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Abstract

We present a scalar triplet extension of the standard model to unify the origin of inflation with neutrino

mass, asymmetric dark matter and leptogenesis. In presence of non-minimal couplings to gravity the scalar

triplet, mixed with the standard model Higgs, plays the role of inflaton in the early Universe, while its

decay to SM Higgs, lepton and dark matter simultaneously generate an asymmetry in the visible and dark

matter sectors. On the other hand, in the low energy effective theory the induced vacuum expectation value

of the triplet gives sub-eV Majorana masses to active neutrinos. We investigate the model parameter space

leading to successful inflation as well as the observed dark matter to baryon abundance. Assuming the stan-

dard model like Higgs mass to be at 125–126 GeV, we found that the mass scale of the scalar triplet to be

� O(109) GeV and its trilinear coupling to doublet Higgs is � 0.09 so that it not only evades the possibility

of having a metastable vacuum in the standard model, but also lead to a rich phenomenological conse-

quences as stated above. Moreover, we found that the scalar triplet inflation strongly constrains the quartic

couplings, while allowing for a wide range of Yukawa couplings which generate the CP asymmetries in the

visible and dark matter sectors.
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1. Introduction

A widely accepted theory of the early Universe supposes that there has been a period of

cosmic inflation [1–3] which not only explains the drawbacks of standard cosmology, but also

provides seed for the temperature anisotropy in the cosmic microwave background [4–8]. Find-

ing a particle physics model for the inflaton is a non-trivial task however. In the standard model

(SM) of particle physics, the only scalar field is the SU(2) doublet Higgs, whose quartic cou-

pling λH is not a free parameter once its mass is fixed. Hence a model of chaotic inflation is

not possible within the framework of SM. However, by adding one more coupling ξH between

the Higgs and gravity [9–11], the potential could be made flat enough for producing approxi-

mately 60 e-folds of inflation. Indeed there is a plateau for value of the field h ≫ Mpl/
√

ξH ,

where Mpl is the reduced Planck mass. The phenomenological inflationary constraints are met

when λH /ξ2
H matches the amplitude of density perturbations. For instance with a quartic cou-

pling of O(0.1) the non-minimal coupling to gravity ξH is bounded to be O(104), and hence

inflation takes place at the unitarity scale Mpl/ξH ≃ 1014 GeV [12–15]. This is the so-called

Higgs inflation [16–18]. However, the indication of SM like Higgs at 125–126 GeV [19,20]

lead to a metastable vacuum [21,22] at around 109 GeV, which is much below the unitarity

scale. The current uncertainties in the experimental measurements although allow one to extend

the vacuum instability up to Planck scale, but it can only be resolved at future experiments.

One of the possibilities to evade this issue is to widen the scalar field content of the SM. Ex-

tension of Higgs inflation by means of a scalar singlet or the inert doublet have been discussed

in [23–27].

It is paramount to restore a thermal bath at the end of inflation to generate visible and dark

matter (DM) observed today. At present a number of evidences suggests the existence of DM,

which constitutes one quarter of the total energy budget of the Universe [28,29]. However, hith-

erto a definite mechanism that gives rise to the observed relic abundance of DM is unknown.

Usually it is assumed that the DM particle is in thermal equilibrium in the early Universe and

freeze-out below its mass scale [30]. However, an alternative scenario to the freeze-out mecha-

nism is that the relic abundance of DM can be accounted by an asymmetric component rather

than by the symmetric one [31–69]. Since none of the particles in the SM can be a candidate

of DM, one needs to explore physics beyond SM to have a particle physics candidate for DM.

Apart from DM, the non-zero neutrino masses as confirmed by the oscillation data are required

to be explained in a beyond SM framework. Recall that neutrinos are exactly massless within

SM because of the conservation of lepton number up to all orders in perturbation theory.

Besides DM and neutrino mass, an explanation for the observed matter–antimatter asymme-

try required for the big bang nucleosynthesis is still missing within the framework of SM. If the

reheating temperature is less than electroweak (EW) scale then it is difficult to generate both

DM and the observed baryon asymmetry [70]. On the other hand, if the reheating temperature is

larger than EW scale, several mechanisms are available which can give rise to required baryon

asymmetry, while leaving a large temperature window for creating DM species observed today.

