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The issue of intermittency in numerical solutions of the 3D Navier–Stokes equations
on a periodic box [0, L]3 is addressed through four sets of numerical simulations
that calculate a new set of variables defined by Dm(t) = (̟−1

0 Ωm)
αm

for 1 6 m 6 ∞
where αm = 2m/(4m − 3) and [Ωm(t)]2m = L−3

∫

V
|ω|2m dV with ̟0 = νL−2. All four

simulations unexpectedly show that the Dm are ordered for m = 1, . . . , 9 such that
Dm+1 < Dm. Moreover, the Dm squeeze together such that Dm+1/Dm ր 1 as m increases.
The values of D1 lie far above the values of the rest of the Dm, giving rise to a
suggestion that a depletion of nonlinearity is occurring which could be the cause
of Navier–Stokes regularity. The first simulation is of very anisotropic decaying
turbulence; the second and third are of decaying isotropic turbulence from random
initial conditions and forced isotropic turbulence at fixed Grashof number respectively;
the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at
up to resolutions of 40963.
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1. Introduction

1.1. Background

Intermittency in both the vorticity and strain fields is a dominant feature of developing
and developed turbulence. It has been studied extensively both experimentally
(Sreenivasan 1985; Meneveau & Sreenivasan 1991) and numerically (Kerr 1985;
Jimenez et al. 1993; Donzis, Yeung & Sreenivasan 2008; Ishihara, Gotoh & Kaneda
2009; Donzis & Yeung 2010; Donzis, Sreenivasan & Yeung 2012; Yeung, Donzis &
Sreenivasan 2012). Statistical physicists generally use velocity structure functions to
study this phenomenon and have diagnosed the degree of intermittency by measuring
how much the order-p velocity structure–function exponents ζp differ from a simple
linear dependence on p (Frisch 1995; Schumacher, Sreenivasan & Yakhot 2007;
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Boffetta, Mazzino & Vulpiani 2008; Pandit, Perlekar & Ray 2009). The standard
way of quantifying equal-time, multiscaling exponents is a challenging experimental
and numerical task (Arneodo et al. 2008; Ray, Mitra & Pandit 2008; Ray et al. 2011).
The multiscaling approach is even more challenging for the three-dimensional (3D)
Navier–Stokes equations

∂tu + u ·∇u = ν1u − ∇P, div u = 0, (1.1)

because the velocity field u(x, t) and pressure P(x, t) evolve in time, so, in general,
time-dependent structure functions must be used to study dynamic multiscaling (Ray
et al. 2008, 2011). In this paper, we introduce a way of analysing some new, and
existing, numerical computations; our analysis gives new insights into, and provides
a new method for distinguishing between, alternative regimes of behaviour in the
vorticity field. To explain the nature of these regimes, let us consider the vorticity field
ω = curl u on a finite periodic domain V = [0, L]3 within the setting of the volume
integrals which define a set of frequencies

Ωm(t) =
(

L−3

∫

V

|ω|2m dV

)1/2m

, 1 6 m 6 ∞. (1.2)

Some recent work has centred around a dimensionless rescaling of the Ωm such that
(Gibbon 2010, 2011, 2012, 2013)

Dm(t) = (̟−1
0 Ωm)

αm
, αm =

2m

4m − 3
, (1.3)

where ̟0 is a fixed frequency defined by ̟0 = νL−2. (For the forced Navier–Stokes
equations, definition (1.2) must be modified by adding ̟0 to the integral term (Gibbon
2012).) The origin of the above rescaling, valid for both the Navier–Stokes and Euler
equations, has been explained elsewhere (Gibbon 2011, 2012, 2013) where it has been
shown that, with additive L2-forcing, weak solutions obey the time average up to
time T

〈Dm〉T 6 cRe3 + O(T−1). (1.4)

The first in the hierarchy, D1 = ̟−2
0 Z, is proportional to the global enstrophy Z = Ω2

