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Using epidemic simulators 
for monitoring an ongoing 
epidemic
Mohan Raghavan*, Kousik Sarathy Sridharan & Yashaswini Mandayam Rangayyan

Prediction of infection trends, estimating the efficacy of contact tracing, testing or impact of 
influx of infected are of vital importance for administration during an ongoing epidemic. Most 
effective methods currently are empirical in nature and their relation to parameters of interest to 
administrators are not evident. We thus propose a modified SEIRD model that is capable of modeling 
effect of interventions and inward migrations on the progress of an epidemic. The tunable parameters 
of this model bear relevance to monitoring of an epidemic. This model was used to show that some 
of the commonly seen features of cumulative infections in real data can be explained by piecewise 
constant changes in interventions and population influx. We also show that the data of cumulative 
infections from twelve Indian states between mid March and mid April 2020 can be generated from 
the model by applying interventions according to a set of heuristic rules. Prediction for the next ten 
days based on this model, reproduced real data very well. In addition, our model also reproduced the 
time series of recoveries and deaths. Our work constitutes an important first step towards an effective 
dashboard for the monitoring of epidemic by the administration, especially in an Indian context.

Mathematical treatment of epidemics has its origins more than a century  ago1,2. The recent interest in modeling 
epidemics was rekindled with the onset of the severe acute respiratory syndrome (SARS) epidemics during the 
early part of the  century3. The classical model of epidemics (SIR) was designed as a dynamical system with the 
fraction of Susceptible (S), Infected (I) and Recovered (R) population as state variables. The SARS epidemics 
were modeled with a modified model with an additional state for the fraction of exposed population(E) that is 
latent and as yet uninfected, but still contributes to spreading the disease. This modified model, the SEIR model, 
is currently being used to characterize the epidemics caused by a group of coronaviruses including the ongo-
ing COVID-193. Modified SEIR models have also been designed to understand the effect of  quarantining3 and 
multiple active strains of the pathogen simultaneously active in  populations4. SIR, SEIR and related models are 
also known as compartment models, as population groups are modeled as a single compartment. In contrast, 
agent-based approaches, model the transitions of individual agents in a population and hence can capture the 
effects of non-homogenous populations. While agent based and stochastic  models5 have been explored, it has 
been shown that for people to people contact networks that are small world, random, fully connected or scale 
free, the compartmental models work quite  well6. Thus, compartmental models are an efficient tool for modeling 
epidemics.

Some of the important parameters that characterize an epidemic are the rate at which new infections are cre-
ated ( β [ day−1]), mean duration of infection ( Tinf  [day]) and their product ( R0 ), which gives the mean number 
of infections spawned by an individual during the infectious period when the entire population is susceptible. 
The emergence of R0 in epidemiology owes its origins to the mathematics of population growth, and in past 
few decades, emerged as an important diagnostic of the epidemic  progression7,8. R0 owes its  importance9 to the 
fact that, it is a prognosticator of the epidemic, with values less than 1 indicating a fade out and values greater 
than 1 prognosticating a large scale epidemics. R0 can easily be calculated from the set of differential equations 
describing SIR and SEIR  systems7.

The method can be applied with modifications for calculating the reproduction numbers for extended models 
with more number of compartments if they satisfy certain  conditions10. While R0 is the value of R at the start of 
the epidemic, Rt represents its evolution with time t [day]. The change in Rt with time could be due to a number 
of factors, namely a change in transmission β or an intervention in the form of lockdowns, social distancing, 
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testing and quarantining. While the dynamics of transmission of epidemic diseases are well understood, estimat-
ing these parameters during the course of an ongoing epidemic is not trivial, except in special circumstances 
of small isolated population clusters as in the quarantined cruise  ship11. For the purposes of monitoring and 
predicting the course of an ongoing epidemic, the most important metric used is r, the slope of the cumulative 
infections on the log scale. This follows from the observation that the rate of new infections is proportional to the 
cumulative infections. The parameters r and R are related to each other through the shape of the serial interval 
 distribution12,13. Since the cumulative deaths follow the infections with a lag, the cumulative death count has 
also been used to estimate the parameters of the epidemic  model14. R has also been estimated using maximum 
likelihood based methods from the serial intervals distribution for subsets of populations where the chain of 
infection transmission are  documented15.

Methods used to recreate the time varying parameters underlying an epidemic, in particular COVID-19 
are largely of two kinds. First, the class of mechanistic models which use modified SEIR compartment models 
to simulate epidemics. The second, is empirical in nature and rely on fitting of parameters of mathematical 
formulations to real data. The mechanistic models are largely used to evolve strategies for management of the 
epidemic—like evaluate effect of social distancing, lockdowns, exits from lockdowns, projection for periodic 
recurrence of outbreaks and impact of multiple strains of the  pathogen4. The parameters and formulations used 
in these methods are grounded in epidemiology theory and are useful to evolve broad strategies. But they are 
not frequently used for short or medium term prediction of trends or evaluation of efficacy of interventions in 
real time. For such predictions, the second class of empirical methods are deployed. One particular study mod-
eled the transmission as a geometric process. Using Monte Carlo simulations, Rt and percentage of undetected 
infections were estimated by fitting to epidemiological data from  Wuhan16. Another study used convolution of 
daily reported infections with the serial interval distribution to estimate the cumulative number of infections and 
deaths. Interventions are modeled as contributing factors to a country specific, time varying Rt . The contribution 
of various interventions were estimated by fitting to  data14.

