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bosons in hadronic collisions in the large extra dimension ADD model are presented.

Various kinematical distributions are obtained to order αs in QCD by taking into ac-

count all the parton level subprocesses. We estimate the impact of the QCD correc-
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reduction in factorization scale uncertainty when O(αs) effects are included.
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1 Introduction

The Large Hadron Collider (LHC) which will operate at an enormous center of mass

energy (
√
S = 14TeV ) offers to shed light on the mechanism of spontaneous symme-

try breaking. It also promises to be a discovery machine and it is hoped that some

signals of new physics beyond the standard model (SM) will be observed. Many

exciting possibilities have been envisaged; most popular ones are supersymmetry, a

symmetry which relates fermions to bosons, and the possibility of extra dimensions.

In this paper we will consider the large extra dimension model by Arkani-Hamed,

Dimopoulos and Dvali (ADD) [1, 2]. There are many important discovery channels

at the LHC such as γγ, ZZ,W+W−, jet production etc. These processes have already

been studied in the context of anomalous triple gauge boson vertices [3]. In the SM the

production of two Z bosons is suppressed as it begins at the order e4 in the the electro-

magnetic coupling and also because of the large ZZ production threshold. The two

Z bosons can couple to Kaluza Klein (KK) gravitons, thus ZZ pairs can be produced

through virtual graviton exchange at the leading order. These observations make ZZ

production one of the important discovery channels. At LHC, Quantum Chromody-

namics (QCD) plays an important role through higher order radiative corrections in

reducing various theoretical uncertainties in the prediction of various important ob-

servables to understand both SM as well as new physics scenarios. In this paper we

will consider production of Z boson pairs at the LHC at next-to-leading order (NLO)

accuracy in the strong coupling constant.

Leading order studies for ZZ production in the SM can be found in [4]. Z pair

with a large transverse momentum jet at LO was studied in [5]. LO studies for ZZ

production in the context of extra-dimension models have already been carried out

in [6,7] and limits on the parameters of the model have been placed. But, as we know

a leading order (LO) computation is very sensitive to the choice of factorization scale

(µF ) which enters through the parton distribution functions at this order. To have a

precise prediction of cross section and to have tighter constraints on the parameters
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of the model it is necessary to carry out a full NLO calculation in the strong coupling

constant. This reduces the sensitivity of observables to the factorization scale µF . Be-

cause of its importance ZZ production has also been studied to NLO accuracy in the

SM [8, 9]. These results were subsequently updated in [10, 11]. These studies provide

the precise estimate of higher order effects through K factor as well as the sensitivity

of the predictions to factorization scale. Importantly, the corrections turned out to be

larger than the expectations based on soft gluon effects justifying a full-fledged NLO

computation taking into all the processes. The significance of NLO computations in

the extra dimension models for the two photon production [12,13] and Drell-Yan pro-

duction [14, 15] has already been demonstrated. Although NLO results are available

in SM, they do not exist in literature in the context of ADD model for Z boson pair

production, which is the material of the present paper.

The results which are presented in this paper are obtained using our NLO Monte

Carlo code (which is implemented on FORTRAN 77) that can easily accommodate

any cuts on the final state particles and obtain various kinematical distributions. Our

code is based on the method of two cutoff phase space slicing (for a review of the

method see [16]) to deal with soft and collinear singularities in the real emission con-

tributions. The idea is to separate the phase space into soft and collinear regions using

small dimensionless parameters δs and δc respectively. These singularities that appear

as poles in ǫ in dimensional regularization (n = 4+ ǫ) in the soft and collinear regions

either cancel with virtual contributions or are mass factorized into parton distribu-

tions functions. We have evaluated all the soft and collinear sensitive pieces coming

from real emission and virtual processes analytically. Traces of Dirac gamma matri-

ces and reduction of one-loop tensor integrals that appear in the intermediate stages

of the computation are systematically performed using the symbolic manipulation

program FORM [17]. The γ5 matrices that appear in the intermediate stages of the

computation require special care as they are not defined in arbitrary dimensions. We

have used naive anti-commutation relations between γ5 and other gamma matrices
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in n dimensions and the resulting traces are then computed in n dimensions as they

are free of γ5. Alternatively, one can use other method namely HVBM-scheme which

was proposed in [18] and generalized in [19]. In this approach, Gamma matrices and

momenta in the loop and final state phase space integrals are split into a 4 and an

n−4 dimensional part. The γ5 anti-commutes in 4 dimensions and commutes in n−4

dimensions with rest of the γ matrices. The results obtained this way coincide with

those obtained using the naive anti-commutation relations (see [8,9]). The finite pieces

are evaluated using Monte Carlo integration. We will discuss this method briefly in a

later section which will also serve to introduce some of the required notations.

The paper is organized as follows. First we very briefly introduce the ADD model

and set up the notations which we use in this paper. Next we discuss the calculation

in the framework of slicing method and present the analytical results, and finally we

present the kinematical distributions.