1

and may be insensitive to deep fine-scale fluctuations. The higher Dm may be more
sensitive so their measurement over a wide range of m could be a useful diagnostic
of intermittency. However, the end of the sequence, D∞(t), is hard to measure
numerically, especially in highly intermittent flows. While Hölder’s inequality enforces
a natural ordering on the frequencies Ωm such that Ωm 6 Ωm+1 for 1 6 m 6 ∞, no
such natural ordering is enforced on the Dm because the αm decrease with m. Thus,
there are two possible regimes:

Dm+1(t) < Dm(t) (regime I), Dm(t) 6 Dm+1(t) (regime II). (1.5)

The issues to be addressed in this paper in our four numerical simulations of the 3D
Navier–Stokes equations are as follows.

(a) Which of these regimes is favoured or is there an oscillation between them? If one
regime is favoured, are the Dm well separated? What is the role of the enstrophy
D1?

(b) Are these orderings m-dependent?

(c) Are they Re-dependent?

(d) Are they dependent upon initial conditions?
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1.2. Simulations used for tests

An important point with respect to numerical simulations of the weighted higher-order
moments Dm(t) is that their ratios might converge better than their actual values.
This is consistent with the results reported in Donzis et al. (2008, 2012) and Yeung
et al. (2012) where convergence for the ratios of higher-order vorticity and dissipation
(strain) moments were obtained, even when the statistics of the individual moments
showed no evidence of convergence (Kerr 2012). This answered a problem first
raised in Kerr (1985) where it was noted that in forced simulations at modestly
high Reynolds numbers, the averages of the vorticity and strain moments above
sixth order did not converge. The determination of the Dm(t) in simulations is not
difficult whereas, in contrast, traditional numerical tools such as higher-order structure
functions require a combination of larger domains and finer resolution than is currently
feasible. In this paper, we calculate and compare the Dm(t) from four data sets: two
in which the average kinetic energy E = L−3

∫

V
|u|2/2 dV decays in time and two

in which E is held approximately constant by forcing at the low wavenumbers. The
first is a unique data set from a computation in which fully developed turbulence
forms from the interaction of two antiparallel vortices and whose kinetic energy E

decays strongly after the first peak in the normalized enstrophy production −Su (Kerr
2013a). Some introductory discussion of this calculation is given in (§ 2). The other
three data sets represent more traditional decaying and forced homogeneous, isotropic
numerical turbulence. In the decaying calculations in § 2 and the decaying and forced
calculations in § 3 the moments have been determined relatively continuously in time
which makes a helpful comparison with the results of § 1. For the fourth data
set (comprising resolutions up to 40963) of § 4, a similar conclusion is reached
by studying the dependence of the time average of Dm on the Reynolds number.
Inequality (1.4) is indeed uniform in m and, therefore, it is useful to study the
behaviour of 〈Dm〉T for different m, although this does not provide information on the
pointwise-in-time ordering of the Dm.

An advantage of the first data set described in § 2 is that the predicted convergence
properties of ratios of the Dm(t) can be tested for a calculation with huge fluctuations
in the production of enstrophy, and therefore in the higher Dm(t). That the calculation
eventually exhibits traditional turbulent statistics and spectra is a bonus in justifying
its use. However, this new initial condition is very specialized and any trends need
to be confirmed using a more traditional decaying homogeneous, isotropic data set,
which is the purpose of the second calculation discussed in § 3. Section 3 also contains
forced simulations of homogeneous and isotropic turbulence at fixed Grashof number
(a dimensionless measure of the ratio of the strength of the forcing term to that of the
dissipative term; see, e.g., Doering & Gibbon (1995)). Finally, the fourth calculation in
§ 4 studies the time average of Dm from a forced, massively parallel, pseudo-spectral
calculation (40963 with Reλ ≈ 1000) to show that these trends are not restricted to low
or moderate Reynolds numbers.