In the past years a lot of effort have been made to unify the mechanism giving rise to the asym-

metry both in the DM and baryonic sectors [31–45,47–60,66,67,71–75]. An attempt to unify

DM and baryon asymmetry via leptogenesis route has also been proposed by two of the authors

in [58], where SM is extended by introducing a SU(2)L scalar triplet and a fermionic doublet

dark matter candidate, stable by means of a remnant Z2 flavour symmetry. The triplet is taken

to be at high scale such that its out-of-equilibrium decay can produce asymmetric DM as well

as visible matter through leptogenesis mechanism [76,77]. Moreover, in the low energy effective
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theory the induced vacuum expectation value (vev) of the scalar triplet could give rise sub-eV

Majorana masses to the active neutrinos. Thus a triple unification of asymmetric DM, baryon

asymmetry and neutrino masses in a minimal extension of the SM is achieved.

In this article, we realize primordial inflation in the presence of non-minimal coupling ξ�

to gravity in a scalar triplet (�) extension of the SM and study the consequent low energy

phenomenology. An early attempt of triplet inflation has been discussed in [78] within the frame-

work of chaotic inflation, where the quartic coupling of the triplet is supposed to be negligibly

small (less than 10−13) and the dominant term in the scalar potential is the triplet mass, around

1013 GeV. In presence of the non-minimal coupling of the scalar triplet to gravity the mass

scale of the triplet can be much below than 1013 GeV without fine tuning the quartic coupling.

We take the mass scale of triplet to be around 108–109 GeV such that it not only give neutrino

masses, dark matter abundance and baryon asymmetry, but also evade the possibility of hav-

ing a metastable vacuum in the SM [21,22]. In presence of non-minimal couplings ξ� and ξH

to gravity the scalar triplet, together with the SM Higgs field, behaves as inflaton. From this

multi-field inflationary scenario a single field model can be retrieved as we demonstrate below.

We show that once the heavy mode is settled down at the minimum, the scalar potential is positive

definite only if the mass term and the lepton number violating term (μH �†HH ) are negligible.

However, the inflaton can be an admixture of both triplet and SM Higgs moduli or a pure state.

We demonstrate in detail how these three cases give rise to different constraints on the model

parameter space. Subsequently, we explain how the decay of scalar triplet [58] can generate an

asymmetric dark matter and visible matter observed today.

The article is organized as follows. In Section 2 we briefly underline the main features of the

model, which has been introduced in [58] and point out new constraints in the parameter space.

We then describe the inflationary picture in Section 3, where we work out the slow-roll predic-

tions for single field inflation after having discussions regarding the numerical and analytical

estimates of all the terms in the scalar potential. The generation of the asymmetries in the dark

and visible sectors are discussed in Section 4. The ensuing Section 5 details the renormalization

group (RG) equations accounting for the additional field content with respect to the SM ones.

Our results are presented in Section 6 and we conclude in Section 7. We recall in Appendix A

the main Boltzmann equations for the production of the asymmetries in both baryonic and DM

sectors.

2. Scalar triplet as the origin of inflation and darko-lepto-genesis

We extend SM by introducing a scalar triplet �(3,2), where the quantum numbers in the

parenthesis are the charge under the gauge group SU(2)L × U(1)Y . Since the hypercharge of

� is 2, it can have bilinear coupling to the Higgs doublet H . As a result the scalar potential

involving � and H can be given as follows:

VJ (�,H) = M2
��†� + λ�

2

(
�†�

)2 − M2
H H †H + λH

2

(
H †H

)2

+ λ�H H †H�†� + 1√
2

[
μH �†HH + h.c.