2 Next-to-leading order computation

The fact that electroweak symmetry breaking scale of standard model (SM) cannot be

made stable against quantum corrections within the framework of SM, leads to excit-

ing possibility of new physics emerging at TeV scales which stabilize the electroweak

scale. One of the very fascinating possibilities is the existence of (d) extra spatial di-

mensions. ADD introduced a model [1, 2] in which the SM fields are localized on a

3-brane and gravity propagates in all the 4 + d dimensions as it is the dynamics of

spacetime itself. In a simple setting all the d extra dimensions are compactified over

the same scale R. Although the SM fields are localized on a 3-brane, they can feel the

extra dimensions through their interaction with the tower of massive Kaluza Klein

(KK) gravitons. The interaction Lagrangian of SM fields with the KK gravitons is

given by [20, 21]

L = −κ
2

∞
∑

~n=0

T µν(x)h~nµν(x) (1)
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where κ =
√
16π/MP l and the massive KK gravitons are labeled by a d-dimensional

vector of positive integers, ~n = (n1, n2, . . . , nd). T
µν denotes the energy momentum

tensor of the SM. The zero mode corresponds to the usual 4-dimension massless gravi-

ton. For a given KK level ~n, there are, one spin-2 state, (n − 1) spin-1 states, and

n(n− 1)/2 spin-0 states, and they are all mass degenerate:

m2
~n =

4π~n2

R
. (2)

In this paper we will consider only spin-2 KK states. Let us denote by Ms the fun-

damental scale in 4 + d dimensions and following [21] we define the relation among

the gravitational coupling, the volume of the extra dimensions, and the fundamental

scale as

κ2Rd = 8π(4π)d/2Γ(d/2)M−(d+2)
s . (3)

Although the coupling κ is MP l suppressed, the fact that there are a large number of

Kaluza Klein (KK) modes that couple to the SM fields makes the cumulative effect

significant. Let us denote the sum of spin-2 KK graviton propagators by Deff , then Deff

times square of the coupling can be written as

κ2Deff(s) =
8π

M4
s

(√
s

Ms

)d−2
[

π + 2iI(Λ/
√
s)
]

(4)

The function I(Λ/
√
s) depends on the ultraviolet cutoff Λ on the KK modes and its

expression can be found in [21]. We will identify Λ with the fundamental scale Ms.

The vertex Feynman rules for coupling of SM fields to KK gravitons can be found

in [14, 20, 21]. With all the relevant parameters defined and propagators and vertices

known we are equipped to carry out the calculation.

As the gravitons couple to Z bosons, PP → ZZ can now also proceed through a

process where gravitons appear at the propagator level. These new channels makes

it possible to observe deviations from SM predictions if extra dimensions exist. In the

following we will consider gravitons only at the propagator level and investigate this

process at NLO level.
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PP → ZZ at NLO has three pieces of computation. A LO piece which is a 2 → 2

parton level process; second is the 2 → 2 order as(≡ g2s/16π
2) piece which originates

from loop corrections; the third and final part originates from real emission process

where in addition to two Z bosons, a parton is also emitted in the final state. Let us

take up these three pieces in turn.

2.1 Leading order

A leading order parton level process has the generic form

a(p1) + b(p2) → Z(p3) + Z(p4). (5)

In SM this proceeds through quark anti-quark annihilation to two massive Z bosons

as shown in Fig. 9. The coupling of fermions to Z bosons is

− i
eTW

2
γµ
(

Cv − Caγ
5
)

, (6)

where the coefficients Cv and Ca are defined as

Cv = T f
3 − 2 Qf sin

2 θW , Ca = T f
3 , TW =

1

sin θW cos θW
. (7)

TheQf and T f
3 denote the electric charge and the third component of the weak isospin

of the fermion f , and θW is the weak mixing angle. We give below the matrix element

squares summed (averaged) over the final (initial) sate spins, colors and polarizations.

The SM at LO gives order e4 contribution to the cross sections as given in eq. (8).

In addition, two more processes are allowed as the KK gravitons can appear at the

propagator level, qq → G∗ → ZZ and gg → G∗ → ZZ, as shown in Fig. 12. These qq

and gg initiated contributions which are of order κ4 are given in eqs. (9,10).

|M (0)|2qq,sm =
1

64Nt2u2
(

C4
v + 6 C2

vC
2
a + C4

a

)

e4T 4
W (8)

×(n− 2)
[

− 8m2tu(t+ u) + (tu−m4)(n− 2)(t2 + u2)

−2m4(n− 12)tu+ 2(n− 4)t2u2
]
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|M (0)|2qq,gr =
1

64N
|Ds|2κ4

[

n
{

8m8 − 16m6(t + u) + tu(3t2 + 2tu+ 3u2) (9)

+m4(9t2 + 30tu+ 9u2)− 2m2(t3 + 7t2u+ 7tu2 + u3)
}

−
{

8m8 − 24m6(t + u) + tu(7t2 + 10tu+ 7u2)

+m4(17t2 + 62tu+ 17u2)− 4m2(t3 + 9t2u+ 9tu2 + u3)
}

]

|M (0)|2gg,gr =
|Ds|2κ4
(N2 − 1)

1

128
×
[

128m8 + 9t4 + 28t3u+ 54t2u2 + 28tu3 + 9u4 (10)

−256m6(t+ u) + 192m4(t+ u)2 − 64m2(t+ u)3 − 72

(n− 1)2
s3(4m2 − s)

− 3

n− 1
s2
{

188m4 − 17t2 − 226tu− 17u2 + 60m2(t+ u)
}

+
32

(n− 2)2

{

− 44m8 + 40m6(t+ u)− 40m2tu(t+ u) + 9tu(t+ u)2

+m4(−9t2 + 26tu− 9u2)
}

+
4

n− 2

{

692m8 − 13t4 − 196t3u− 362t2u2

−196tu3 − 13u4 − 544m6(t+ u)− 8m4(t2 + 83tu+ u2)