Assessing the scaling of moments of intermittent quantities such as vorticity, strain
rates or velocity gradients has been a critical component of characterizing and
understanding intermittency. Of particular interest is how these moments scale with the
Reynolds number, which is typically high in applications. At the same time, different
orders provide information about fluctuations of different intensities. Low- and high-
order moments, for example, are associated with weak and strong fluctuations. Thus,
the understanding of the dependence of 〈Dm〉T on Re, especially at high m, can also
shed light on the nature of intermittency and the most extreme events in turbulence.
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1.3. A summary of results

The simulations described in §§ 2, 3 and 4, and illustrated in figures 2–4 and 7, each
observe that a strict ordering occurs, as in regime I; namely Dm+1(t) < Dm(t) in §§ 2
and 3 and 〈Dm+1〉T < 〈Dm〉T in § 3 and in § 4 (on log-linear plots). To assess the
significance of this, we write down the relation Dm+1 < Dm in terms of Ωm and use
Hölder’s inequality Ωm 6 Ωm+1 on the extreme left-hand side

̟−1
0 Ωm 6 ̟−1

0 Ωm+1 < (̟−1
0 Ωm)

αm/αm+1 . (1.6)

As m → ∞, αm ց αm+1, and so (1.6) shows that Ωm+1/Ωm ց 1. Thus, in regime I the
Ωm must be squeezed together for high m. In terms of the Dm, equation (1.6) is written
as

Dαm+1/αm
m 6 Dm+1 < Dm. (1.7)

While respecting the ordering Dm+1 < Dm, Dm+1 is squeezed up close to Dm as m → ∞

lim
m→∞

Dm+1

Dm

ր 1. (1.8)

This squeezing phenomenon is observed in all four data sets where the Dm curves
lie very close for m > 3 as in figures 2–4 and 7. Moreover, the values of D1 in
all four simulations lie far above the rest of the Dm giving rise to a suggestion,
explored in § 5, that a depletion of nonlinearity is occurring which could be the cause
of Navier–Stokes regularity. The most extreme intermittent events are represented by
moments at increasingly large m. Our results suggest the saturation of these high-order
moments. This is significant as it constrains the shape of the tails of the probability
density function (p.d.f.) of vorticity which has been the focus of intense investigations
(Kerr 1985; Jimenez et al. 1993; Donzis et al. 2008; Ishihara et al. 2009; Donzis
& Yeung 2010; Donzis et al. 2012; Yeung et al. 2012). The fourth data set (forced,
stationary, isotropic turbulence), the results of which are displayed in § 4, furnishes
us with the opportunity to compare these results with other results on intermittency
available in the literature. For example, within the multifractal model, Nelkin (1990)
found that normalized moments of velocity gradients scale as

〈up
x〉/〈u2

x〉p/2 ∼ Reλ
dp, (1.9)

where dp is obtained from the multifractal spectrum and 〈·〉 is the usual notation
for the statistical average (see also Schumacher et al. 2007; Chakraborty, Frisch &
Ray 2012). Using the well-known result 〈u2

x〉 ∼ (U0/L)2Re2
λ due to the dissipative

anomaly, it is readily shown that 〈up
x〉 ∼ Reλ

p+dp . Our interest lies in the limit
p → ∞ where it can be shown that limp→∞ dp/p = c. The constant c is given by
c = 3(1 − D∞)/(3 + D∞) with D∞ representing the limit limq→∞ Dq of the generalized
dimensions Dq (Hentschel & Procaccia 1983; Nelkin 1990). Clearly, moments of the
form 〈up

x〉1/p saturate at high p, consistent with (1.8). Experimentally it is difficult
to measure D∞ reliably; its value appears to be smaller than 1.0 (Meneveau &
Sreenivasan 1991). One can further show that the ratio of successive orders is

〈up+1
x 〉1/(p+1)/〈up

x〉1/p ∼ Re
(1+dp/p)−(1+dp+1/(p+1))

λ . (1.10)