On the issue of estimating epidemic parameters certain salient problems limit efficacy of current methods. 
Foremost among these are the gap between observed and true variables like infections and recoveries. This is 
less of a problem in case of deaths, as they are not easily hidden, which was used in  estimation14. However, it 
requires about 2–3 weeks for the effect of interventions to be reflected in the number of deaths, which severely 
limits the utility of the method for real time analysis. Empirical methods have a general limitation that they 
make assumptions on various parameters like serial interval distributions or the form of  priors14,16. Due to the 
lack of mechanistic details, the results of these methods are often incapable of offering intuitive explanations on 
how interventions work or fail. Mechanistic methods require that standard models be modified to incorporate 
interventions, testing efficacies and quarantining often making estimation of Rt very difficult. Over and above 
all of these, we believe that a common shortcoming in most mechanistic models proposed are a conflation of 
observables and non-observables. For instance, the deaths and recoveries are almost always modeled as single 
compartments and outcomes resulting from both detected and undetected infections move into the same com-
partment, although one is observable and the other is only partially  so3,4,17.

Thus, there is a clear need for models that can explain short and medium term trends in epidemic data while 
providing clear mechanistic link to the effect of interventions amidst epidemics. We propose a mechanistic model 
that retains the simplicity of the standard SEIR model, but with the power to model interventions and time vary-
ing transmission. A key constraint we impose on our model is that while it should be able to explain short term 
trends and effects of interventions, it must also be capable of providing intuitive connections between observed 
trends and changes in underlying parameters. In this work we present one such SEIR model suitably modified 
to model interventions. We then proceed to demonstrate how changes in model parameters can generate oft-
seen patterns in cumulative infections on the logarithmic scale. Based on these results, we propose heuristic 
algorithm for estimating time varying interventions that recreate trends in cumulative infections by applying 
suitable interventions, thereby estimating the underlying changes in epidemic dynamics. We use this method 
to recreate the real data from 12 Indian states between mid-March and mid-April. We finally observe how this 
model fares in predicting the trends of the succeeding 10 day period.

Results
Model characterization. Effect of interventions with fixed Rt. Figure 1 presents the model responses for 
Rt =3 respectively. Increased β requires proportional increase in c to keep Rt constant (Refer Eq. 1). At fixed Rt , 
while the time course of the epidemic remains the same, the total numbers of infected increase with increas-
ing beta. But due to commensurate increase in c, the excess infections are sucked into the pool of detected and 
quarantined infections. Since only the undetected infections influence transmission, βeff  , Rt and time course of 
epidemic remain same, while the peak of reported infections are higher as can be seen in Fig.1a.

Varying Rt by variations of β and interventions. Figure 2a,b presents the model responses to varying interven-
tions and constant β , while Fig. 2c,d depict model responses to varying β at constant interventions. All simula-
tions start with the same parameters and the variations are executed midway on day 50. It may be seen from 
Fig. 2 that increase in Rt effected by increase in β or decrease of c results in steepening of the slope in Fig. 2b,d 
and earlier peaks in Fig. 2a,c. Similarly decreasing Rt decreases the slope and later peaks. However at the same Rt , 
the peak values of infections are proportional to β . This is evident from the Fig. 2c where grey and indigo curves 
have taller peaks, but red and blue curves have shorter peaks compared to corresponding peaks in 2a. Note that 
the correspondence is between the pairs of curves in gray and blue, red and indigo.
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Effect of influx of infected cohort. Figure 3 describes the effects of an influx of infected individuals into the 
population. It can be seen that this influx does not change the slope of the trajectory. Rather, the trajectory main-
tains its slope, but now has an increased y intercept. Influxes over windows of 3, 9 and 18 days have progressively 
larger y intercepts as seen in Fig. 3b and the peaks occur earlier in time as seen in Fig. 3a. However the change in 
y intercepts are not uniform. Another significant effect is that the excess infections due to this influx are constant 
on the log scale. Thus with time, the cost of this influx become progressively larger in absolute terms.

Transitory effects of varying β and c over short time windows. The effect of variations in β and c on the slopes 
of cumulative infections on log scale are similar to that mentioned in section on Effect of varying Rt during the 
short window of variation. However at the end of the window, the trajectory is restored back to its original slope 
and now proceeds parallel to the original trajectory. Thus the net effect of change in Rt in a short window results 
in a change in y intercept akin to that of an influx of infected cohort. This effect is clearly seen in Fig. 4b,d where 
the decrease or increase of y-intercept is evident. It may also be noted that the effect of β sets in almost instan-

Figure 1.  Effect of β and c at constant R: Reff  is set to 3. Plots showing (a) Evolution of active cases of infected 
persons, (b) Cumulative number of cases over a 300 day epoch on log scale.