+16m2(5t3 + 53t2u+ 53tu2 + 5u3)
}

]

Next we give the interference of SM qq process with the gravity mediated qq subpro-

cess. For convenience we will denote M
(0)
qq,smM

(0)∗
qq,gr + c. c. by |M (0)|2qq,int.

|M (0)|2qq,int =
1

64Ntu

(

C2
v + C2

a

)

(2ReDs)e
2κ2T 2

W (11)

×
[

4m6(n− 1)(t+ u) + 4m2(3n− 7)tu(t+ u)

+tu
{

(8− 3n)t2 − 2(n− 4)tu+ (8− 3n)u2
}

−m4
{

− 40tu+ n(t2 + 22tu+ u2)
}

]
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here sm and gr repesent contributions from standard model, gravity and interference

of SM with gravity induced processes respectively. s, t and u are the usual Mandel-

stam invariants, D(s) = Deff/i and m denotes the mass of Z boson. N denotes the

number of color and these are exact expressions in n dimensions. A factor of 1/2 has

been included for identical final state Z bosons.

The parton level cross sections obtained from the leading order matrix elements

are independent of factorization scale µF . A LO hadronic cross section obtains its de-

pendence on µF solely from the parton distribution functions. Due to this sensitivity

to µF the LO predictions are generally regarded as first approximation. To have a re-

sult which is less sensitive to µF and which also includes missing higher order pieces

we need to go beyond the leading order.

2.2 Next-to-leading order

In Fig. 10, the order as loop diagrams that appear in SM and in Fig. 13 the diagrams

that have a graviton propagator are presented. Here we consider only 5 flavors of

quarks and treat them as massless. These diagrams contribute through their inter-

ference with the leading order diagrams. In general loop diagrams give ultraviolet

divergences and infrared divergences when the integration over loop momenta is car-

ried out. We use dimensional regularization (n = 4+ ǫ) to regulate these divergences;

these divergences then appear as poles in ǫ. Note however that owing to the gauge in-

variance and the fact that the KK gravitons couple to SM energy momentum tensor, a

conserved quantity, this process is UV finite. Various tensor integrals were reduced to

scalar integrals following the procedure of Passarino-Veltman [22]. The 4-point scalar

integrals that appear in the gg initiated box diagrams were taken from [23,24]. The one

loop matrix elements are recorded below. The finite pieces of matrix element squares

denoted by a superscript fin are given in the appendix.

The SM contribution is found to be

|MV |2qq,sm = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,sm + |MV |2finqq,sm

]

, (12)
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the interference contributions of SM with the gravity mediated processes are

|MV |2qq,int = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,int + |MV |2finqq,int

]

(13)

|MV |2gg,int = as(µ
2
R)CA

[

|MV |2fingg,int

]

, (14)

and the pure gravity contributions are

|MV |2qq,gr = as(µ
2
R)f(ǫ, µ

2
R, s)CF

[

Υ (ǫ) |M (0)|2qq,gr + 4(2ζ(2)− 5)|M (0)|2qq,gr

]

(15)

|MV |2gg,gr = as(µ
2
R)f(ǫ, µ

2
R, s)CA

[

{

−16

ǫ2
+

4

CAǫ

(

11

3
CA − 4

3
nfTf

)}

|M (0)|2gg,gr

+
1

9

(

72ζ(2) + 70
nfTf
CA

− 203

)

|M (0)|2gg,gr

]

(16)

where

Υ (ǫ) = − 16

ǫ2
+

12

ǫ
, f(ǫ, µ2

R, s) =
Γ
(

1 +
ǫ

2

)

Γ(1 + ǫ)

(

s

4πµ2
R

)
ǫ
2

(17)

The theory is renormalized at scale µR. CF is the Casimir of the fundamental repre-

sentation while CA is the Casimir of adjoint representation in the color group.

CF =
N2 − 1

2N
, CA = N, Tf =

1

2
(18)

N is the color degree of freedom for quarks and N2 − 1 for gluons. We can now write
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the order as(µ
2
R) contributions coming from virtual diagrams as,

dσvirt = as(µ
2
R)dx1dx2f(ǫ, µ

2
R, s)

×
[

CF

(

−16

ǫ2
+

12

ǫ

)

∑

i

dσ
(0)
qiqi

(x1, x2, ǫ)
(

fqi(x1)fqi(x2) + x1 ↔ x2
)

+CA

{

−16

ǫ2
+

4

CAǫ

(

11

3
CA − 4

3
nfTF

)}

dσ(0)
gg (x1, x2, ǫ)

(

fg(x1)fg(x2)
)

+CF

∑

i

dσV,fin
qiqi

(x1, x2, ǫ)
(

fqi(x1)fqi(x2) + x1 ↔ x2
)

+CA dσ
V,fin
gg (x1, x2, ǫ)(fg(x1)fg(x2))

]

(19)

Note the appearance of poles of order 2 in ǫ in the one loop matrix elements. These

correspond to the configurations which are both soft and collinear simultaneously.