The limiting behaviour of dp shows that limp→∞[(1 + dp/p) − (1 + dp+1/(p + 1))] = 0,
and therefore the ratio on the left-hand side of (1.10) tends to a constant independent
of p and Reλ. Although data on the multifractal characteristics of vorticity are limited,
measurements (Meneveau et al. 1990) suggest an asymptotic value D∞ that is less
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FIGURE 1. (Colour online) (a) Isosurfaces of the vorticity magnitude at t = 16, |ω| = 0.87
and max |ω| = 8.7. The initial condition is characterized by long antiparallel vortices with a
localized perturbation for the Re = 4000 reconnection calculation. (b) Plots of the kinetic
energy decay E, the enstrophy Z and its production, normalized to be consistent with
experimental measurements of the velocity derivative skewness −Su (large y-domain with
ν = 0.0005). Here Z grows until t ≈ 270 before falling, while E is always decaying.

than one, which is consistent with the unmistakable, but slow, squeezing together of
Ωm and Dm as m increases.

2. The first set of simulations

A recent Navier–Stokes vortex reconnection calculation (Kerr 2013a), with an
early time shown in figure 1(a), has addressed the following long-standing numerical
question: Can a Navier–Stokes initial condition with only a few vortices generate and
sustain fully developed turbulence in a manner similar to how turbulence forms from
the reconnection of antiparallel vortices in aircraft wakes, or from the reconnection
of quantum vortex lines and rings (Kerr 2011)? This should include the formation
of a high-wavenumber k−5/3 kinetic energy spectrum and additional diagnostics
indicating that the energy is cascading to small scales. Kerr (2013a) has shown that
the spectrum and supporting diagnostics are consistent with those in homogeneous
turbulent flows and has suggested that the cascade is formed by the creation of a chain
of swirling vortex rings through the reconnection of the original three-dimensional
vortex structures.

Kerr (2013a) achieved this goal by using a new initial condition that was designed
to address the shortcomings, described in Bustamante & Kerr (2008), of the Kerr
(1993) initial condition. The two most important properties of the new initial condition
are: (i) their initial profiles and directions should be balanced in the sense that they
are neither internally unstable nor prone to the shedding of waves or vortex sheet
formation; (ii) their initial perturbations need to be localized far from the periodic
boundaries, twice as far as in any previous antiparallel study. The calculation used an
anisotropic mesh of nx × ny × nz = 512 × 2048 × 512 in a Lx × Ly × Lz = 2π(2 × 8 × 1)

domain, with symmetries applied to the y and z directions. The evolved state at the
time of the first reconnection is shown in figure 1(a).

In high-Reynolds-number experiments and numerical simulations, the appearance
of a persistent k−5/3 energy spectrum is commonly associated with the saturation
of the normalized enstrophy production, which is usually written as the velocity
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FIGURE 2. (Colour online) Curves of Dm ranging from m = 2 to m = 9 and including the
normalized maximum of vorticity D∞. The normalized enstrophy, D1, is far above the log
scale given here, so is omitted. The Dm are ordered for all values of Re and all times. Here
ν = 0.0005 and Lx × Ly × Lz = 4π× 16π× 2π.

derivative skewness Su = 〈u3
x〉/〈u2

x〉3/2. Figure 1(b) shows a plot of −Su versus time
for the reconnection calculation; likewise figure 3(a) shows the equivalent for the
decaying isotropic calculation of § 3. The latest infinite Re estimates of Su from forced
turbulence calculations (Ishihara et al. 2009) have found −Su ≈ 0.68, consistent with
experimental values of −Su ∼ 0.5–0.7. Early numerical calculations showed that the Su

tended to overshoot the early experimental values of −Su ≈ 0.4–0.5 before settling to
the expected value (Orszag & Patterson 1972). Both figures 1(b) and 3(b) confirm this
trend, with −Su rising above 0.6 before relaxing towards −Su ≈ 0.6.

In figure 2, note that all of the lower order Dm (m = 1, . . . , 9) bound each higher-
order Dm (on a logarithmic scale), for all times, mirroring the major fluctuations in
−Su. This can be expressed as Dm+1(t) < Dm(t), thus favouring regime I as in (1.5).
The enstrophy D1 lies far above all of the other curves and has been omitted. Note
the strong increase in the growth of each of the Dm, including D∞, up until t ≈ 16.
This is the period when this calculation has nearly Euler dynamics and the effects of
viscosity compared to nonlinear growth are minimal. The growth of the Dm(t) in true
Euler dynamics is the topic of another paper (Kerr 2013b).

