Header menu link for other important links
X
Vortex shedding patterns, their competition, and chaos in flow past inline oscillating rectangular cylinders
S. Toppaladoddi, , R. Tatavarti, R. Govindarajan
Published in American Institute of Physics Inc.
2011
Volume: 23
   
Issue: 7
Abstract
The flow past inline oscillating rectangular cylinders is studied numerically at a Reynolds number representative of two-dimensional flow. A symmetric mode, known as S-II, consisting of a pair of oppositely signed vortices on each side, observed recently in experiments, is obtained computationally. A new symmetric mode, named here as S-III, is also found. At low oscillation amplitudes, the vortex shedding pattern transitions from antisymmetric to symmetric smoothly via a regime of intermediate phase. At higher amplitudes, this intermediate regime is chaotic. The finding of chaos extends and complements the recent work of Perdikaris et al. [Phys. Fluids 21(10), 101705 (2009)]. Moreover, it shows that the chaos results from a competition between antisymmetric and symmetric shedding modes. For smaller amplitude oscillations, rectangular cylinders rather than square are seen to facilitate these observations. A global, and very reliable, measure is used to establish the existence of chaos. © 2011 American Institute of Physics.
About the journal
JournalData powered by TypesetPhysics of Fluids
PublisherData powered by TypesetAmerican Institute of Physics Inc.
ISSN10706631