These double poles cancel when real emission contributions are included, the remain-

ing simple poles do not cancel completely and are factorized into the bare parton dis-

tribution functions at the scale µF . Several checks ensure the correctness of the matrix

elements. The Z boson polarization sum −gµν + kµkν/m
2 does not give rise to nega-

tive powers of m. Further, for gluon initiated process the gluon polarization sum is

−gµν+(kµnν+kνnµ)/k.nwhere n is an arbitrary light like vector and the results are in-

dependent of the vector n. The gauge parameter present in the graviton-gluon-gluon

vertex [21] does not appear in the matrix element square; this serves as yet another

check. Furthermore the SM matrix elements are in agreement with the literature [8].

At NLO we also have to include 2 → 3 real emission processes. A generic process

is of the form

a(p1) + b(p2) → Z(p3) + Z(p4) + c(p5). (20)

In Fig. 11 we show the qq and qg initiated real emission Feynman diagrams which

appear in SM. In addition, in the ADD model the 2 → 3 diagrams with graviton prop-

agator are shown in Fig. 14. Here all the three kinds, qq, qg, gg initiated subprocesses
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occur. The 2 → 3 contributions to cross-section reveal the infrared divergences when

the integral over the final state particles is carried out. As mentioned above, the sum

of virtual and real emission cross section is finite after mass factorization is carried out,

we present very briefly below this in the framework of phase space slicing method.

For more details we refer to the review [16] and our earlier work [13].

Using two small dimensionless slicing parameters δs and δc the 2 → 3 phase space

is divided into soft and collinear regions. The soft is defined as the part of phase space

where the final state gluon is soft and has an energy less than δs
√
s12/2 in the center

of mass frame of incoming partons. In this region the cross section simplifies and we

have

dσsoft ≃ asdx1dx2f(ǫ, µ
2
R, s)

(

16

ǫ2
+

16 ln δs
ǫ

+ 8 ln2 δs

)

×
[(

CF

∑

i

dσ
(0)
qiqi

(x1, x2, ǫ)fqi(x1)fqi(x2) + x1 ↔ x2

)

+CA dσ
(0)
gg (x1, x2, ǫ)fg(x1)fg(x2)

]

. (21)

The region complementary to the soft region is hard region and contains collinear

singularities. This region is thus further divided into hard collinear region (the region

of phase space where the final state parton is collinear to one of the initial state parton)

which contains collinear singularities and hard non-collinear region which is free of

any singularities. After mass factorization in MS scheme, hard collinear region gives
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the following contribution to the cross section.

dσHC+CT = as(µ
2
R)dx1dx2f(ǫ, µ

2
R, s)

×
[

∑

i

dσ̂
(0)
qiqi

(x1, x2, ǫ)

{

1

2
fq

i
(x1, µF )f̃qi(x2, µF ) +

1

2
f̃q

i
(x1, µF )fqi(x2, µF )

+2

(

−1

ǫ
+

1

2
ln
p12
µ2
F

)

Aq→q+g fq
i
(x1, µF )fqi(x2, µF ) + x1 ↔ x2

}

+dσ̂(0)
gg (x1, x2, ǫ)

{

2 · 1
2
f̃g(x1, µF )fg(x2, µF )

+2

(

−1

ǫ
+

1

2
ln
p12
µ2
F

)

Ag→g+g fg(x1, µF )fg(x2, µF )

}]

. (22)

Here terms of order δs have been dropped and factors of 2 appear because both the

incoming partons can emit gluons. p12 = (p1 + p2)
2 and the other definitions used in

the above equation are as follows.

Aq→q+g ≡
∫ 1

1−δs

dz

z
Pqq(z) = 4CF

(

2 ln δs +
3

2

)

,

Ag→g+g ≡
∫ 1

1−δs

dz

z
Pgg(z) =

(

22

3
CA − 8

3
nfTF + 8CA ln δs

)

, (23)

and the function f̃q,g are defined by

f̃q(x, µF ) =

∫ 1−δs

x

dz

z
fq

(x

z
, µF

)

P̃qq(z) +

∫ 1

x

dz

z
fg

(x

z
, µF

)

P̃qg(z),

f̃g(x, µF ) =

∫ 1−δs

x

dz

z
fq

(x

z
, µF

)

P̃gq(z) +

∫ 1

x

dz

z
fg

(x

z
, µF

)

P̃gg(z), (24)

with

P̃ij(z) = Pij(z) ln

(

δc
1− z

z

p12
µ2
F

)

+ 2P ′

ij(z). (25)

and

Pij(z, ǫ) = Pij(z) + ǫP ′

ij(z) (26)
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Let us now add all the order as pieces together; the virtual cross-section dσvirt in

Eq.( 19), the soft piece dσsoft in Eq. (21) and the mass factorized hard collinear con-

tribution dσHC+CT as given in Eq. (22). We see that all the poles in ǫ cancel in the

sum

dσ2−body(δs, δc, µF ) = dσvirt + dσsoft(δs, δc) + dσHC+CT (δs, δc, µF ). (27)

We have made explicit the dependence on the slicing parameters and the factorization

scale and suppressed other variables. The only order as piece, dσ3−body(δs, δc), which

remains to be included is hard non collinear; it is finite as the integration over 3-body

phase space here does not include soft and collinear regions. Thus, we need to know

the phase space only in n = 4 dimensions. It is easy to parameterize the momenta of

particles in the rest frame of the two final state Z bosons and later lorentz transform

to the laboratory frame. We can take p1 to define the z axis, and using p1 and p2 define

y − z plane.

p1 = E1

(

1 , 0, 0, 1
)