Figure 2.  Effect of varying β or intervention, resulting in varying Rt values: Plots showing (a) Evolution of 
active cases of infected persons at various c and constant β (b) Cumulative number of cases over a 300 day epoch 
on log scale at various c and constant β (c) Evolution of active cases of infected persons at various β and constant 
c (d) Cumulative number of cases over a 300 day epoch on log scale at various β and constant c. All simulations 
start with the same values of β and c. The variations of β and c are applied on day 50 (See "Methods" section for 
values of parameters used).
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Figure 3.  Effect of pulsed influx infected persons: Plots showing (a) Evolution of active cases of infected 
persons, (b) Cumulative number of cases over a 300 day epoch on log scale. (c) Rt and intervention inefficiency 
over the duration of the epidemic. (d) Time course of the influx of infected given by φ(t)pI (t).(See "Methods" 
section for details).

Figure 4.  Transitory effects of varying β and c over short time windows Plots showing (a) Evolution of active 
cases of infected persons at various c and constant β . (b) Cumulative number of cases over a 300 day epoch on 
log scale at various c and constant β . (c) Evolution of active cases of infected persons at various β and constant 
c. (d) Cumulative number of cases over a 300 day epoch on log scale at various β and constant c. All simulations 
start with the same values of β and c. The variations of β and c are applied on day zero (See "Methods" section for 
values of parameters used).
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taneously, while that of c shows up after a short lag. It may be explained as the lag required for the reduction in 
undetected infections to show up as a decrease in effective transmission.

Effects of intervention on influx of infections. The effects of contact tracing as a response to influx of infected is 
elucidated in Fig. 5. As already seen in section on Effect of infected cohort, an influx accompanied by no response 
in the form of change in contact tracing efficiency results in a trajectory that runs parallel to the original trajec-
tory with increased y intercept. However if as a response to the influx, the level of contact tracing is increased 
concurrent with the first day of influx, it leads to a peculiar 2 phase change in trajectory. There is a steep increase 
in slope almost instantaneously on increase of c, followed by a significant reduction in slope with respect to the 
original slope. With increasing levels of contact tracing c, the sharp increase in the initial phase is even steeper, 
and so is the flattening that follows. The initial steep rise can be attributed to large numbers of infections being 
detected and quarantined due to increased contact-tracing efforts. This results in a drastic reduction in the slope 
soon after, as quarantined infected cannot spread the disease. This effect leads to a characteristic plateauing 
effect. When the intervention is delayed, the plateau effect seen is identical in nature but shifted in time. Hence 
the resultant flattening is achieved at a higher level of infections.

Heuristics for reconstructing the time varying interventions in real data. The salient features 
seen in real data of cumulative infections on the log scale have been reproduced in the previous sections. These 
features are:

• Piecewise linearity
• Changes in slope in each piecewise segment
• Temporary deviations due to transitory change in slope resulting in parallel trajectories with altered y inter-

cept
• Plateau effect: Sudden rise followed by a flattening

Based on the results encountered so far, we propose the following set of heuristics to reconstruct using our model, 
the observed trajectory of cumulative infections in real data: 

1. The first piece of the piecewise linear curve is reconstructed by using a suitable combination of β and c. This 
indirectly fixes the underlying Rt . As seen in section on Effect of interventions with fixed Rt although there 

Figure 5.  Effect of influx of infected followed by contact tracing exercises with various efficacies. Plots showing 
(a) Evolution of active cases of infected persons and its response in the form of varying intensities and timing 
of intervention (b) Cumulative number of cases over a 100 day epoch on log scale (c) Rt and intervention 
inefficiency over the duration of the epidemic (d) Time course of the influx of infected given by φ(t)pI (t) and 
c. (See "Methods" section for values of parameters used). Notice the green, red, indigo and gray lines exhibit 
progressively stronger plateau effect. The effect of delayed intervention in orange runs parallel to the gray line. 
The cost of the delay is the difference in the y intercept between the orange and gray lines on the log scale.
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are multiple combinations of β and c can recreate the Rt , each of these combinations has a unique trajectory 
of active infections.

2. For each subsequent piece of the piecewise linear curve, modify β and/or c to match the slope of the piece
3. For each parallel shift of trajectory introduce an influx of infected. While it is possible to account for this 

using a transitory change in β or c as well, we assume that transitory and self restoring changes in β or c over 
short periods are not very likely except in the case of lock downs. Thus we use population influx as the first 
choice tool to account for this feature

4. For steep rise followed by a significant flattening in the span of a short interval, we use an influx with 
increased heightening of contact tracing levels c.

Modelling epidemic data from Indian states. Based on the heuristics arrived at in section on Heuris-
tics for reconstructing interventions we recreate the curves of cumulative infection, recovery and death on the log 
scale for twelve Indian states. In order to recreate, we set c, q, β and φ pI as a piecewise constant time varying 
function based on the heuristics described in the previous section. This activity is performed only on the data 
up to − 10 days. No further changes in parameters are allowed after this day. But the model generates outputs 
upto day zero. The model output for the days − 10 to zero are model predictions. The model predictions for the 
12 Indian states can be found in Figs. 6, 7, 8, 9, 10 and 11.

The piecewise functions are set in order to recreate the cumulative infections only. No explicit attempt is made 
to recreate the trends of recoveries and deaths except the following. 

1. The recoveries are shifted right by a fixed lag of 8 days for all states.
2. A single value of mortality (deaths per infection) is chosen for each state such that the curve of real data(dark 

gray) is bounded by the two model generated cumulative death curves (by counting deaths from only 
detected infections, and by counting deaths from both detected and undetected infections).