3. The second and third sets of simulations: direct numerical simulation

results for homogeneous, isotropic turbulence

Data from two direct numerical simulations (DNSs) of homogeneous, isotropic 3D
Navier–Stokes turbulence are now presented. Both of these simulations use a pseudo-
spectral method, a 2/3-rule for de-aliasing and 5123 collocation points on a [0, 2π]3

domain.
The first DNS is of decaying turbulence which reaches a Taylor-microscale

Reynolds number Reλ ≃ 134 at the main peak of the enstrophy Z associated with
the formation of the inertial subrange. The Taylor-microscale λ is defined in the usual
way in terms of the energy spectrum E(k). The initial Fourier components of the
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FIGURE 3. (Colour online) (a) A plot versus time t of the total kinetic energy (middle curve,
shown in black online), the enstrophy Z (bottom curve, shown in blue online), the normalized
enstrophy-production rate −Su (top curve, shown in red online) for our DNS of decaying, 3D
Navier–Stokes isotropic turbulence. (b) A plot of the Dm(t) for 2 6 m 6 9 (top (blue online)
to second from bottom (brown online) curves) and D∞(t) (bottom (dark green) curve) for
decaying isotropic turbulence; the value of D1 is very high, so it is omitted. Zooming in on (b)
makes it clear that Dm+1(t) < Dm(t) for all values of m considered and for all t.
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FIGURE 4. (Colour online) (a) The enstrophy spectrum for statistically steady forced
turbulence at Gr = 4.9 × 107. The inset shows the kinetic-energy spectrum for the same
simulation. (b) The time series of Dm(t) for statistically steady forced turbulence at Gr =
4.9 × 107 (m = 1, . . . , 9). Zooming in on the right figure makes it clear that Dm+1(t) < Dm(t)
for all values of m considered and for all t.

velocity ũ0(k) for the wave-vector k = |k| are generated by applying random phases to
the energy spectrum E0(k) = E0k4 exp{−2k2}. The kinematic viscosity is ν = 5 × 10−5.

The second DNS is a study of statistically steady turbulence which attains

Reλ ≃ 182; the forcing term fu(x, t) is specified most simply in terms of f̃u(k, t)

whose spatial Fourier components are

f̃u(k, t) =
PΘ(kf − k)
√

2Eu(kf , t)
u(k, t), Eu(kf , t) =

∑

k6kf

E(k, t), (3.1)
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FIGURE 5. (Colour online) (a) Average values of Dm as a function of Gr for statistically
steady forced turbulence at fixed Grashof number (m = 1, . . . , 6). The dashed black line is

Gr3/2. The plot in (b) is the same as (a) but on a different vertical scale with m = 2, . . . , 6.

where Θ is the Heaviside function and kf = 2 is the wavenumber above which
Fourier modes are not forced. This forcing term maintains a constant Grashof number
Gr = L3P/ν2 with L = 2π: for a similar forcing term that holds the energy injection
fixed see Sahoo, Perlekar & Pandit (2011). The Grashof number is varied between
2.48 × 107 and 2.48 × 108 by changing P while keeping ν = 10−4 constant.

For the decaying DNS, a small inertial subrange forms at t = 100 when the
enstrophy Z reaches its main peak. Assuming E(k) = K0(k)ǫk−5/3, the prefactor K0(k)

is roughly 1.5 for about half a decade of wavenumbers. Similar to figure 1(b), 3(a)
shows the time dependence of the kinetic energy E, enstrophy Z and its skewness
−Su. For the forced DNS at Gr = 4.9 × 107, the energy and enstrophy spectra, in
the statistically steady state, are given in figure 4(a). These spectra show that high-
wavenumber fluctuations of both the velocity and vorticity fields are well resolved in
our simulation; the same holds for the other values of Gr considered.

