1− β̂

β̂+1/2 ≥ (αT )
−β̂

β̂+1/2

=⇒ α
1/2

β̂+1/2 ≥ (αT )
−β̂

β̂+1/2

=⇒ α
β

2β̂ ≥ (αT )−β

=⇒ FX(αT ) > 1− (αT )−β ≥ 1− α
β

2β̂ (sub-Pareto tail assumption)

Thus, by Lemma 1, we haveRBL-MOSS (T ) ≤ T (1−(1−6
√
α)FX(αT )) < T

(

1− (1− 6
√
α)(1− α

β

2β̂ )

)

.

Hence,

RBL-MOSS < T
(

6
√
α+ α

β

2β̂ − 6α
β

2β̂
+ 1

2

)

< T
(

6
√
α+ α

β

2β̂

)

Case 1 (β̂ > β): Note that, β
β−1 − µ ≤ β̂

β̂−1
is equivalent to

β̂ ≤ β − µβ + µ

1− µβ + µ
(4)

We further have β̂

β̂−1
> 1 and hence, the lower bound estimate on the mean should also be greater

than 1. The lower bound estimate of β̂

β̂−1
with probability 1− δ is: β

β−1 −µ. Thus, β
β−1 −µ > 1, which
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gives us that for the case β̂ > β:

µ <
1

β − 1
(5)

For this case, α
β

2β̂ >
√
α (∵ α ≤ 1), and hence,

RBL-MOSS ≤ O
(

Tα
β

2β̂

)

= O

(

T
1− β

2β̂

(
2β̂

2β̂+1

))

(∵ α = T
−2β̂

2β̂+1 minimizes regret (Theorem 4))

= O

(

T
1− β

2β̂+1

)

≤ O

(

T
1− β

2(β−µβ+µ
1−µβ+µ )+1

)

(∵ the upper bound on β̂ is β−µβ+µ
1−µβ+µ w.p. at least 1− δ (Inequality (4)))

= O

(

T
1−

β(1−µβ+µ)
1+2β−3µβ+3µ

)

Note that the regret is sub-linear in T since β(1−µβ+µ)
1+2β−3µβ+3µ > 0 (∵ µ < 1

β−1 for this case, from Inequal-

ity (5)).

Case 2 (β̂ ≤ β): We have β̂

β̂−1
≤ β

β−1 + µ with probability at least 1− δ, which is equivalent to

β̂ ≥ β + µβ − µ

1 + µβ − µ
(6)

For this case, α
β

2β̂ ≤ √
α (∵ α ≤ 1), and hence,

RBL-MOSS ≤ O
(

T
√
α
)

= O

(

T
1− 1

2+ 1
β̂

)

(∵ α = T
−2β̂

2β̂+1 = T

−2

2+ 1
β̂ (Theorem 4))

≤ O

(

T
1− 1

2+
1+µβ−µ
β+µβ−µ

)

(∵ the lower bound on β̂ is β+µβ−µ
1+µβ−µ w.p. at least 1− δ (Inequality (6)))

= O
(

T
1− β+µβ−µ

1+2β+3µβ−3µ

)

= O

(

T
1+β+2µ(β−1)
1+2β+3µ(β−1)

)

Note that the regret is sub-linear in T .

Note also that in both the cases, when µ tends to zero, the regret tends to go to the original regret

of O(T
1+β
1+2β ) (Theorem 4), with probability at least 1− δ.
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Cost of Parametric Uncertainty (CPU): We now quantify the robustness of the regret guarantee pro-

vided by BL-Moss towards uncertainty in the tail distribution of the best arm’s arrival. We define

CPU to be the ratio of the regret achieved with the learned parameters and the regret achieved with

the actual parameters. From the above theorems, we have the following:

1. CPU for sub-exponential tail distribution is given as (on absorbing the constant parameters λ̂, λ,

and µ in order notation):

CPU(λ, µ) =







T
1+µλ

2

(√
log(T )

)1−µλ

√
T log(T )

=
(√

T
log(T )

)µλ
if µλ < 1

√
T log(T )√
T log(T )

= 1 if µλ ≥ 1

2. CPU for sub-Pareto tail distribution is given as:

CPU(β, µ) =







T
1−

β(1−µβ+µ)
1+2β−3µβ+3µ

T
1+β
1+2β

= T
2µβ(β−1)

(1+2β)(1+2β−3µ(β−1)) if β̂ > β

T
1+β+2µ(β−1)
1+2β+3µ(β−1)

T
1+β
1+2β

= T
µ(β−1)

2

(1+2β)(1+2β+3µ(β−1)) if β̂ ≤ β

7.2 Arm Arrival Distribution

Throughout the paper, we considered a setting that assumed certain distributions on the arrival of

the best arm, namely, the best arm is more likely to arrive in early rounds. In this section, we discuss

another practically relevant setting, which assumes distribution on the arrival rate of arms with time.