A few general comments may be in order on the agreement between model predictions and real data. 

1. The model predictions for the last 10 days agree very well with the true data
2. For a recovery to be declared, at least 2 successive negative tests are required. It is likely that states are being 

extremely conservative in declaring recoveries and want to err on the side of safety. This could explain the 
lag of about 8 days which is required to fit the real data with the model generated output.

Figure 6.  Maharashtra and Gujarat: Recreation. Plots on the top row show the real and model generated curves, 
while the bottom row plots the time varying piecewise functions c, q, β and φ pI used to recreate the same. The 
piecewise functions were created in accordance with the heuristic algorithm described in section on Heuristics 
for reconstructing interventions. On the top row, dark colours indicate the real data from the states, while the 
lighter shades are model generated. The red shades are cumulative infections, green shades are recoveries and 
grays are deaths. The dotted light gray line indicates the curve output from the model if deaths from both the 
undetected and undetected infections are counted. The light gray solid line counts only the deaths from detected 
infections in the model. The band in green highlights the prediction epoch. Day zero corresponds to April 27th 
2020.
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3. The real recoveries seem to follow the model generated curves, but with a staircase effect. This effect could 
possibly be due to a procedural issue where test reports are processed in batches on a slightly lower priority 
(which recoveries are compared to critical cases).

The full details of the piecewise constant functions used for each state in reconstruction and the reasoning 
applied to generate the same can be found in the supplementary Table S1. Supplementary material also include 
an evaluation of the predictions based on the same model for an epoch of 20 days upto 7th May 2020. It can 
now be seen that as expected there are significant deviations in prediction for 5 states. This is expected as small 
underlying changes in the intervening period widen the gap between real data and prediction. But it is also 
significant that for more than half the states considered, predictions held well over a 20 day epoch. However in 
general we believe that this model must be evaluated weekly to recognise and register the underlying dynamic 
changes in the epidemic progress. This exercise also provides inputs on efficacy of interventions and new influxes 
or new clusters that have emerged over the week.

Discussion
This work presents a modified SEIRD model with ability to represent population influx and interventions includ-
ing contact tracing and random testing. This model was used to show that some of the commonly seen features of 
cumulative infections in real data can be explained by piecewise constant changes in interventions and popula-
tion influx. We also show that the data of cumulative infections from twelve Indian states between mid March 
and mid April 2020 can be generated from the model by applying interventions according to a set of heuristic 
rules. The model with interventions so designed was allowed to generate prediction data for ten more days with 
no further modifications. This predicted trend matched well with the data for the twelve states. Matching the 
infections curve ensured that the recoveries and deaths too matched well with no additional effort.

We thus provide a mechanistic model for short term prediction of COVID-19 epidemic data. Compared to 
empirical  measures14,16,18 this method recreates data using parameters that are intuitive and directly related to 
operation on the field. While similar to other mechanistic  models3,4, it differs in its design focus on separating 
observable and non observable compartments. Connecting elementary piecewise changes in interventions to 
features of real data like slopes and plateaus are a singular contribution of this work. While the piecewise constant 
form of interventions have been  proposed14, instead of creating interventions functions based on known events 

Figure 7.  West Bengal and Madhya Pradesh: Recreation. Plots on the top row show the real and model 
generated curves, while the bottom row plots the time varying piecewise functions c, q, β and φ pI used to 
recreate the same. The piecewise functions were created in accordance with the heuristic algorithm described in 
section Heuristics for reconstructing interventions. On the top row, dark colours indicate the real data from the 
states, while the lighter shades are model generated. The red shades are cumulative infections, green shades are 
recoveries and grays are deaths. The dotted light gray line indicates the curve output from the model if deaths 
from both the undetected and undetected infections are counted. The light gray solid line counts only the deaths 
from detected infections in the model. The band in green highlights the prediction epoch. Day zero corresponds 
to April 27th 2020.
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and identifying their contributions to data fit, we compose the piecewise interventions directly based on intuitive 
connections between data features and elementary piecewise functions of interventions.

The model discussed in this manuscript signifies efforts, not to merely model the evolution of the epidemic 
but also captures the effects of various interventions by the administration. It presents a method by which 
administration may get an objective estimate of several aspects of an ongoing epidemic such as the efficacy of 
contact tracing apparatus, possible influx of infected, extent of social distancing or transmission. The parameters 
c and q as fraction of infected detected are generic enough for a wide variety of cases. While administrations 
may use a wide variety of methods to characterize their testing or tracing strategies, their eventual success lies in 
tracing or detecting all infected, which is what is captured by c and q. Thus insights from our model provides an 
independent and objective feedback on how effective the efforts have been. This model also provides an estimate 
of Rt which is highly sought after and provides insights on whether the observed Rt results from interventions 
or transmission. The population influx mechanisms provide a way for administrations to estimate the effect of 
influx in the past and plan for impending arrivals and calibrate their responses.