]
, (1)

where the index J stands for the Jordan frame, as will be explained in Section 3. The 2 × 2

representation of the scalar triplet is

� =
(

�+/
√

2 �++

�0 −�+/
√

2

)
. (2)
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In the fermion sector we introduce a vector-like doublet ψ ≡ (ψDM,ψ−) with hypercharge

Y = −1 [58]. As a result the bilinear couplings of � to the lepton doublets L, ψ and H are given

as follows:

−L ⊃ iψγ μ
Dμψ + MDψψ + 1√

2

[
fH �†HH + fL�LL + fψ�ψψ + h.c.

]
, (3)

where fH = μH /M�. The covariant derivative Dμ is defined as

Dμ = ∂μ + i

√
3

5
g1Bμ + ig2tWμ, (4)

where t represents the Pauli spin matrices. For the hypercharge coupling we have used the grand

unified theory (GUT) charge normalization: 3(gGUT
1 )2/5 = (gSM

1 )2.

From (1) and (3) we notice that:

1. The bilinear coupling of � to the Higgs and lepton doublets jointly violate lepton number

by two units. Moreover, the couplings are complex and hence can accommodate a net CP

violation. As a result the out-of-equilibrium decay of � to LL and HH in the early Universe

can give rise to the observed matter–antimatter asymmetry via leptogenesis route [76,77].

2. The Lagrangian is invariant under a remnant Z2 symmetry, with ψ being odd while all the

other fields even. This ensures the stability of ψDM, the neutral component of ψ , which

can be a candidate of dark matter. Hereafter ψDM is the inert fermion doublet DM [58].

Since the bilinear coupling of � to ψψ is in general complex, it can accommodate a net

CP violation. Therefore, the out-of-equilibrium decay of � → ψψ in the early Universe can

generate an asymmetry in DM sector in a similar way the lepton asymmetry is generated via

the decay � → LL and � → HH .

In the effective theory the bilinear coupling of � to HH and ψψ generates a dimension-five

operator O5 = ψψHH suppressed by the mass scale of �. This is an equivalent type-II

seesaw for Majorana mass of DM. Below EW phase transition this operator generates small

Majorana mass for ψDM as given by

m =
√

2fψ 〈�〉 = fH fψ

−v2

M�

, (5)

where v = 〈H 〉 is the vev of the SM Higgs. Since ψDM is a vector-like Dirac fermion, it can

be expressed as a sum of two Majorana fermions, i.e. ψDM = (ψDM)L + (ψDM)R . Therefore,

in a flavour basis ((ψDM)L, (ψDM)cR), the mass matrix of DM is given by

M =
(

MD m/2

m/2 MD

)
. (6)

Diagonalizing the above mass matrix we get two mass eigenstates (ψDM)1 and (ψDM)2 with

masses MD + m/2 and MD − m/2. The mass splitting δ ∼ m between the two states is

required to be O(100) keV in order to explain the high precision annual modulation signal

at DAMA [79–81,58] while the null result at Xenon100 [82]. This implies a lower bound

on fψ to be

fψ = m√
2〈�〉

� 10−4, (7)

where we have assumed 〈�〉 �O(1) GeV as required by the ρ parameter of SM.
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3. In the effective low energy theory the bilinear coupling of � to lepton and Higgs doublets

also generate a dimension-five operator O5 = LLHH , suppressed by the mass scale of �,

for neutrino masses. When H acquires a vev, this operator then induces sub-eV Majorana

masses to active neutrinos given by:

Mν =
√

2fL〈�〉 = fLfH

−v2

M�

. (8)

For M� ≫ v, we can easily obtain sub-eV masses of active neutrinos for a wide range of

values of the couplings fL and fH . For example, taking fL and fH to be order unity we

need M� ∼ 1012 GeV to get sub-eV neutrino masses. For lighter � one can get neutrino

masses in the ball park of oscillation data by taking smaller values of fL, yet maintaining

vev of � to be less than O(1) GeV. An advantage for smaller values of fL is that we can

easily explain the required ratio:

R ≡ Mν

m
= fL

fψ

≈O
(
10−5

)
. (9)

Thus for fψ � 10−4, we expect fL � 10−9.