Figures 3(b) and 4(b) show Dm(t) versus time t for m = 2, . . . , 9 and D∞ =
(̟−1

0 ‖ω‖∞)
α∞

with α∞ = 1/2 for both the decaying and forced DNS calculations,
respectively. These plots show that Dm(t) < Dm+1(t) for all t and thus support the
generality of figure 2 of § 2.

The average values of Dm, as a function of Gr , are given in figure 5 for
m = 1, . . . , 6. The behaviour of 〈Dm〉T is consistent with the uniform bound
〈Dm〉T 6 c1Gr

3/2, which can be obtained by combining (1.4) (Gibbon 2011) with the
saturation of the bound Gr 6 c2Re

2 (Doering & Foias 2002). Moreover, the average
values of Dm satisfy 〈Dm+1〉T < 〈Dm〉T for all m and Gr considered, which is consistent
with regime I.

A remark on the calculation of Dm concludes this section. Here Dm(t) is defined
from the space integral of the 2mth power of ω at time t. To compute Dm(t), a
sufficiently fine grid is required, especially if m is large. In our DNSs, the number
of collocation points is 5123. The energy and enstrophy spectra given in figure 4(a)
already show that small-scale fluctuations are sufficiently well resolved. However, to
confirm that the resolution is sufficient, we have computed Dm(t) on a coarser grid by
using only N3 of the 5123 available grid points with N = 256, 128. We have repeated
this calculation for some illustrative values of t. Our results show that the values of
Dm (even for m = 9) are reliable up to four or five significant figures. The difference
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between D1 and D9 appear at the level of the second significant figure. Thus, we
conclude that Dm+1(t) < Dm(t) for all of the values of m and t we have considered.
Representative examples are given in tables 1 and 2. It is possible to infer from these
tables that the calculation of Dm for much greater m would require an even higher
resolution. Finally, in the calculation of 〈Dm〉T , we have checked the convergence of
the time average for all the m shown in figure 5 (m = 1, . . . , 6).

4. The fourth set of simulations: forced stationary isotropic turbulence

The DNS data in this fourth set of simulations were obtained using a massively
parallel pseudo-spectral code which achieves excellent performance on O(105)

processors. The basic numerical scheme is that of Rogallo (1981). The time stepping
is second-order Runge–Kutta and the viscous term is exactly treated via an integrating
factor. Aliasing errors are carefully controlled by a combination of truncation and
phase-shifting techniques. The database includes simulations with resolutions up to
40963 and Taylor–Reynolds number up to Reλ ≈ 1000 (see Donzis et al. 2012;
Yeung et al. 2012). In order to maintain a stationary state, turbulence is forced
numerically at the large scales. Since our objective here is to assess the generality
of the ordering of the moments Dm, we show results using the stochastic forcing of
Eswaran & Pope (1988) (denoted as EP) as well as a deterministic scheme described
in Donzis & Yeung (2010) (denoted as FEK). In essence, this keeps the energy
in the lowest wavenumbers fixed. For these two forcing schemes, the wavenumbers
affected by forcing are confined to within a sphere k < kF, where kF is of order
two or three. In order to capture intense events, which are the main contributors to
high-order moments, resolution issues have to be properly addressed. Motivated by the
theoretical work of Yakhot & Sreenivasan (2004), resolution effects have been studied
in Donzis et al. (2008) and Yeung et al. (2012) with the conclusion that although
high-order moments may be under-predicted using the standard resolution criterion,
typically in simulations aimed at pushing up the Reynolds number, ratios of high-order
moments are weakly affected by resolution issues. Small-scale resolution for a spectral

simulation is typically quantified with the parameter kmaxη where kmax =
√

2N/3 is
the highest resolvable wavenumber in a domain of size (2π)3 with N3 grid points.
Simulations aimed at pushing the Reynolds number have typically used kmaxη between
1 and 2. Here we present results from kmaxη from the standard 1.5 up to 11, when
available, which allows us to assess the effect of insufficient resolution. Table 3
summarizes those parameters of the DNS database that have been used.

