Header menu link for other important links
X
Unmasking of the von Willebrand A-domain surface adhesin CglB at bacterial focal adhesions mediates myxobacterial gliding motility
Salim Islam T., Nicolas Jolivet Y., Clémence Cuzin, Akeisha Belgrave M., Laetitia My, Betty Fleuchot, Laura Faure M., Utkarsha Mahanta, Ahmad Kezzo A., Fares SaïdiShow More
Published in American Association for the Advancement of Science
2023
Volume: 9
   
Issue: 8
Abstract
The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focaladhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM β barrels GltA, GltB and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum. © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
About the journal
JournalScience Advances
PublisherAmerican Association for the Advancement of Science
ISSN23752548