,

p2 = E2

(

1, 0, sinψ, cosψ
)

,

p3 =

√
p34

2
(1, βx sin θ2 sin θ1, βx cos θ2 sin θ1, βx cos θ1),

p4 =

√
p34

2
(1,−βx sin θ2 sin θ1,−βx cos θ2 sin θ1,−βx cos θ1), (28)

where

βx =

√

1− 4m2

p34
, p34 = (p3 + p4)

2, (29)

and sinψ > 0. The momentum p5 is determined by momentum conservation. The

three body processes are characterized by five independent scalar quantities:

p12 = (p1 + p2)
2, p15 = (p1 − p5)

2, p25 = (p2 − p5)
2,

p13 = (p1 − p3)
2, p24 = (p2 − p4)

2. (30)
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Of course any other set of five independent scalars can be chosen. For convenience let

us introduce the variables x and y, where x = p34/p12 and y is the cosine of the angle

between p1 and p5. We have

4m2

p12
≤ x ≤ 1, −1 ≤ y ≤ 1, (31)

and

p15 = −p12
2
(1− x)(1− y), p25 = −p12

2
(1− x)(1 + y). (32)

The phase space is given in 4-dimensions by

dΓ3 =
1

(4π)2
βx
16π

d cos θ1dx
p12
2π

(1− x)dydθ2. (33)

The integration over the 3-body phase space is carried out using Monte Carlo, and it is

constrained to avoid collinear and soft regions. The qq and gg initiated processes con-

tain both kinds of divergences so the integral is constrained using δs and δc to avoid

these regions. The qg initiated process, however, contain only collinear singularities

(as soft fermions do not give singularities) and the 3-body integration is constrained

using only δc.

We want to express the momenta in the laboratory frame so as to facilitate imple-

mentation of any cuts, such as rapidity cut, on the final state particles. The transfor-

mation matrix can be obtained by first boosting to the p1 + p2 rest frame and rotating

to align p1 and p2 parallel to the z−axis. Finally we will boost to the laboratory frame.

Successively carrying out these transformations we obtain the final transformation

matrix Mij whose components are as given below:

M00 =
x1E2 + x2E1

x1x2
√
S

, M33 =
−2E1(x1E2 − x2E1) + x2x

2
1S

2E1x1x2
√
S

, (34)

M02 = −x1
√

x1x2S(4E1E2 − x1x2S)

2E1x1x2
√
S

, M20 = −
√

x1x2S(4E1E2 − x1x2S)

x1x2S
, (35)

M03 =
−2E1(x1E2 + x2E1) + x2x

2
1S

2E1x1x2
√
S

, M30 =
x1E2 − x2E1

x1x2
√
S

, (36)
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M23 = −M20, M32 =M02. (37)

The remaining matrix elements are zero. S denotes the center of mass energy of the

colliding hadrons. The energies E1 and E2 and cosψ can be expressed as

cosψ = 1− x1x2S

2E1E2
, (38)

E1 =
1

4

√

x1x2S

x

[

2− (1− x)(1− y)
]

, E2 =
1

4

√

x1x2S

x

[

2− (1− x)(1 + y)
]

. (39)

Applying the above transformation we can obtain all the momenta in the Laboratory

frame and can impose any restrictions at the Monte Carlo level. We do not give the

matrix elements for 2 → 3 processes as the expressions are large and can be obtained

on request.

The NLO result is sum dσLO+dσ2−body(δs, δc, µF )+dσ
3−body(δs, δc). The sum dσ2−body

(δs, δc, µF ) +dσ
3−body(δs, δc) constitutes QCD correction, but dσ2−body(δs, δc, µF ) and

dσ3−body(δs, δc) independently are not physical quantities as these depend on the (arbi-

trary) slicing parameters. The sum of these two pieces should be independent of the

slicing parameters as these were introduced at the intermediate stages of calculation.

A verification of this, in the next section, will serve as a test on the code as to the

correct implementation of the phase space slicing method.

3 Results

In the previous section we have given all the relevant analytical results, now we pro-

ceed to determine some kinematical distributions. First we demonstrate that the sum

of 2-body and 3-body contributions is fairly independent of the slicing parameters.

In Fig. 1 (for SM) and Fig. 2 (for signal) we show the variations of these two pieces

with the slicing parameters in invariant mass, Q =
√

(p3 + p4)2, distribution at a value

of invariant mass equal to 800GeV . Here both δs and δc are varied together with the

ratio δs/δc fixed at a value of 100 [16]. We note that the sum of 2-body and 3-body

14



contributions is fairly stable against variations in these parameters and this gives us

confidence in our code. In what follows we will use δs = 10−3 and δc = 10−5.