4.1. The Dm moments in forced stationary isotropic turbulence

The time average of even moments of vorticity, 〈Ωm〉T , are shown in figure 6. As
assured by Hölder’s inequality it can be seen that 〈Ωm+1〉T > 〈Ωm〉T at all Reynolds
numbers. Figure 6 also shows the line ∼Reλ (dashed), which is the result of the
dissipative anomaly. This is easily obtained from the kinematic relation 〈ǫ〉 = ν〈Ω2

1 〉T

associated with isotropic turbulence and the well-known scaling 〈ǫ〉 ∼ U3
0/L. It can

then be shown that 〈Ω1〉T ∼ (U0/L)Re1/2 ∼ (U0/L)Reλ, where the well-known result
Re2

λ ∼ Re has been used. The DNS data in figure 6 agree with this scaling. As
mentioned above, some resolution effects can be expected especially for high orders.
Where data at nominally the same Reynolds number but different resolution is
available, moments tend to be higher for higher values of kmaxη (see Donzis et al.

2008). This is clearer at higher Reynolds number (Reλ ≈ 650 where two resolutions
are available). Ratios of moments, however, are only weakly affected by resolution,
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FIGURE 6. Scaling of 〈Ωm〉T as a function of Reλ for forced stationary isotropic turbulence
with resolutions up to 40963. Lines are for m = 1 (circles), m = 2 (squares), m = 3 (triangles),
m = 4 (stars), m = 5 (left triangles) and m = 6 (diamonds). Open and closed symbols

correspond to EP and FEK forcing, respectively. Dashed line is ∼Re6
λ (see the text). Note

that for Reλ ≈ 650 at 40963 with FEK forcing, moments up to fourth order (instead of sixth)
are available from our database.
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FIGURE 7. Scaling of 〈Dm〉T and ratios as a function of Reλ for forced stationary isotropic
turbulence with resolutions up to 40963: (a) Dm versus Reλ for m = 1–6, while (b) is a
zoom of (a) to highlight the ordering of 〈Dm〉T for m = 2–6. In both parts the dashed lines

correspond to Re6
λ.

which is also consistent with more recent results (Donzis et al. 2008, 2012; Yeung
et al. 2012). In figure 7, the time averages 〈Dm〉T are shown as a function of Reλ.
For m = 1, one can again resort to using the dissipative anomaly with the definition

D1 = (̟−1
0 Ω1)

2
. The result is

〈D1〉T = (L2
√

〈ǫ〉/ν3/2)
2
∼ Re3 ∼ Re6

λ (4.1)
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N Reλ kmaxη Forcing

256 140 1.4 EP
256 140 1.4 FEK
512 140 2.7 FEK
2048 140 11.2 FEK

512 240 1.4 FEK
2048 240 5.1 FEK

1024 400 1.4 FEK
2048 400 2.8 EP

2048 650 1.4 EP
4096 650 2.7 FEK

4096 1000 1.3 FEK

TABLE 3. Parameters of statistically stationary forced simulations: included are the
resolution N, Reλ, the resolution parameter kmaxη and the forcing type (see the text).

which is seen in figure 7(a). To see further details of higher-order moments figure 7(b)
does not include 〈D1〉T . As in §§ 2 and 3, the data clearly shows the ordering
〈Dm+1〉T < 〈Dm〉T . The insensitivity of the time averages of the moments to the
type of forcing and the much weaker effect of resolution compared with 〈Ωm〉T in
figure 6 is also noted. The data also suggest that the ratio between the time averages
of successive moments decreases with m, which is consistent with the asymptotic
behaviour of (1.8). This is seen more clearly in figure 8, where the ratio of the time
averages of successive moments, 〈Dm+1〉T/〈Dm〉T , is plotted for different values of m.
Consistent with an ordering 〈Dm+1〉T < 〈Dm〉T , the ratio is always less than unity. As
m increases, however, this ratio becomes increasingly closer to unity in agreement
with (1.8). It is also interesting that these ratios appear to be independent of Reynolds
numbers which suggest a regime I ordering with clustering of moments at high m also
in the high-Reλ limit. Resolution effects, while weak, can still be seen upon careful
examination of the data, especially at high orders. However, for a given simulation, the
ordering of regime I is unchanged with resolution.

