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Abstract Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections

in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces

teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate.

To characterize and address this issue, this study applies objective climate regionalization to identify

discrepancies between the Climate Forecast System Version 2 (CFSv2) and precipitation observations across the

Contiguous United States (CONUS). Regionalization shows that CFSv2 1month forecasts capture the general

spatial character of warm season precipitation variability but that forecast regions systematically differ from

observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically

reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas,

higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

1. Introduction

The Climate Forecast System version 2 (CFSv2) [Saha et al., 2014] is one of the most widely used dynamical

seasonal forecast systems worldwide, in both research and operational mode, for a range of applications,

for example, energy industry decisions [e.g., Dutton et al., 2014], marine resources management [e.g., Stock

et al., 2015], new climate model [e.g., Swapna et al., 2014] and products [e.g., Kirtman et al., 2014] develop-

ment, cyclone-related forecasts [e.g., Choi et al., 2016; Kim et al., 2015; Zhan and Wang, 2016], and hydrocli-

mate variables [Yoon et al., 2012; Yuan et al., 2013, 2014, 2015; Demargne et al., 2014; Georgakakos et al.,

2014; Sheffield et al., 2014; Tian et al., 2014; Sharma et al., 2015; Siegmund et al., 2015; Zuo et al., 2015]. The

performance of the model has been evaluated in hindcast mode for several regions [e.g., Yuan et al., 2011;

Zhu et al., 2013; Kumar et al., 2014; Lang et al., 2014; Silva et al., 2014; Ma et al., 2015]. Performance varies

by region and season, but results generally show that CFSv2 does show promise for forecasts up to 1month

lead [e.g., Yuan et al., 2011, 2013;Mo et al., 2012; Roundy et al., 2015]. Model skill tends to degrade beyond the

1month forecast horizon.

The degradation of CFSv2 forecast skill with increasing lead time is seen in Figure 1, which displays grid cell

correlations between observed and CFSv2 hindcast precipitation for the warm season (May–September) for

the Conterminous United States (CONUS). There is significant skill over much of CONUS at 1month lead, but

skill is limited at longer lead times. This is consistent with previous evaluations of CFSv2 for CONUS [e.g., Zhu

et al., 2013; Roundy et al., 2015]. Focusing on the relatively high skill scores seen at 1month lead, we see

strong performance in many regions but pockets of low skill as well—notably in the upper Midwest, the

Texas panhandle, and portions of the lower Mississippi basin.

The purpose of this paper is to investigate these regions of low skill in CFSv2 through objective climate regio-

nalization [e.g., Fovell and Fovell, 1993; Rao and Srinivas, 2006; Badr et al., 2015, and references therein]. This

approach is motivated by the premise that a global climate model (GCM) forecast system like CFSv2 can only

be expected to achieve strong predictions for locations that the model successfully places in the correct

climate region, where the “climate region” is defined in terms of interannual variability in the variable of inter-

est (in this case, precipitation). For example, if a particular location is known from observation to fall within a

climate region for which precipitation is most sensitive to eastern Pacific Ocean variability, but circulation
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biases in the GCM erroneously place the location within a climate region that is more sensitive to Atlantic

Ocean variability, then the prediction for that location will be unreliable even if the GCM captures the broad

picture of teleconnections reasonably well. Objective regionalization can be used to identify these localized

mismatches and, potentially, to explain spatial variations in model performance. A secondary aim of the

paper is to identify ways in which an understanding of model performance based on regionalization

might be used to develop more useful forecasts for areas in which grid-based skill metrics are low.

Philosophically similar approaches were pursued by Koster et al. [2008] and Roundy et al. [2015].

2. Data

In this study we used precipitation data from the CFSv2 hindcast archive and the University of Delaware

(UDel) gridded precipitation product.

The CFSv2 model is a second-generation coupled ocean-land-atmosphere GCM developed by the NOAA

National Center for Environmental Prediction (NCEP). An archive of CFSv2 hindcasts for 1982–2010 is main-

tained to facilitate research and evaluation. The archive includes 24 ensemble members for each month

(six different initialization days * 4 times of day), each run for a 9month forecast and archived at 1° resolution,

globally. We downloaded hindcasts from the International Research Institute (IRI) map room (http://iridl.ldeo.

columbia.edu/SOURCES/.Models/.NMME/.NCEP-CFSv2/.MONTHLY/.prec/dataselection.html) and subset to

the CONUS.