4. In the presence of the non-minimal couplings of � and H to gravity, the scalar potential (1)

can give rise to inflation in the early Universe [16–18]. The scale of inflation at which the

power spectrum is normalized (see later section) is [V (�,H)/ǫ]1/4 ≃ 1016 GeV, which

is much below the Planck scale. At the end of inflation, the Universe becomes radiation

dominated, during which the interactions of � as given in (3) generate asymmetries in visible

and DM sectors.

3. Scalar triplet – Higgs inflation

3.1. Action in the Einstein frame

The model for the scalar fields has been defined in the previous section. The scope of this

section is to work out the action for inflation. The physical fields are defined in the Jordan frame

denoted by an index J . We introduce for both scalar components non-minimal couplings to the

Ricci scalar R. Hence the action in the Jordan frame is:

SJ =
∫

d4x
√

−g

[
R

2
+

(
ξH H †H + ξ��†� + c.c.

)
R

− |DμH |2 − |Dμ�|2 − VJ (H,�)

]
, (10)

with the reduced Planck mass set to unity, i.e. M2
pl = m2

pl/(8π) = 1.

In the Jordan frame the couplings ξi make the gravitational interactions non-standard. It is

therefore convenient to perform a conformal transformation into the Einstein frame, for which

we put no index, to retrieve the standard form of the Einstein equations as far as gravity concern,

but at the expense of having non-standard kinetic terms for the scalar fields. A conformal trans-

formation preserves the causal structure of space–time in both frames and is given by a smooth

and strictly positive function of the fields:

Ω2 = 1 + 2ξ�|�|2 + 2ξH |H |2. (11)
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Note that both frame are equivalent for small field values. The metric and the potential trans-

form as:

g̃μν = Ω2gJ
μν, (12)

V (H,�) = VJ (H,�)

Ω4
. (13)

The doublet and triplet scalar fields are defined in the unitary gauge as following:

H = 1√
2

(
0

h

)
, (14)

� = 1√
2

(
0 0

δeiθ 0

)
, (15)

where δ and θ account for the two degrees of freedom of the triplet neutral component, defined

as �0 = [Re(�0) + i Im(�0)]/
√

2.

Now taking the large field limit ξ�δ2 + ξH h2 ≫ 1 and redefining fields as:

ϕ =
√

3

2
log

(
1 + ξ�δ2 + ξH h2

)
, (16)

r = δ

h
, (17)

Eq. (10) reads:

S =
∫

d4x
√

−g̃

[
R̃

2
− 1

2

(
1 + 1

6

r2 + 1

ξH + ξ�r2

)
(∂μϕ)2 − 1√

6

(ξH − ξ�)r

(ξH + ξ�r2)2
(∂μϕ)(∂μr)

− 1

2

ξ2
H + ξ2

�r2

(ξH + ξ�r2)3
(∂μr)2 − 1

2

r2

ξH + ξ�r2

(
1 − e−2ϕ/

√
6
)
(∂μθ)2 − V (r,ϕ, θ)

]
. (18)

Note that the kinetic part is highly non-trivial for all fields ϕ, r and θ . However the potential,

with the field redefinition, takes the form:

V (r,ϕ, θ) = λH /2 + λH�r2 + λ�r4/2

4(ξH + ξ�r2)2

(
1 − e−2ϕ/

√
6
)2

+ M2
H + M2

�r2

2(ξH + ξ�r2)
e−2ϕ/

√
6
(
1 − e−2ϕ/

√
6
)

+ μH r cos θ

2(ξH + ξ�r2)3/2
e−ϕ/

√
6
(
1 − e−2ϕ/

√
6
)3/2

. (19)

3.2. Scalar potential analysis

During inflation the mass eigenvalue of r is very large as compared to the Hubble parame-

ter [25]. Therefore r is minimized at r0 and we find the effective theory for the light inflatons.