5. Concluding remarks: the depletion of nonlinearity

The recent introduction of the Dm vorticity moment scaling (Gibbon
2011, 2012, 2013) motivated by the time average (1.4), has suggested that they should
be applied to independent numerical simulations, such as the four data sets here. All
four unexpectedly show that the Dm obey the ordering of regime I, namely Dm+1 < Dm,
which leads to the squeezing effect of (1.8) such that Ωm+1/Ωm ց 1 and Dm+1/Dm ր 1
as m increases. This has an effect on the shapes of the p.d.f. tails, as remarked in
§ 1.3. The ordering in the Dm is strict, even during intense events and, for m > 3, 4,
the plots almost touch while replicating each other’s shape, as in figures 2, 3(b), 4(b)
and 7(b). It might be asked whether this is a viscous effect, a strictly nonlinear effect,
or the result of some surprising symbiosis between the two? Using a variation of
the antiparallel initial condition used in § 2, new Euler calculations have repeated this
ordering over an extended period (Kerr 2013b), which implicates the nonlinear terms
as the primary source. However, there is neither evidence from Navier–Stokes analysis
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FIGURE 8. Ratio of moments 〈Dm+1〉T/〈Dm〉T for m = 1 (squares), m = 2 (triangles), m = 3
(stars), m = 4 (left triangles) and m = 5 (rhombi) as a function of Reλ.
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FIGURE 9. (Colour online) Plots of am for the three simulations in §§ 2 and 3 in which
am < 1/2: (a) for the calculation in § 2 (ν = 0.0005, Lx × Ly × Lz = 4π× 16π× 2π) and (b,c)
for the decaying and forced calculations in § 3.

that such an ordering should hold, nor do any results exist that suggest it cannot. It is,
of course, possible that a crossover could occur between regimes I and II at Reynolds
numbers higher than have been achieved in this work, although figure 8 suggests
otherwise.

Significantly D1 sits well above the other Dm and does not appear to converge with
them during the most intense periods, which is why in figures 2, 3(b), 4(b) and 7(b)
the Dm are plotted on a logarithmic scale with D1 omitted. We are therefore justified in
writing

ln Dm . am ln D1 ⇒ Dm . D
am
1 . (5.1)

Plots of am for the first and second pair of simulations are shown in figure 9(a–c).
Assuming a strong solution exists, the Dm have been shown to obey (see Gibbon 2012)

Ḋm 6 D3
m

{

−̟1,m

(

Dm+1

Dm

)2m(4m+1)/3

+ ̟2,m

}

, (5.2)
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where the cn,m within ̟1,m = ̟0αmc−1
1,m and ̟2,m = ̟0αmc2,m are algebraically

increasing with m. By dropping the negative term on the right-hand side of (5.2),

and replacing the D3
m term with DmD

2am
1 justified by (5.1), a time integration produces

Dm(t) 6 cm exp

∫ t

0

D
2am
1 dτ 6 cm exp

{

t1−2am

(
∫ t

0

D1 dτ

)2am
}

, 2am 6 1. (5.3)

Figure 9(a–c) show that while there is a weak dependence of am on both m and
t, it nevertheless satisfies 2am < 1 in all cases. Leray’s energy inequality insists that
∫ t

0
D1 dτ < ∞ so it is clear that the right-hand side of (5.3) is finite: any finite

Dm is sufficient for Navier–Stokes regularity. This regularization can be traced to
the depletion of nonlinearity in (5.1) in regime I. Although regime II has not been
observed, (5.2) shows that it is associated with time decay of the Dm. Specifically, if
Dm+1/Dm > [c1,mc2,m]3/2m(4m+1), then Ḋm < 0 where [c1,mc2,m]3/2m(4m+1) ց 1 for large m.
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