Here we evaluate the CFSv2 24-member ensemble mean. A “1 month lead” forecast is defined as the ensem-

ble average of all forecasts included in that month’s CFSv2 mid-month hindcast release (See Appendix B in

Saha et al., 2014). We focus on the warm season (May–September). This period accounts for >50% of annual

precipitation in many regions within CONUS, and it is known to be difficult to predict: warm season precipita-

tion is often convective, and the coupling between local weather and large-scale atmospheric patterns tends

Figure 1. Grid cell to grid cell correlations between observed and CFSv2 hindcast precipitation for warm season (May
through September) for different lead times; (top) 1 month lead time and (bottom right) 7month lead time.
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to be weaker than in the cold season, when precipitation variability over much of CONUS is dominated by

synoptic dynamics.

In this study we use the University of Delaware observation-based gridded precipitation analysis (UDel)

[Matsuura and Willmott, 2012] as the basis for evaluating CFSv2 hindcasts. UDel has a gridded resolution of

0.5° × 0.5°. It was selected for this study because it is based entirely on interpolated in situ observations, is

spatially and temporally complete and quality controlled, and has global coverage that would make it possi-

ble to repeat the study outside of CONUS. The UDel data set has been used in many previous studies [e.g.,

Wang et al., 2009; Caldwell, 2010; Elguindi and Grundstein, 2013]. A full description of the analysis technique,

shortcomings, and advantages of UDel is found in Matsuura and Willmott [2012] as well as at http://climate.

geog.udel.edu/~climate/. Here we resample UDel to 1° tomatch the resolution of CFSv2. A complementary ana-

lysis was performed using North American Land Data Assimilation System (NLDAS) precipitation [Xia et al., 2012]

as the basis for evaluation to confirm that the UDel global product behaves similarly to CONUS-only NLDAS.

3. Climate Regionalization

The goal of climate regionalization techniques is to identify regions that are homogenous in certain aspect of

a climate variable(s) of interest. There is a rich and evolving literature that includes numerous statistical and

conceptual techniques [e.g., Fraley and Raftery, 1998; Jain et al., 1999; Sheridan, 2002]. These methods all

define “regions” (which do not need to be spatially contiguous) that are homogenous with respect to the vari-

able of interest (e.g., high intraregional correlation betweenmembers and regional mean) and are sufficiently

distinct from other regions (e.g., low interregional correlation between regional means). These techniques are

frequently described as “objective regionalization” algorithms, because an objective metric of similarity

versus dissimilarity is applied to define regions. The methods are, however, subjective to some extent, in that

the selection of the number of regions and level of acceptable intraregion homogeneity relative to interre-

gion difference is subjective; there are some automated methods for making these decisions [e.g., Badr

et al., 2015], but ultimately, the choices depend on the purpose of the regionalization.

In this application, we regionalize the gridded observational and model data sets on the basis of interannual

variability in warm season precipitation. Regionalization was performed for the period 1982–2010, as this is

the full extent of the CFSv2 hindcast archive. Several forecast lead times were analyzed, but we focus on

the 1month lead forecasts, as they exhibit meaningful skill across much of CONUS. Lead time refers to the

lead for each month: the May–September forecast comprises 1month lead forecasts for each month in the

season (i.e., May predicted from April model initializations and June from May initializations).

This choice of clustering variable (i.e., time series of gridded seasonal precipitation) means that regions are

defined on the basis of coherent interannual climate variability rather than mean climate conditions. This

is important, as coherent interannual variability suggests a common response to large-scale climate drivers.

When regionalization is applied to observations, then the approach can help us to identify regions of com-

mon climate sensitivity and to identify mechanisms that drive variability for each region. When applied to

the model, the technique allows us to examine whether the model connects large-scale drivers to local

climate variability in a reliable way. For a high performing seasonal prediction system, we would expect that

model regions strongly resemble observed regions and that dominant drivers of variability in each region

also match observations. The further implication is that the model’s grid cell to grid cell skill values are likely

to be low in areas where the model’s regionalization does not match observed.