Below we present various distributions for the LHC with a center of mass energy

of 14 TeV as a default choice. However we will also present some results for a center

of mass energy of 10 TeV for the LHC. For numerical evaluation, the following SM

parameters [25] are used

m = 91.1876 GeV, sin2 θW = 0.231 (40)

where θW is the weak mixing angle. For the electromagnetic coupling constant α

we use α−1 = 128.89. CTEQ6 [26, 27] density sets are used for parton distribution

functions. 2-loop running for the strong coupling constant is used which is given by

the expression,

as(µ
2
R) =

1

β0 ln
µ2
R

Λ2
QCD











1−
(β1/β0) ln ln

µ2
R

Λ2
QCD

β0 ln
µ2
R

Λ2
QCD











. (41)

with

β0 =
11

3
CA − 4

3
nfTf ,

β1 =
34

3
C2

A − 4

3
nfTf (3CF + 5CA), (42)

where the symbols are as given in Eq. 18 with number of colors equal to three. The

number of active light-quark flavors is denoted by nf (= 5) and the value of ΛQCD is

chosen as prescribed by the CTEQ6 density sets. At leading order, that is at order a0s,

we use CTEQ6L1 density set ( which uses the LO running as ) with the corresponding

ΛQCD = 165MeV . At NLO we use CTEQ6M density set ( which uses 2-loop running

as ) with the ΛQCD = 226 MeV ; this value of ΛQCD enters into the evaluation of the

2-loop strong coupling. The default choice for the renormalization and factorization

scale is the identification to the invariant mass of the Z boson pair ie., µF = µR = Q.

Furthermore the Z bosons will be constrained to satisfy |yZ| < 2.5, where yZ is the

rapidity of a final state Z boson .
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In Fig. 3 we have plotted the invariant mass distribution both for the SM and

the signal, in the range 300 GeV to 1600 GeV . The distribution is presented at the

higher values of Q as it is in this region the deviations from SM are more pronounced.

In this plot we display for three extra dimensions ie., d = 3, for fundamental scale

equal to 2 TeV . We see that for this choice of parameters the signal starts deviating

significantly from the SM predictions around 400 GeV . To highlight the importance

of QCD corrections we have also displayed the LO results of SM and the signal, and

we observe that the K factors (defined as K = dσNLO/dσLO) are large. For the signal

the K factor is 1.98 at Q = 600 GeV and 1.82 at Q = 1600 GeV .

To estimate the effect of the number of extra dimension on the invariant mass

distribution, we plot in Fig. 4 the signal for three different values of d (3,4,5) with Ms

fixed at 2 TeV . We note that the lower the value of d more is the strength of the signal.

Next in Fig. 5 we have plotted dσ/dQ for three different values of Ms (2.0, 2.5, 3.0) at

a fixed value 3 for the number of extra dimensions. As expected, with increase in the

fundamental scale the deviations from SM predictions become less, and significant

deviations from SM are observed at higher energies still.

If Fig. 6 we have plotted the rapidity distribution dσ/dY at LO and NLO both for

SM and the signal for d = 3 and d = 4. The rapidity Y is defined as

Y =
1

2
ln
P1 · q
P2 · q

, (43)

where P1 and P2 are incoming proton momenta and q = p3+p4 ie., sum of the Z boson

4-momenta. We have plotted this distribution in the interval −2.0 < Y < 2.0 and have

carried out an integration over the invariant mass interval 900 < Q < 1100 to increase

the signal over the SM background. As expected the distribution is symmetric about

Y = 0.

We have mentioned before that the NLO QCD corrections reduce the sensitivity

of the cross sections to the factorization scale µF ; this we now show in the Fig. 7. We

have plotted SM and the signal both at LO and NLO, and have varied the factoriza-

tion scale µF in the range Q/2 < µF < 2Q. The central curve in a given band (shown

16



by the dotted curves) correspond to µF = Q. In all these the renormalization scale is

fixed at µR = Q. We notice that the factorization scale uncertainties in SM are reduced

compared to the signal. This is because of the dominant role of the gluon gluon ini-

tiated process in the signal. Most importantly we have been able to demonstrate that

a significant reduction in factorization scale uncertainty is achieved by carrying out a

full NLO computation. For instance at Q = 1400 GeV varying µF between Q/2 to 2Q

shows a variation of 20.4% at LO for the signal, however the NLO result at the same

Q value shows a variation of 6.4%.

At the end we present in Fig. 8, dσ/dQ for LHC with a centre of mass energy of

10 TeV at NLO both for SM and signal. For comparison we have also plotted the

14 TeV results in the same figure.

4 Summary and Conclusions

In this paper we have carried out a full NLO QCD calculation for the production of

two Z bosons at the LHC at 14TeV in the large extra dimension model of ADD. Here

we take all order as contributions, both in the SM and in the gravity mediated pro-

cesses and their interferences, into account. We have presented all the leading order

and one loop virtual matrix element squared for the process. The method of two cut-

off phase space slicing, on which our monte carlo FORTRAN code is based, is very

briefly discussed. After offering some checks on our monte carlo code we obtained

invariant mass and rapidity distributions both at LO and NLO. We use CTEQ 6L1

and CTEQ 6M parton density sets for LO and NLO observables, respectively. Signif-

icant enhancements over the LO predictions are observed. The K factors are found

to be large in the invariant mass distribution; for instance the signal has a K factor of

1.98 at Q = 600 GeV and 1.82 at Q = 1600 GeV . We have also presented the effects

of variation of number of extra dimensions d and the fundamental scale Ms in the

Q distribution. We have shown that a significant reduction in LO theoretical uncer-

tainty, arising from the factorization scale, is achieved by our NLO computation. For

17



instance at Q = 1400 GeV varying µF between Q/2 to 2Q shows a variation of 20.4%

at LO for the signal, however the NLO result at the same Q value shows a variation

of 6.4%. Thus our NLO results are more precise than the LO results and suitable for

further studies for constraining the parameters of the ADD model. Invariant mass

distribution is also presented for LHC at a center of mass energy of 10TeV at the NLO

level.
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Figure 1: Variation of 2-body and 3-body contributions (of dσ/dQ at Q = 800 GeV in
SM) and their sum with δs. Here δs/δc = 100 has been used.
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Figure 2: Variation of 2-body and 3-body contributions (of dσ/dQ at Q = 800GeV in
signal) and their sum with δs. Here δs/δc = 100 has been used.
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ZZ production at the LHC (√ S =14 TeV)