A few notes may be in order in interpreting the results from the methods proposed in this work. The insights 
coming out of our models must be interpreted in the context of the specific clusters contributing to the epidemic. 
For instance increased or unchanged transmission does not imply that general population flouted lock down 
rules. It must instead be interpreted specifically as applicable to the specific clusters of spread. β is interpreted as 
the product of contact rate and probability of transmission. Thus large captive households or even hospitals can 
keep the contact rates high without any flouting of norms. Again, influx of infected in its general sense represents 
a seeding of infection. Thus an influx of population indicated by our results could as well imply the emergence 
of a new infection cluster.

A question of particular interest concerns the uniqueness of the estimated parameters. Are there other param-
eter configurations that could fit the data equally well? When the Rt values are different, the cumulative infec-
tions follow distinct trajectories. At a given Rt , different combinations of β and intervention inefficiencies lead 
to distinct infection curves. These are even more evident when observing the plot of active infections in Fig. 1a. 
However an influx of infections over a short time window (Fig. 3) and a transitory change in Rt (Fig. 4) pro-
duce similar effects on the curve of cumulative infections. Experimentation using machine learning to discover 
parameters confirmed that except for the trade-off between influx and Rt , the machine estimated parameters 
matched well with those generated by heuristic algorithm for a given piecewise linear segment of cumulative 
infections. However from a perspective of administrative monitoring, disambiguation is relatively easier as influx 
is observable. Another potential source of ambiguity is a, the fraction of infections by direct contact. The same 

Figure 8.  Kerala and Tamil Nadu: Recreation. Plots on the top row show the real and model generated curves, 
while the bottom row plots the time varying piecewise functions c, q, β and φ pI used to recreate the same. The 
piecewise functions were created in accordance with the heuristic algorithm described in section on Heuristics 
for reconstructing interventions. On the top row, dark colours indicate the real data from the states, while the 
lighter shades are model generated. The red shades are cumulative infections, green shades are recoveries and 
grays are deaths. The dotted light gray line indicates the curve output from the model if deaths from both the 
undetected and undetected infections are counted. The light gray solid line counts only the deaths from detected 
infections in the model. The band in green highlights the prediction epoch. Day zero corresponds to April 27th 
2020.
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value of intervention inefficiency may be obtained at different values of a by different combinations of c and q. 
However, this is a relatively minor issue as the overall level of inefficiency does not change. Further, a for the 
most part, either stays close to 1 or 0 and transitions fast when the epidemic moves from stage 2 to stage 3. The 
ambiguities are usually prominent at the transition between piecewise linear segments. At these times, we predict 
multiple possible trajectories ahead. However the possibilities reduce drastically with each passing day of data.

The primary intention behind building the model is to monitor localized response using dashboards. This 
can be possible with better data availability at the local level (district in the case of India). Our model design 
principles are generic enough to be applied to model extensions incorporating hospitalized or critical cases. 
Since the model captures the active cases as a function of response of the administrative response, this can be 
a valuable tool to plan and allocate resources and deploy the right response, where necessary. This model can 
further be extended to estimate the effort required for achieving a level of contact tracing c or testing q. This can 
be of vital importance for the administration in planning their strategies and estimating requirements of health 
workers, law enforcement agencies for contact tracing. We currently manually fit the parameters to evolution of 
active cases in each of the 10 states using heuristics. Going forward, the manually obtained piecewise interven-
tions may be treated as seed for empirical discovery of piecewise functions. Further incorporating confidence 
intervals for our current predictions will be an important goal of future work.

Methods
The key principles for the design of the epidemic simulator were as follows:

• Less is more: We choose to represent just enough compartments as required. A compartment or a transi-
tion that neither has a correlate in real data nor can be used to estimate an observable and useful quantity is 
discarded or merged.

• Simplicity: Model must use as little sophistication as possible. Expressions for key quantities such as repro-
duction number must remain as close as possible to the standard SEIR models.

• Intuition: An administrator should be able to intuitively identify the parameters used in the model with 
interventions deployed on the ground in tackling the epidemic.

Figure 9.  Telangana and Karnataka: Recreation. Plots on the top row show the real and model generated 
curves, while the bottom row plots the time varying piecewise functions c, q, β and φ pI used to recreate the 
same. The piecewise functions were created in accordance with the heuristic algorithm described in section 
on Heuristics for reconstructing interventions. On the top row, dark colours indicate the real data from the 
states, while the lighter shades are model generated. The red shades are cumulative infections, green shades are 
recoveries and grays are deaths. The dotted light gray line indicates the curve output from the model if deaths 
from both the undetected and undetected infections are counted. The light gray solid line counts only the deaths 
from detected infections in the model. The band in green highlights the prediction epoch. Day zero corresponds 
to April 27th 2020.
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Model design. Compartments. We use a modified version of the SEIRD model on the lines of Lipsitch 
et al.3. We duplicate the standard SEIRD pipeline to create two parallel pipelines—undetected and detected/
isolated. In particular, we also duplicate the deceased and recovered compartments in both pipelines.

The motivation for the same is as follows. Daily confirmation of cases, recoveries and deaths are both released 
and tracked. These numbers count only the detected infections and their recoveries. However number of fatalities 
can come from amongst the detected and undetected infections. Recently the Indian government has mandated 
COVID-19 screening for all cases with severe acute respiratory infections. These are with a high probability 
critical cases and many succumb. These numbers are often added to count of deceased, but in an inconsistent 
manner. Thus the trends of reported deaths would tend to fluctuate between true death numbers and those 
coming from the detected infections.