Our rationale for this approach is that areas of common variability are probably sensitive to common large-

scale climatic drivers. Regionalization, then, allows us to understand how different regions within CONUS

respond differently to large-scale climate patterns. It also allows us to compare the regional coherence of

observations to the regional coherence of the model. We applied different regionalization methods and

chose Ward’s hierarchical clustering [Murtagh, 1983; Ward, 1963], because its derived regions are distinct

and approximately of similar size, which one can expect for low noise data, whereas other methods such

as regional linkage [Badr et al., 2014] can isolate the noise in very small regions for quality control. Ward’s

method calculates the sum of squared distances between different objects, pools objects with the smallest

sum of squared distances under one cluster, and repeats it until all objects either are associated with an exist-

ing cluster or form a new cluster. The hierarchical clustering algorithm yields a dendrogram (a tree diagram)

that illustrates the arrangement of objects into different clusters, e.g., Figure 2a. The x axis represents the
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labels of objects used in clustering, where each branch from the bottom represents one object or a cluster if

the dendrogram is cut at a higher level. The y axis represents the cost of merging two branches. In Ward’s

clustering, the merging cost is the error sum of squares in a cluster. While several factors play a role in choos-

ing an optimum number of regions, the dendrogram suggests a number for which the merging cost does not

decrease significantly. In this study, Ward’s method was implemented using the HiClimR version 1.2.3 [Badr

et al., 2014] climate regionalization package [Badr et al., 2015] for R [R Core Team, 2016].

4. Results and Discussion

Figures 2a–2c show results of Ward’s method classification for interannual variability in May–September

precipitation using UDel precipitation. As noted above, the selection of the number of regions is subjec-

tive. In this case we select four regions based on considerations of intraregional variance, i.e., how homo-

genous is the region after merging two smaller regions (see dendrogram in Figure 2a) and the objective of

identifying regions that are associated with distinct patterns of large-scale climate variability. We refer to

these regions as West, South-central, North-central, and East (Figure 2b; Figure S1, in the supporting

information, shows sensitivity to data resolution). Maps of alternative cutoff values are provided in the

supporting information (see Figure S2). Figure 2c shows intraregional correlations for each region (i.e.,

the correlation of each grid cell with the mean time series for the region it is assigned to). As expected,

we see high correlations in most areas, indicating that the regions are relatively homogeneous (see also

Table S1 in the supporting information). Correlation values do drop at some region edges and in particu-

larly dry regions like Arizona have the lowest intraregional correlation overall. Correlations between

regions are relatively low, indicating good separability of these four regions (Table S1). NLDAS results

are generally similar to UDel (see Figures S2 and S3).

Figures 2d–2f repeat the regionalization process for CFSv2 1month lead forecasts. The dendrogram for CFSv2

suggests a similar structure of grids and clusters as observations but with some differences (Figures 2a and

2d). The dendrogram for CFSv2 (Figure 2d) does not provide definite information on optimum number of

clusters; i.e., when five regions are selected, the fifth region is very small relative to other regions, whereas

when four regions are selected, the fourth region has large intraregional variance relative to other three

regions but importantly the same number of regions as observations. Note that the cutoff value, which varies

with several factors including data resolution, data structure, and region size, differs for observations (~25)

and CFSv2 hindcast (~35). However, similar spatial patterns are observed for model and observations for a

four region classification (Figures 2b and 2e). This is encouraging, as it suggests that the geographic

Figure 2. Regionalization results using Ward’s method classification for warm season (May through September) precipitation, for (a–c) UDel observed and (d–f)
CFSv2 1month lead hindcasts precipitation data sets. Dendograms, spatial distribution of regions, and intraregion correlations are presented in the first, second,
and third columns, respectively.
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distribution of climate sensitivities in CFSv2 resembles reality. Intraregional correlations are generally

larger for CFSv2 than for observations (Figure 2f and Table S1), which is expected for a relatively smooth

model result. Interregional correlations are low except for the correlation between West and North-central

(Table S1). We keep these regions separate for this analysis in order to provide consistent comparisons with

observations, but their high correlation suggests that in CFSv2 they are responsive to a similar set of large-

scale climate modes.