If arms arrive at a faster rate in early rounds, that is, if a large fraction of arms arrive relatively early,

it can be shown that one can use our proposed BL-MOSS algorithm. The following result establishes

the equivalence between the distributional assumptions in the two settings.

Theorem 7. Let f(t) denote the fraction of arms arrived till time t. Further, let the quality of each arriving

arm be an i.i.d. sample from unif[0, 1]. Then, the best arm’s arrival distribution FX(t) satisfies FX(t) = f(t).

Proof. Let M ≥ 1 be the total number of arms arrived till time T . First, observe that P(i = i⋆) = 1
M .

Here, i⋆ = argmaxi∈[M ] qi. We have

FX(t) =

t∑

ℓ=1

M · (f(ℓ)− f(ℓ− 1))P(iℓ = i⋆)

=M · (f(t)− f(0))
1

M
= f(t) (∵ f(0) = 0)
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Figure 4

Arrival distribution of reviews for representative Digital Music products on Amazon (X-axis: number of months elapsed since the

first review, Y-axis: number of reviews)

A fundamental difference between the two settings is that, in the first setting, we consider that

a new arm arrives at each time instant; whereas in the second setting, we consider that arms follow

an arrival process having a sharp tail. In the first setting, our proposed algorithm achieves sublinear

regret due to early arrival of the best arm. In the second setting, even if each arm is equally likely to

be the best arm, our algorithm achieves sublinear regret owing to most of the arms arriving relatively

early.

We now validate our distributional assumption on the arrival of arms, with real-world data such

as posting times of answers for questions on StackExchange3 and posting times of reviews for prod-

ucts on Amazon4 and Steam5. Figure 4 presents the arrival distribution of reviews over time for a

representative set of the most popular digital music products on Amazon. Each subfigure shows the

arrival of reviews for a particular product. In each subfigure, the X-axis represents the number of

months elapsed since the first posted review for that product, and the Y-axis represents the number

of reviews. It is to be noted that in MAB applications, X-axis usually represents the number of op-

portunities to pull the arms (here, the cumulative number of views to the reviews on a given product

page) and not the wall-clock time (here, the number of months). We assume that the number of such

views does not change significantly across different time intervals, and hence consider the wall-clock

time as a proxy for the number of opportunities for arm pulls.

We observe that for most products, the number of reviews follows a decreasing trend over time

(i.e., a large fraction of the reviews arrive early), which is aptly captured by sub-exponential and sub-

Pareto tail distributions. A very similar trend was observed for questions on various sub-domains

of StackExchange, reviews on Amazon products belonging to other categories like CDs & vinyls,

video games, software, movies and TV, etc., as well as reviews on video games on Steam. Figure 5

presents the arrival distribution of answers over time for a representative set of the most answered

questions on the Mathematics StackExchange platform. Likewise, the arrival distribution of reviews

for representative products belonging to categories of CDs & Vinyls and video games are respectively

presented in Figures 6 and 7 in Appendix C.

3
StackExchange data dump is available publicly at [SE220].

4
Amazon review data is available publicly at [Ni18].

5
Steam video game and bundle data is available publicly at [ST117].
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Figure 5

Arrival distribution of answers for representative questions on Mathematics StackExchange (X-axis: number of months since the first

posted answer, Y-axis: number of answers)

It is relevant to note here that this trend is not necessarily followed across all product categories.

For instance, certain products would follow upticks or a gradual increase in the number of posted

reviews, either due to marketing campaigns (through media advertising or word-of-mouth publicity)

or spike in demand during festive seasons. Amazon gift cards, cell phones and accessories, etc. are

popular examples of such products (Figure 8 in Appendix C presents the distribution for Amazon

gift cards).

A note to practitioners: In practice, the arrival distribution of reviews for any product would depend on

the type of the product, marketing strategy of the product manufacturer, true quality of the product,

and so on. Though the proposed BL-MAB framework provides curation strategy to identify the best

arm (user generated content) from ever increasing choices, one must use expert knowledge about

arrival rate of the arms, qualities of arriving arms, total expected number of arms, and so on, so as

to design an optimal learning BL-MAB algorithm. We leave mathematical modeling and design of

specialized BL-MAB algorithms which take into account the specific arrival of arms, as an interesting

future direction to our work.