 Q →Ms=2TeV, d=3
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Figure 3: Invariant mass distribution at LO and NLO in SM and for the signal at
Ms = 2TeV and 3 extra dimensions.
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ZZ production at the LHC (√ S =14 TeV)

 Q →d variation,  Ms=2TeV
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Figure 4: Effect of variation of number of extra dimensions in invariant mass distri-
bution. The fundamental scale Ms has been fixed at 2 TeV. The curves correspond to
NLO results.
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ZZ production at the LHC (√ S =14 TeV)

 Q →Ms variation,  d=3
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Figure 5: Effect of variation of the fundamental scale Ms in the invariant mass distri-
bution. The number of extra dimensions has been fixed at 3. The curves correspond
to NLO results.
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 LHC (√ S =14 TeV)

 Y →d variation, Ms=2TeV

dσ
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Y 
(p

b)
  → dotted curves → LO

solid curves → NLO
900 ≤ Q ≤ 1100
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Figure 6: Rapidity distribution for Ms = 2TeV for SM and signal for d = 3 and d = 4.
The dotted curves correspond to the LO and solid curves to NLO. We have integrated
over the invariant mass range 900 < Q < 1100 to enhance the signal.
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µF variation,  LHC (√ S =14 TeV)

 Q →d=3,  Ms=2TeV
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Figure 7: Factorization scale variation in the invariant mass distribution. The number
of extra dimensions d = 3 and the fundamental scale Ms = 2TeV have been chosen.
LO curves correspond to CTEQ 6L1 density sets and NLO curves to CTEQ 6M sets.

25



LHC at √ S =14 TeV and √ S=10 TeV

 Q →d =3,  Ms=2TeV
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Figure 8: Invariant mass distribution at NLO for SM and the signal. Here the thicker

curves correspond to
√
S = 10TeV and lighter curves to

√
S = 14TeV at the LHC.
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5 Appendix

|MV |2finqq,sm =
e4

N

(

C4
v + 6 C2

vC
2
a + C4

a

)

T 4
W

(

1

8t2u2

)

×
[{

u F1(t)

(t−m2)2

(

3m8(−4t + u) + 6m6t(2t+ u)− 2m2t2u(4t+ u)

+t3u(2t+ 3u) +m4t(−2t2 + tu− 3u2)
)

+u F2(t)
(

m4(8t− 2u)− 4m2t(2t+ u) + t(2t2 + 2tu+ u2)
)

+ t↔ u

}

+2ζ(2)
(

− 20m2tu(t+ u)− 4m4(t2 − 8tu+ u2) + tu(5t2 + 4tu+ 5u2)
)

+
F3

(4m2 − s)2

(

8m2t2u2(t+ u) + 12m8(t2 − 8tu+ u2)

−tu(t+ u)2(3t2 + 4tu+ 3u2) + 4m6(3t3 − 5t2u− 5tu2 + 3u3)

+m4(3t4 + 14t3u+ 78t2u2 + 14tu3 + 3u4)
)

+
tu F4

s(4m2 − s)2

(

− 32m6tu− 64m8(t+ u) + 8m2tu(t+ u)2

−(t+ u)3(3t2 + 4tu+ 3u2) +m4(22t3 + 82t2u+ 82tu2 + 22u3)
)

+
1

(t−m2)(u−m2)(4m2 − s)

(

18m10(t2 − 8tu+ u2)

+m8(−9t3 + 131t2u+ 131tu2 − 9u3)− 7t2u2(t3 + t2u+ tu2 + u3)

−4m4tu(4t3 + 23t2u+ 23tu2 + 4u3) +m6(−9t4 + 14t3u− 66t2u2

+14tu3 − 9u4) +m2tu(9t4 + 32t3u+ 82t2u2 + 32tu3 + 9u4)
)

]

(44)
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|MV |2finqq,int =
e2κ2

8N

(

C2
v + C2

a

)

T 2
W

×
[

{ G1(t)

t (m2 − t)

(

− 9m8 − 4m4t2 + 3m6(5t+ u)−m2tu(9t+ u) (45)

+t2u(2t+ 3u)
)

+
G2(t)

t

(

6m6 − 2m4(8t+ u) +m2t(10t+ 7u)

−t(2t2 + 2tu+ u2)
)

+ t↔ u
}

− 2G3

tu

(

− 18m6(t + u)

−37m2tu(t+ u) +m4(6t2 + 80tu+ 6u2) + tu(7t2 + 4tu+ 7u2)
)

+
G4

tu (u−m2) (m2 − t)

(

9m10(t+ u) +m4tu(t2 + 10tu+ u2)

−6m8
(

2t2 + 5tu+ 2u2
)

+ t2u2(3t2 + 4tu+ 3u2)

−m2tu(t3 + 14t2u+ 14tu2 + u3) +m6(3t3 + 19t2u+ 19tu2 + 3u3)
)

− G5

s (4m2 − s)2

(

− 128m10 + 48m8(t+ u) + 48m6(t2 + 3tu+ u2)