To investigate the relationship between large-scale forcing and precipitation variability in each region, we

examine correlations with concurrent global sea surface temperature (SST) patterns (Figure 3); SSTs are from

NCEP Reanalysis [Kalnay et al., 1996]. We find that the regions show distinct correlation patterns, with the

West correlating strongly with eastern tropical Pacific SST variability, South-central correlating with western

Atlantic and central Pacific variability, North-central correlating with the northern Pacific and Atlantic oceans,

and the East correlating with Atlantic in a manner that contrasts with the North-central correlation pattern.

We do not delve into details of physical mechanism, but focus on two points: (i) unique correlation pattern

for each region—all four regions exhibited distinct correlation patterns with global SSTs and (ii) relatively

similar correlation patterns between observation and CFSv2, suggesting that the model captures the general

character of teleconnections for each region. We do note the somewhat overactive eastern tropical Pacific

correlation for North-central and South-central in CFSv2 relative to observations and other small but systema-

tic differences are also observed and warrant further study. Similar analysis with NOAA optimum interpola-

tion SST v2 [Reynolds et al., 2002] yielded similar results (Figure S4). In the supporting information we

present correlations with NCEP Reanalysis 300 mb geopotential height (Figure S5) and time-lagged correla-

tions with NCEP Reanalysis SSTs (Figure S6 and S7). The pattern of regional distinction and general similarity

between CFSv2 and observations holds for these fields, though interesting differences between CFSv2 and

observation do emerge in SST correlations at longer lead times. Zhu et al. [2013] present plots similar to

Figure 3 for different variables for the northwestern U.S., and they appear to be broadly consistent with

our findings.

Having described the general similarities between CFSv2 and observations, we turn to differences between

the two regionalizations. Figure 4a maps areas of spatial disagreement between CFSv2 and UDel regions;

mismatch between grid cells of the same region of CFSv2 and observations is defined as spatial disagreement

and is shown in grey. Not surprisingly, these disagreements occur on borders between regions. The largest

area of disagreement is in the placement of the border between East and North-central: in observations

the Midwest is split between these regions, while in the model the East region extends across much of the

Midwest. There is also notable nonoverlap in parts of the lower Mississippi basin, the Rocky Mountains,

and a Southern Great Plains area that includes the Texas panhandle.

Figure 3. Concurrent correlations between global sea surface temperatures and regional mean warm season precipitation for all four regions that were derived
from (top row) UDel observed and (bottom row) CFSv2 1month lead hindcasts precipitation data sets. Correlations of each region, i.e., West, South-central,
North-central, and East correspond to a column each from left to right, respectively.

Geophysical Research Letters 10.1002/2016GL069150
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These differences allow us to test the hypothesis that areas in which CFSv2 regionalization does not

match observations are more likely to be areas of poor model performance under standard grid-to-grid eva-

luation metrics. Figure 4b overlays an outline of region disagreement on the map of model correlation with

observations—the same field shown in Figure 1. Visually, it does appear that zones of notably poor model

performance—Texas panhandle, Upper Midwest, and parts of the lower Mississippi basin—lie in areas of

regional disagreement. This pattern is tested visually by comparing the PDFs of correlations for grid cells

of regional agreement and grid cells of regional disagreement (Figure 4c) and statistically by performing a

t test on two sets of correlations that correspond to regional agreement and regional disagreement. We find

that the two data sets are significantly different (p<0.05), and grid cell to grid cell correlations between CFSv2

1month forecasts and observations are lower for grid cells of regional disagreement than they are for grid

cells in areas of regional agreement and for the all-CONUS average (white boxes in Figure 4d). Resorting to

regional mean correlations—i.e., averaging all grid cells within the region as defined by the model, as is often

done when presenting seasonal forecasts over broadly defined regions of interest—does not improve perfor-

mance. In fact, this averaging has no significant effect on correlations for CONUS on the whole or for grid cells

that lie in areas of regional agreement, and it degrades performance for the areas of nonagreement (red

boxes in Figure 4d). Correlation for areas of regional disagreement does improve somewhat, however, when

grid cells are predicted using the regional mean as defined by the observed regionalization (rightmost three

boxplots in Figure 4d)—for example, when grid cells in Missouri are predicted on the basis of CFSv2 forecast

for North-central, even though CFSv2 places Missouri in the East region. This suggests that regionalization

could be applied to interpret and, in some cases, to improve seasonal forecast performance in regions where

the model fails to reproduce observed regional associations of climate variability.