The action then becomes:

L√
−g̃

= −1

2

[
1 +

1 + r2
0

6(ξH + ξ�r2
0 )

]
(∂μϕ)2

− 1

2

r2
0

ξH + ξ�r2
0

(
1 − e−2ϕ/

√
6
)
(∂μθ)2 − V (ϕ, θ), (20)
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with V (ϕ, θ) = V (r → r0, ϕ, θ). Note that the stabilization of r demands important constraints

on the couplings, which will be discussed in the following section. For a finite value of r0, with

λeff = λH

2
+ λH�r2

0 + λ�

2
r4

0 , (21)

ξeff = ξH + ξ�r2
0 , (22)

we can further approximate the kinetic sector as

Lkin√
−g̃

= 1

2
(∂μϕ)2 + 1

2

(
1 − e−2ϕ/

√
6
)
(∂μχ)2, (23)

where χ = θr0/
√

ξeff.

For the potential, as can be seen from (19), it consists of three contributions – quartic,

quadratic and the μ-terms. Since the latter two are exponentially suppressed, one may be tempted

to drop them from the beginning for simplicity. However we must check explicitly if quartic term

is really dominant, only after then we can make any simplification. First let us compare the quar-

tic term with the quadratic mass term:

VM

Vλ

∼ M2
�r2

0e−2ϕ/
√

6 ξeff

λeff
. (24)

Here we first assume the quartic term is dominant, which normalizes the combination λeff/ξ
2
eff ∼

10−9 from the amplitude of the power spectrum (see later section). We will justify this

assumption a posteriori. Then, with the typical value of ϕ during inflation, say ϕ ∼ 5, we have

e−2ϕ/
√

6 ∼ 10−2 so that the ratio becomes

VM

Vλ

∼ M2
�10−2 109

ξeff
r2

0 ∼ 107M2
�

r2
0

ξeff
. (25)

It is not difficult to set this ratio negligibly small with large enough ξeff and not too large r0

and M�: for M� ∼ 10−6 (M� ∼ 1012 GeV), this ratio becomes 10−5r2
0 /ξeff which can be easily

made small, and even easier if we let M� smaller than 10−6. For the triplet term with μH we can

proceed similarly, and obtain

Vμ

Vλ

∼ μH e−ϕ/
√

6 1

λeff/ξ
2
eff

r0

ξ
3/2
eff

∼ 108μH

r0

ξ
3/2
eff

, (26)

which looks more stringent than VM/Vλ and there indeed is a tension: with large enough r0

and μH and not too large ξeff this ratio may be close to 1 and we should not neglect Vμ. How-

ever there is another constraint that the potential be positive everywhere. For simplicity, let us

neglect VM which can be made easily negligible, then the potential is

V ∼ 10−10
(
1 − e−2ϕ/

√
6
)2 + r0

2ξ
3/2
eff

μH cos θe−ϕ/
√

6
(
1 − e−2ϕ/

√
6
)3/2

, (27)

which should be positive definite. This gives

μH

r0

ξ
3/2
eff

� 10−10eϕ/
√

6
(
1 − e−2ϕ/

√
6
)1/2

. (28)

We can easily note that eϕ/
√

6(1 − e−2ϕ/
√

6 )1/2 is a mildly increasing function of ϕ with the

values 1.12364 at ϕ = 1 and 7.63495 at ϕ = 5. Thus, to guarantee the positivity of the potential

until the end of inflation where ϕe ∼ 1 provided that Vλ is dominant, we should demand
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Table 1

Numerical estimates of the contributions of the fields ϕ and χ to the total number of e-folds N0. For the first case the

bound (29) is saturated, while the rest examples satisfy it trivially.

N0 ∂N/∂ϕ⋆ ∂N/∂χ⋆

r0 = 1, ξeff = 104, μH = 10−7, ϕ⋆ = 5, χ⋆ = 10−3 42.0850 35.9478 −2.98106

The same as above but ϕ⋆ = 5.5 64.3191 54.2294 −5.24260

The same as above but χ⋆ = 10−3.5 42.0884 35.9508 −8.89659

r0 = 10, ξeff = 103, μH = 10−9, ϕ⋆ = 5, χ⋆ = 10−3 42.1880 36.0828 −1.07484 × 10−3