+(t + u)3(3t2 + 4tu+ 3u2)−m2(t+ u)2(5t2 + 18tu+ 5u2)

−2m4(7t3 + 37t2u+ 37tu2 + 7u3)
)

+
G6

tu (4m2 − s)

(

− 114m8(t+ u)

+m6(−19t2 + 334tu− 19u2)−m2tu(53t2 + 190tu+ 53u2)

+17tu(t3 + t2u+ tu2 + u3) +m4(19t3 + 61t2u+ 61tu2 + 19u3)
)

+
G7

tu (4m2 − s)2

(

− 36m10(t+ u)− 8m8(3t2 − 13tu+ 3u2)

+tu(t+ u)2(3t2 + 4tu+ 3u2) +m6(3t3 + 61t2u+ 61tu2 + 3u3)

+m4(3t4 − 2t3u− 98t2u2 − 2tu3 + 3u4)− 7m2tu(t+ u)3
)

]
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where

F1 = ln− t

m2
, F2 = 2 ln

(

− t

m2

)

ln

{

(t−m2)2

m2s

}

+ 4Li2

(

t

m2

)

− ln2

(−t
m2

)

,

F3 = ln
s

m2
, F4 =

1

β

[

ln2(γ) + 4Li2(−γ) + 2ζ(2)
]

,

γ =
1− β

1 + β
, β =

√

1− 4m2/s. (46)

and

G1 = ReDs ln

(−t
m2

)

,

G2 = 4ReDsLi2

(

t

m2

)

+ 2ReDs ln

(−t
m2

)

ln

(

(m2 − t)2

m2s

)

+2ImDsπ ln

(

(m2 − t)2

m2s

)

−ReDs ln

(−t
m2

)2

− 2ImDsπ ln

(−t
m2

)

,

G3 = ζ(2)ReDs, G4 = ImDsπ,

G5 =
ReDs

β
ln2 (γ) +

4

β
ReDsLi2(−γ) +

2ReDs

β
ζ(2),

G6 = ReDs, G7 = ReDs ln
(

s/m2
)

. (47)
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|MV |2fingg,int =
(

C2
v + C2

a

)

T 2
W

1

CA

e2κ2

N2 − 1

×
[

{

H1(t)
(

9m4 + 2t2 + 2tu+ u2 − 6m2(t+ u)
)

+
H2(t)

4(t−m2)2

(

− 9m8

+t2u(2t+ u)− 2m2tu(3t+ u) + 2m6(5t+ 3u)−m4(3t2 − 2tu+ u2)
)

+u↔ t
}

+
H3

4

(

18m4 + 3t2 + 4tu+ 3u2 − 12m2(t + u)
)

+
H4

4(4m2 − s)2

(

− 32m8 + 4m6(t + u)− (t+ u)2(t2 + 4tu+ u2)

+m4(6t2 + 44tu+ 6u2) + 2m2(t3 − 3t2u− 3tu2 + u3)
)

+
H5

s(4m2 − s)2

(

80m10

−32m8(t+ u) + 8m2tu(t+ u)2 − 16m6(t2 + 5tu+ u2)

−(t + u)3(3t2 + 4tu+ 3u2) + 2m4(5t3 + 31t2u+ 31tu2 + 5u3)
)

− H6

4(t−m2)2(u−m2)2

(

18m12 − 34m10(t+ u)− t2u2(t2 + 4tu+ u2)

+m8(25t2 + 36tu+ 25u2) + 2m2tu(t3 + 6t2u+ 6tu2 + u3)

−4m6(2t3 + t2u+ tu2 + 2u3) +m4(t4 − 8t3u− 20t2u2 − 8tu3 + u4)
)

+
H7

4(t−m2)(u−m2)(4m2 − s)

(

− 28m10 + 8m6tu+ 26m8(t+ u)

+tu(t3 + t2u+ tu2 + u3)−m4(5t3 + 23t2u+ 23tu2 + 5u3)

+m2(t4 + 4t3u+ 10t2u2 + 4tu3 + u4)
)

]

(48)
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where

H1(t) =
1

8

(

2ReDs ln

(−t
m2

)

ln

(

(m2 − t)2

m2s

)

+2ImDsπ ln

(

(m2 − t)2

m2s

)

+ 4ReDsLi2

(

t

m2

)

−ReDs ln

(−t
m2

)2

− 2ImDsπ ln

(−t
m2

)

)

, (49)

H1(u) =
1

8

(

2ReDs ln

(−u
m2

)

ln

(

(m2 − u)2

m2s

)

+2ImDsπ ln

(

(m2 − u)2

m2s

)

+ 4ReDsLi2

( u

m2

)

−ReDs ln

(−u
m2
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)
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)

,
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,
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β
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4

β
ReDsLi2(−γ) +
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β
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)

,
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Figure 9: Leading order diagram in SM. The diagram with the momenta of final state
Z bosons interchanged (which is not shown here) also contributes.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 10: Order as virtual diagrams in SM. The diagrams with the momenta of final
state Z bosons interchanged (which are not shown here) also contribute.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Order as real emission Feynman diagrams in SM. The diagrams with the
momenta of final state Z bosons interchanged (which are not shown here) also con-
tribute.
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(a) (b)

Figure 12: LO gravity mediated diagrams.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13: Order as gravity mediated virtual correction Feynman diagrams.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 14: Gravity mediated real emission diagrams which contribute at NLO.
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