We do not use other possible sub compartments within the infected - like mild infection, hospitalized, 
critical etc. While we do believe that these are important, the number of hospitalizations and grades of infec-
tions are not available in the public domain. Separate compartments for quarantined susceptible are important 
when estimating the cost, and resources spent due to numbers of people that are quarantined although not 
exposed. Since we do not, at the moment consider this aspect, we dispense with a separate compartment for 
susceptible-quarantined.

Thus we arrive at a total of 9 compartments which include two compartments each for Exposed, Infected, 
Recovered and Dead and a single compartment for susceptible.

Interventions. We recognize two interventions commonly deployed for identifying infections as part of epi-
demic management.

• Contact tracing and isolation: When an infection is detected, immediately their contacts are traced and 
placed under quarantine. They are tested for infection periodically until they test positive or the observa-
tion period ends. Within our model, we represent the efficiency of this intervention by the fractional value 
c, which represents the fraction of exposures and transmitted infections that are detected and quarantined. 
This parameter lends itself to model simplicity, yet intuitive and actionable for administrators.

• Random testing and self-presentation: A patient voluntarily reports symptoms and then tested. Alternately, 
random tests are administered to the public and positive reports are quarantined. Within our model, we rep-
resent the efficiency of this intervention by the fractional value q , which represents the fraction of infections 
that are detected and quarantined.

Figure 10.  Delhi and Rajasthan: Recreation. Plots on the top row show the real and model generated curves, 
while the bottom row plots the time varying piecewise functions c, q, β and φ pI used to recreate the same. The 
piecewise functions were created in accordance with the heuristic algorithm described in section Heuristics for 
reconstructing interventions. On the top row, dark colours indicate the real data from the states, while the lighter 
shades are model generated. The red shades are cumulative infections, green shades are recoveries and grays are 
deaths. The dotted light gray line indicates the curve output from the model if deaths from both the undetected 
and undetected infections are counted. The light gray solid line counts only the deaths from detected infections 
in the model. The band in green highlights the prediction epoch. Day zero corresponds to April 27th 2020.
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We assume that during the exposed phase, people are largely asymptomatic and undetectable by tests. Thus the 
exposed are quarantined only by contact tracing. However, the infected can be detected by either contact tracing 
or random tests / self-reporting. Further we make a simplifying assumption that during stage 2 of an epidemic, 
detection is mostly due to contact tracing and during stage 3, when community transmission takes over, detection 
of infections from random testing or self-reporting far outnumber the ones due to contact tracing.

Transitions and flow of people between compartments. In order to keep the model simple enough for numerical 
analysis, we employ two rules for designing transitions

• All transitions must follow the same order as S → E → I → R. For instance, all exposed compartments or 
their sub compartments (quarantined or undetected) must have transitions only to an infected compartment 
or one of its sub compartments.

• When there are multiple transitions out of a compartment, the sum of the rates out of the compartment must 
be conserved (compared to un-branched rates)

Starting from the standard SEIRD model, we observe that the exposed population, consists of 2 sub popula-
tions—the quarantined and free. Since quarantining of exposed is only due to contact tracing, a fraction c of the 
exposed flow to the compartment Eq . Thus we split the S → E transition into two transitions S → Eq and S → E . 
The rates of these transitions are in the ratio c : (1 − c ) and the sum of their rates continues to be βSI as in the 
standard SEIRD model. It must be noted that I in the standard model includes all infected, while here it refers 
only to the undetected infections. See Fig. 12 for more details.

Similarly, the infected population may be thought of as consisting of 2 sub populations – infected by direct 
contacts or through community spread. The fraction of contact spread infections and community spread infec-
tions are denoted by a and (1 − a) respectively. For simplicity we assume that only contact tracing is effective 
in detecting contact spread infections and only random testing or self reporting can detect community spread 
infections. This leads to 4 sub populations within the so far undetected infected population. Rates of transition 
to and fro the four infected populations Iq1 through Iq4 are computed as described before.

Migration and influx of infected. An important modification to standard models is necessitated by migrations. 
Influx of infected changes the seeding pattern of epidemic and plays a critical role in evolution of epidemic. 

Figure 11.  Uttar Pradesh and Punjab: Recreation. Plots on the top row show the real and model generated 
curves, while the bottom row plots the time varying piecewise functions c, q, β and φ pI used to recreate the 
same. The piecewise functions were created in accordance with the heuristic algorithm described in section 
on Heuristics for reconstructing interventions. On the top row, dark colours indicate the real data from the 
states, while the lighter shades are model generated. The red shades are cumulative infections, green shades are 
recoveries and grays are deaths. The dotted light gray line indicates the curve output from the model if deaths 
from both the undetected and undetected infections are counted. The light gray solid line counts only the deaths 
from detected infections in the model. The band in green highlights the prediction epoch. Day zero corresponds 
to April 27th 2020.
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Influx of infections are represented in our model as a combination of inflow rate and probability that an incomer 
is infected. Given the inflow rate is φ and the probability of infection is pI , in-migration is implemented as an 
addition of 

φpI
2N  to the undetected E and I compartments each, per day. We assume that this inflow is finite and 

very small compared to the total population and hence the stable population assumption is not violated.