A Remark on Unknown Distributional Parameters of Arm Arrival Distribution

Note that if we have uncertainty with respect to the distributional parameters (discussed in Sec-

tion 7.1) in the setting which makes distributional assumption on the rate of arrival of arms (discussed

in Section 7.2), we could transform it into the setting which makes distributional assumption on the

arrival time of the best arm using Theorem 7, and then show that the sub-linearity of regret is pre-

served even if we have uncertainty with respect to the distributional parameters (using Theorem 5 or

6). Thus, though the distributional parameters signify very different things in the two settings, one

can prove that our algorithm would achieve sub-linear regret in such a combined case.

8 Additional Related Work

A standard stochastic MAB framework considers that the number of available arms is fixed (say k)

and typically much less than the time horizon (say T ). In the seminal work of Lai and Robbins [LR85],
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the authors showed that any MAB algorithm in such a setting must incur a regret of Ω( log TDKL
) where

DKL is the Kullback-Leibler divergence between the best arm and the second best arm. Auer [Aue02]

proposed the UCB1 algorithm which attains a matching upper bound on the expected regret. How-

ever, the distribution-free (i.e., in adversarial case) regret of the variant of UCB1, (α, ψ)-UCB, is given

by O(
√
kT log T ) [BCB12]. The MOSS algorithm proposed by Audibert and Bubeck [AB10] achieves

the distribution-free regret of O(
√
kT ). Bubeck and Cesa-Bianchi [BCB12] present a detailed survey

on regret bounds of these algorithms.

A setting similar to ballooning bandits is studied under Markovian bandits framework; where

each arm is characterized by a known MDP. This setting, known as arm-acquiring bandits [Whi81] was

first studied by [Nas73]. In arm acquiring bandits framework the goal is to maximize the discounted,

infinite time cumulative reward whereas in ballooning bandits goal is to minimize the finite time

cumulative regret. The difference in the two models is further highlighted by the fact that ballooning

bandits is a learning problem whereas arm-acquiring bandits is a planning problem.

The problem of learning qualities of the answers on Q&A forums was first modeled under MAB

framework by Ghosh and Hummel [GH13] where generation of a new arm was considered as a

consequence of strategic choice of an agent. Though this model captures strategic aspects of the con-

tributors, there is an important practical issue with such modelling. Each agent, being a strategic

attention seeker, is assumed to produce the effort just enough to satisfy incentive compatibility in the

equilibrium. We do not assume an efforts-and-costs model and show that, even when the number

of answers grows linearly with time if the qualities of arriving answers follow certain mild distribu-

tional assumption, the proposed algorithm achieves sub-linear regret.

Tang and Ho [TH19] consider a model with fixed number of arms but with a platform where

agents provide biased feedback. On such Q&A forums, it is more relevant to consider the problem

with increasing number of arms. A recent work by Liu and Ho [LH18] limits the growth of the

bandit arms by randomly dropping some of the arms from consideration, and computing the regret

with respect to only the considered arms. That is, they do not account for the regret incurred due to

the randomly dropped arms.

9 Discussion and Future Work

In this paper, we presented a novel extension to the classical MAB model, which we call the Balloon-

ing bandits model (BL-MAB ). We showed that, it is impossible to attain a sub-linear regret guar-

antee without any distributional assumption on the best arm’s arrival. We proposed an algorithm

for the BL-MAB model and provided sufficient conditions under which the proposed algorithm

achieves sub-linear regret. In particular, when the arrival distribution of the best quality arm has a

sub-exponential or sub-Pareto tail, our algorithm BL-MOSS achieves sub-linear regret by restricting

the number of arms to be explored in an intelligent way.

Our results indicate that the number of arms to be explored depends on the distributional pa-

rameters, namely, λ (for sub-exponential case) and β (for sub-Pareto case), which must be known to

the algorithm. However, in practice, these parameters may not be known exactly. We studied the

increase in regret when one must use approximations of these values. It will be interesting to see

how a learning algorithm can be designed to learn these parameters. We also studied the effect of
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a varying rate of arrival of arms (instead of the arrival time of the best arm). Owing to our equiva-

lence theorem, our algorithm and results are directly applicable to cases wherein arm arrivals follow

a sub-exponential or sub-Pareto structure. However, a general result with arbitrary (albeit sublinear)

arrival of arms is still an open question. One could also consider other arrival processes for arms, in

order to obtain tighter, arrival specific regret guarantees.