Figure 4. (a) Spatial disagreement between regions derived from UDel observed and CFSv2 1month lead hindcast precipitation data sets; (b) map of grid cell to grid
cell correlations between observed and hindcast precipitation data sets for the warm seasons overlaid with outline of region disagreement; (c) PDFs of correlations
for grid cells of regional agreement (red) and grid cells of regional disagreement (green); (d) boxplot of correlations that are calculated using grid cell-observed
precipitation and grid cell as well as regional mean precipitation hindcasts for all grid cells (first set of three boxplots), grid cells of regional agreement (second set
of three boxplots), and grid cells of regional disagreement (third set of three boxplots). GCOP-GCHP: Grid Cell-Observed Precipitation and Grid Cell Hindcast
Precipitation Correlations, GCOP-RMHP: Grid Cell-Observed Precipitation and Regional Mean Hindcast Precipitation (Region assigned based on Hindcast precipita-
tion) Correlations, GCOP-RMHPRO: Grid Cell-Observed Precipitation and Regional Mean Hindcast Precipitation (Region assigned based on Observed precipitation)
Correlations. RA, Grid cells of regional agreement; RDA, Grid cells of regional disagreement.
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5. Conclusions

Objective climate regionalization is a valuable but underutilized method for understanding variability in

observations and models. Here we applied an established regionalization method to examine the spatial dis-

tribution of interannual warm season precipitation variability in the CFSv2 hindcast archive relative to a

gridded observation-based precipitation analysis for the CONUS. This yielded insights relevant to the inter-

pretation and application of CFSv2. First, there is general agreement in regions and associated large-scale

SST patterns between CFSv2 1month forecasts and observations. This suggests that at 1month lead time

the model does capture the spatial character of CONUS climate variability and relevant teleconnections,

though model performance drops off at longer forecast horizons. Second, there are areas at the border

between regions for which CFSv2 regionalization does not match observations, and model performance in

these areas is systematically worse than its performance in areas of regional agreement. This supports the

expectation that a GCM-based forecast system depends on the model’s ability to connect local conditions

to the correct set of large-scale forcings. It also argues for caution when applying CFSv2 in areas of regional

disagreement, and it suggests that a similar analysis could be useful when evaluating and applying any

gridded, GCM-based forecast system. Third, we find that there is some potential to make clever use of

CFSv2 output to improve predictions for areas in which low performance is associated with disagreement

in regionalization. For example, in some cases the regional mean time series—as defined by the region in

observations rather than in the model—yields higher correlation with observations than grid-to-grid correla-

tions or regional average correlations based on the model’s regions. Thus, regionalization aids in interpreting

climatic variability in observations andmodels, and it suggests areas for model improvement and parameters

for effective utilization of a model given its deficiencies. Previous studies have demonstrated the scientific

benefits of philosophically similar approaches [e.g., Koster et al., 2008; Roundy et al., 2015]. Formalizing and

operationalizing such approaches would require additional research.

The study also raises questions about CFSv2. For example, why is it that the model pushes the East climate

region too far into the Midwest and Plains states, and can that tendency be corrected through improved

parameterization or initialization? Does the remarkably high correlation between West and North-central

regions in CFSv2 relative to observation indicate that the model is missing a process that distinguishes these

regions? Does the intrusion of the West region into the Texas Panhandle in CFSv2 indicate that the Rocky

Mountains are not a sufficient barrier in the model? Regionalization on its own cannot address these

questions, but it can help to identify them and to diagnose model realism as the development of the system

continues. This includes evaluation of new dynamics and incorporation of corresponding parameterizations

in the model [e.g., Chowdary et al., 2015; Jiang et al., 2013]. Correction of model in the first month most likely

decreases propagation of errors over the time and consequently increases model performance for longer

forecast horizons.
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