Model Parameters. It may be noted that because of the way transitions were designed in section on Transi-
tions, the net rates of transition, Rate{C1 → C2} ∀ C1,C2 ∈ {S,E, I ,R,D} remain the same as in the standard 
SEIRD model when the compartments are interpreted as unions of their sub compartments, i.e. C = ∪ {C,Cq} . 
The mean stay times in an Exposed (E) state and Infected (I) state were set to 1k = 7 days and 1

γ
= 9 days 

respectively. The mortality rate δ is a constant value for the entire duration of simulation. Permissible values are 
in the range 5% ± 3% . The rate of transition of S → I is proportional to the fraction of total population that is 
infected ( I + Iq ) and the transmission rate ( β ). But since Iq is quarantined and cannot influence this rate, only 
the undetected infections I contribute to this rate. Only a fraction ( 1 − c ) of possible exposures reach E. Out 
of this number, a fraction a(1 − c) are contact transmission cases and missed by the contact tracing exercise. 
A fraction (1 − a)(1 − q) of the undetected exposed are community transmitted infections and are missed by 
random testing. Thus the net effective rate of the transition S → E (union of E and Eq ) under the influence of 
interventions is given by βI or βeff (I + Iq) , where

βeff  is the effective beta in the standard model that corresponds to modified model with interventions. βeff  is β 
scaled by the product of inefficiencies of two phases of interventions—isolation of exposed and isolation of the 
infected. The inefficiency of detecting the exposed is given by (1 − c) as testing cannot detect them and contact 
tracing is the only effective measure. The inefficiency of the detecting the infected is a convex combination of 
the inefficiencies of contact tracing (1 − c) and random testing or self reporting (1 − q) . In stage 2 it is given by 
(1 − c) and in stage 3 by (1 − q).

The net transitions out of E and Eq each continue to be k. The rates of E → Iq are given by the sum of rates 
E → Iq1 and E → Iq3 . The rates of E → I are given by the sum of rates E → Iq2 and E → Iq4 . These details are 
evident from the Figs. 12 and 13. The relevant equations are described as part of Supplementary Materials.

For the SEIR model with a stable bounded population, time varying reproduction rate Rt is given by βeff
1

γ
 . 

The term (1 − c){a(1 − c) + (1 − a)(1 − q)} that scales β and hence Rt is the fraction of generated infections 
that go undetected. This fraction is an index of the inefficiency of interventions by the administration to control 
the epidemic. The inefficiency index assumes a simple form (1 − c)2 in stage 2 of the epidemic when contact 
transmission is the norm and takes the form (1 − c)(1 − q) during community transmission driven stage 3 of 
the epidemic.

The values of c, q, β and φpI constitute the free variables of the models that are tuned to reproduce the true 
field data. Each of these quantities is assumed to be a piecewise constant  function14. δ is a constant throughout a 
simulation and is chosen within the permissible range for each data set. a is of the form of a decreasing sigmoid 
function of the number of active infections. It has a transition from 0.99 to 0.01 between 0.2 ∗ e

−4
∗ N  and 

0.8 ∗ e
−4

∗ N numbers of actively infected.

(1)βeff = β(1 − c){a(1 − c) + (1 − a)(1 − q)}

Figure 12.  Flow of people through compartments. The compartments Eq , Iq , Rq , Dq represent the populations 
that are quarantined. Compartments E, I, R represent the exposed, undetected infections or recoveries. D 
represents the fatalities from the undetected population, but they may be detected close to death or post-
mortem. a is the fraction of Infected that acquired it by direct contact with another infected. c is the fraction 
of exposed or contact infected individuals that are detected. q is the fraction of community infected that are 
detected by self reporting or random testing. δ is the rate of mortality.
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Modelling response of Indian states. We use this model to estimate the dynamics of epidemic transmission 
underlying the time series of data from Indian states. Data of daily infections, recoveries and deaths between 
13th March 2020 and 17th April 2020 for all Indian states were obtained from www.covid 19ind ia.org. We chose 
12 states with active COVID-19 cases for our analysis. The states chosen were Delhi, Punjab, Uttar Pradesh, 
Rajasthan, Madhya Pradesh, Gujarat, Maharashtra, Telangana, Karnataka, Tamil Nadu, Kerala, and West Bengal. 
Using the data upto 17th April 2020, we use a heuristic algorithm to generate these trends from our model. The 
algorithm will be derived from the results of model characterisation and will be described in section on Model 
Characterization. The goal of this exercise was to identify the time varying piecewise constant functions for c, q, 
β and φ pI that result in best visual fit of the cumulative infections on the log scale. The focus was on reproducing 
the predominant features of data sets on the log scale such as, piecewise linear slopes, steepening of slopes, pla-
teauing effects and changing y-intercepts with constant slope. We did not use any empirical learning methods for 
discovery of these parameters as we were keen on developing intuition regarding the relation between trend pat-
terns and their underlying processes. Once the cumulative data of infections was well fit, no further changes in 
parameters were undertaken except for tuning δ in order to bring the curve of cumulative deaths within the band 
defined by the curves Dq and Dq + D . This band was necessitated because deaths reported are sometimes from 
one or both buckets. Ever since the Indian government has mandated the testing of all Severe Acute Respiratory 
infections for COVID-19, undetected infections have been confirmed positive for COVID-19 from time to time 
in ICUs and post mortem. A fixed reporting delay of 8 days was used for calculating recoveries. This is observed 
in empirical explorations of data from Indian States