In this work, we employed MOSS as the underlying learning algorithm owing to its simplicity

and optimality, in terms of both the number of arms and the time horizon. It is an interesting future

direction to determine the threshold parameter α under other learning algorithms such as THOMP-

SON SAMPLING, UCB1, KL-UCB, and analyze the corresponding regret bounds. We assumed the

knowledge of time horizon, as is the case with several works on MAB. Note that even if the time hori-

zon is not known, one could always work with its approximate value which is typically known from

past experiences. Extending our algorithm to the case of unknown time horizon using techniques

such as MOSS-anytime [DP16] or doubling trick [BK18], is a promising direction for future work.
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Appendices

A Omitted Proofs

Claim 2. W (λT/c)
λT/c < 1/36 ⇐⇒ T > 36c log(36)

λ

Proof. We have the following equivalent inequalities.

W (λT/c)

λT/c
<

1

36

⇐⇒ e−W (λT/c) <
1

36
(∵W (x)eW (x) = x)

⇐⇒W (λT/c) > log(36)

⇐⇒ λT

c
> log(36)elog(36)

⇐⇒ T >
36c log(36)

λ

The second to last inequality is obtained by applying the monotone increasing function f(x) := xex

on both sides, and then using Definition 1 of Lambert W function.

Claim 3. e−cW (λT/c) is decreasing in c for c ∈ (0, 1/2].

Proof. For c1 > c, we have

λT/c > λT/c1

⇐⇒W (λT/c) > W (λT/c1) (Property 3 of Lambert W )

⇐⇒ e−W (λT/c) < e−W (λT/c1)

⇐⇒ W (λT/c)

λT/c
<
W (λT/c1)

λT/c1
(∵W (x)eW (x) = x)

⇐⇒ cW (λT/c) < c1W (λT/c1)

⇐⇒ e−cW (λT/c) > e−c1W (λT/c1)

B Properties of Lambert W function

Property 1. The LambertW function can be equivalently written as the inverse of the function f(x) :=

xex, i.e., W (xex) = x.

Proof. The forward direction is straightforward. As W (·) is one to one function in the non-negative

domain, we have W (W (x)eW (x)) = W (x). Let y = W (x) then we have W (yey) = y. To show that

W (xex) = x implies W (z)eW (z) = z, observe that W (W (z0)e
W (z0)) = W (z0). We get the required

result by taking the inverse.
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Property 2. For any x ≥ e, we have log(x)/2 < W (x) ≤ log(x).

Proof. By definition, the Lambert W function satisfies W (x)eW (x) = x. It is easy to see that W (e) = 1.

Further we have,

1 =
dW (x)

dx
· eW (x) +

dW (x)

dx
· eW (x)W (x)

=
dW (x)

dx
(x+ eW (x))

=⇒ dW (x)

dx
=

1

x+ eW (x)

Let f(x) = log(x) −W (x). We have that f(e) = 0. We have that df(x)
dx = 1

x − 1

x+e
W (x) = e

W (x)

x(x+e
W (x)

)
=

1
x(1+W (x)) > 0. Hence we have that f(·) is increasing i.e. f(x) > 0 for all x > e. This shows that

W (x) ≤ log(x).

Now, let g(x) = log(x)
2 −W (x). Here, we have g(e) < 0, and dg(x)

dx = 1
2x− 1

x+e
W (x) = e

W (x)
−e

log(x)

2x(x+e
W (x)

)
≤ 0

(since W (x) ≤ log(x) for x ≥ e). So, g(x) < 0 for all x ≥ e, implying that log(x)
2 < W (x). This

completes the proof.

Property 3. For any x ∈ [0,∞), the Lambert W function is unique, non-negative, and strictly increas-

ing.

Proof. Observe that W (0) = 0. Note that in the non-negative domain, f(x) = xex is continuous, one

to one and strictly increasing. Hence, its inverse, W (·), is also increasing.

33



C Validating Arm Arrival Distributions

In each subfigure, X-axis represents the number of months elapsed since the first posted review for

the corresponding product, and Y-axis represents the number of reviews.

Figure 6

Arrival distribution of reviews for representative CDs & vinyl products on Amazon

Figure 7

Arrival distribution of reviews for representative video game products on Amazon
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Figure 8

Arrival distribution of reviews for representative gift card products on Amazon
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