The same as above but ϕ⋆ = 5.5 64.5161 54.4816 −1.98455 × 10−3

The same as above but χ⋆ = 10−3.5 42.1880 36.0828 −3.39071 × 10−4

r0 = 102, ξeff = 50, μH = 10−11, ϕ⋆ = 5, χ⋆ = 10−3 42.1785 36.0711 −4.19220 × 10−7

The same as above but ϕ⋆ = 5.5 64.4986 54.4600 −9.66338 × 10−7

The same as above but χ⋆ = 10−3.5 42.1785 36.0711 −3.55271 × 10−8

μH

r0

ξ
3/2
eff

� 10−10, (29)

which in turn gives, combined with (26),

Vμ

Vλ

∼ 108μH

r0

ξ
3/2
eff

� 10−2. (30)

That is, the positivity of the potential demands that the quartic term be dominant, with the fraction

of the triplet term contribution at most O(1) percent. Further, returning back to (25), using (29)

we find

VM

Vλ

� 10−13

(
M�

μH

)2

ξ2
eff. (31)

Thus, for M� ∼ μH , VM remains indeed negligible compared with Vλ unless ξeff is very large.

However too large ξeff will pull down the unitarity scale further, greatly harming the validity of

the effective theory: if ξeff ∼ 106, VM may compete with Vλ up to O(10) percent, but the unitarity

scale μU ∼ ξ−1
eff ∼ 10−6 may well be saturated near M� ∼ μH ∼ 10−6 and the low energy

approximation cannot be trusted. So not too large ξeff guarantees negligible contribution of VM .

All these a posteriori justify our assumption at the beginning that the potential is dominated by

the quartic term so that λeff/ξ
2
eff ∼ 10−9.

This estimate gives us the idea that the contributions of χ to the observable quantities are not

significant. To check this, we first compute numerically the change in the number of e-folds N

as follows. We compute N(ϕ⋆, χ⋆) from the moment ⋆, when the scale of our interest exits the

horizon, to e, the end of inflation, with a given set of initial conditions of ϕ⋆ and χ⋆. Then we

repeats with slightly different initial conditions to find N(ϕ⋆ + �ϕ,χ⋆) and N(ϕ⋆, χ⋆ + �χ).

Then, we find δN according to the change in the initial field values. In Table 1 we show ∂N/∂ϕ⋆

and ∂N/∂χ⋆ for several values of μH , ξeff and r0 (note that the amplitude of the power spectrum

fixes λeff for a given ξeff). Single field analytic estimate (52) gives ∂N/∂ϕ⋆ = 35.6967 (54.0031)

for ϕ⋆ = 5 (5.5).

3.3. Constraints on the scalar potential

From now on, as discussed in the previous section, we only consider single field case

where μH term does not contribute and only ϕ drives inflation. However as mentioned at the
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beginning, we assume that r is stabilized already. For this to happen, we need to study in detail

this stabilization which gives constraints on the couplings. These constraints do affect low en-

ergy phenomenology by incorporating RG equations, even μH which does not participate in the

inflationary dynamics but whose RG equation does include quartic couplings.

We first have to ensure that the potential, quartic terms alone, is positive definite everywhere.

This is necessary because we may not have to ensure λH� > 0. Indeed, we must have λH > 0,

λ� > 0 and

λH� +
√

λH λ� > 0, (32)

for positive potential.

Coming back to the definition of the potential in terms of r and ϕ, as the mass eigenvalue for r

is very large compared to H (see Appendix B of [25] and [83–85]) we assume r is stabilized at

r = r0 throughout the whole process of our interest. The different minima in which the heavy

field r quickly sets in, are found minimizing the potential part independent of ϕ:

Vϕ-indep = λH /2 + λ�/2r4 + λH�r2

4(ξH + ξ�r2)2
. (33)

The minima are listed below together with the corresponding minimum energy and constraints

for vacuum stability. At r = 0 and r = ∞ inflation is driven by pure Higgs (r = 0) or pure triplet

(r = ∞). At the finite minimum, inflation is driven by an admixture of both fields.