Model characterization. In order to explain the performance of the model and capture the dynam-
ics we administered several scenarios to the model. Each of the scenarios are explained below. In each of 
the scenarios, we set a = 1 implying that epidemic is in stage 2. Thus efficiency of intervention is given by 
1 − (1 − c)2 . All the discussion relating to c, efficiency of intervention (1 − (1 − c)2) or inefficiency of inter-
vention ((1 − c)2) in succeeding discussions apply equally to q (if transmission is community transmission), 
1 − (1 − c)[a(1 − c) + (1 − a)(1 − q)] and (1 − c)[a(1 − c) + (1 − a)(1 − q)].

Effect of varying β and c with fixed Rt. It is well known that as Rt increases, the infections peak earlier and have 
higher peaks. But from the Eq. (1) we can see that same Rt can be achieved by varying combinations of β and 
intervention inefficiencies. To understand this effect, we fixed Rt at 3 and varied numerators of transmission 
rate ( β ) were set successively at values between 6 and 8.4. c was varied to obtain required Rt as per Eq. (1) in the 
Model parameters section. From Eq. (1), we can observe that at constant Rt , increase in β will have to be accom-
panied by a decrease in inefficiency (1 − c)2 and a consequent increase in efficiency (1 − (1 − c)2) and detection 
c. Latency of infection is set at 7 days, efficiency of random testing and self-presentation (q) is set at 0, influx of 
population ( φ ∗ pI ) is set at 0. Initial infected cluster is set at 1 for a state with a population of one million and it 
is assumed that epidemic is at contact transmission stage (Stage-2).

Varying Rt by variations of β and interventions. We vary Rt from 5/3 through 7/3 in steps of 0.5/3. We achieve 
these reproduction numbers, by varying either β or c.

To understand the effect of varying β when intervention ( c = 1 −

√

1

3
 ) is held constant, we simulated the 

model with the above-mentioned parameters but with β values of 5, 5.5, 6, 6.5 and 7. The other parameters were 
held at the same value as the previous section.

Figure 13.  Modified SEIRD model. The compartments Eq , Iq , Rq , Dq represent the populations that are 
quarantined. Compartments E, I, R represent exposed, undetected infections or recoveries. D represents the 
fatalities from the undetected population, but they may be detected close to death or post-mortem. a is the 
fraction of Infected that acquired it by direct contact with another infected. c is the fraction of exposed or 
contact infected individuals that are detected. q is the fraction of community infected that are detected by 
self reporting or random testing. δ is the rate of mortality. The rates γ and k are respectively the inverses of 
mean infection time and mean latency times. β is the transmission rate given by product of contact rate and 
probability of infecting a contact.

http://www.covid19india.org
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Next, we study the effect of varying intervention (c) when β = 6/9 is held constant, we simulated the model 
with the above-mentioned parameters but with c values as: 1 − 1/

√

6/x where x ∈ {5/3, 5.5/3, 6/3, 6.5/3, 7/3 } 
thereby achieving required Rt . The other parameters were held at the same value as the section on Effect of Rt.

Effect of influx of infected cohort. To understand the effect of influx of infected persons we simulated an influx 
of infected over a small window of 3, 9 and 18 days. We set the influx rate to 38 people per day (φ = 75; pI = 0.5) 
during the influx window. The other parameters were held at the same value as the section on Effect of Rt.

Transitory effects of varying β and c over short time windows. β and interventions sometimes change transition-
ally over short periods of time. Lock-downs, focused campaigns of contact tracing or testing are examples.

To study the effect of varying β and c over short periods, the scenarios as follows. Starting with a β = 6/9 and 

c = 1 −

√

1

2
 we apply an (i) increase in β over a 21 day window to 8/9 and a (ii) pulsed decrease in β for 21 days 

to 4/9. All other parameters were held at the same value as the previous section. Thus starting from a base Rt = 3 , 
the Rt was stepped up and down respectively to 4 and 2 respectively.

To study similar effects induced by c, starting from the same baseline values, we apply (i) an increased 
c = (1 − 1/

√
3) over a 21 day window ( Rt = 2 ) and a (ii) pulsed decrease in c for 21 days to (1 − 1/

√

1.5) 
( Rt = 4 ). The other parameters were held at the same value as the section on Effect of Rt.

Effects of intervention on influx of infections. We coupled an influx of infections with varying levels of inter-
vention and with varying delays to study how they affect the overall evolution of the epidemic. We started with 
a β = 5/9 and a c = 0.2 and applied an influx at the rate of 20 per day for 5 days. Interventions with different 
efficiencies were applied on the first day of influx using c = 0.4, 0.6, 0.8 successively. Additionally, we also applied 
an intervention c = 0.8 starting 5 days after the end of the influx to assess the effect of delay in intervention.

Data availability
The data used in this work was sourced from www.covid 19ind ia.org. The codes and data used in the manuscript 
are available at the following link as a public Git repository: https ://gitla b.com/yasha swini mr1/track arona .
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