1. r2 = (λH�ξH − λH ξ�)/(λH�ξ� − λ�ξH ): Then, Vϕ-indep becomes a constant, i.e. vacuum

energy, of the value:

Vϕ-indep ≡ V
(mixed)
0 =

λ�λH − λ2
H�

8(λ�ξ2
H + λH ξ2

� − 2λH�ξ�ξH )
. (34)

We demand that V
(mixed)
0 > 0 and dV 2/dr2|r2=r2

0
> 0. Then, we must satisfy the conditions

λH λ� − λ2
H� > 0, (35)

ξH λH� − ξ�λH < 0, (36)

ξ�λH� − ξH λ� < 0. (37)

Note that the first condition is also equivalent to demanding that the numerator of (33), which

is essentially a quadratic equation of r2, is always positive, i.e. the equation has no solution

of r2 = 0.

2. r2 → 0: In this case δ → 0 so this corresponds to pure Higgs inflation, i.e. the Higgs moduli

alone drives inflation. Vϕ-indep becomes a constant, i.e. vacuum energy, of the value

Vϕ-indep ≡ V
(H)
0 = λH

8ξ2
H

. (38)

In this case d2V/dr2|r2=0 > 0 gives

ξH λH� − ξ�λH > 0, (39)

ξ�λH� − ξH λ� < 0. (40)
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3. r2 → ∞: In this case h → 0 so this corresponds to pure triplet inflation (in this case the

triplet moduli alone drives inflation) with:

Vϕ-indep ≡ V
(�)
0 = λ�

8ξ2
�

. (41)

In this case d2V/dr2|r2=∞ > 0 gives

ξH λH� − ξ�λH < 0, (42)

ξ�λH� − ξH λ� > 0. (43)

Notice that because of (39) and (43) for pure Higgs and triplet inflation λH� > 0 is preferred.

3.4. Slow-roll analysis for single field inflation

Provided that the quartic potential alone is dominant over quadratic or triplet contributions

to the potential, we may estimate the inflationary predictions using the so-called δN formal-

ism [86–90]. Essentially, the δN formalism tells us that the perturbation in the number of e-folds,

which is the same in both frames [91], is equivalent to the curvature perturbation on super-

horizon scales. Then the slow-roll approximation, described by the parameters ǫ and η is working

well.1

Before going into the detail of slow-roll inflation let us make comments about the reheating.

Inflation not only consists of the slow-roll period but also a reheating phase since it permits to link

inflation with the subsequent radiation dominated era. This phase is connected to the potential

part close to the minimum and takes place during a few e-folds. The reheating phase is poorly

known and technically difficult to model properly. To take into account uncertainties on this post

inflationary phase we use the reheating parameter Rrad described in [93] as

logRrad = �N

4
(−1 + 3wreh), (44)

having supposed the simplest model of a scalar field coupled to radiation and that the effective

fluid (inflaton plus radiation) with energy density ρ and pressure P is conserved and wreh stands

for the mean equation of state parameter wreh ≡ P/ρ during reheating. In addition �N is defined

as the total number of e-folds during reheating

�N ≡ Nreh − N0, (45)

Nreh being the number of e-folds at which reheating is completed and the radiation dominated

period begins while N0 is the total number of e-folds during inflation. We assume instantaneous

reheating, namely at the end of inflation the Universe enters straightaway in the radiation domi-

nated era with equation of state w = 1/3. This is equivalent to consider the reheating parameter

equal to 1 or logRrad = 0 in (44). This can be understood physically because the pre-/reheating

stage cannot be distinguished from the radiation dominated era and therefore cannot affect the

inflationary predictions.

1 Note that this approximation is equivalent at first order to the slow-roll predictions obtained with the Hubble flow

parameters ǫn , as described in [92].
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Fig. 1. Left: Two slow-roll parameters (47) and (48) are shown as a function of the inflaton field φ. The magenta solid

line denotes ǫ while the black dotted line stands for η, as labeled. Right: The inflationary potential (46) is depicted as

a function of the inflaton, solid gray line. In both panels the light red region indicates where the slow roll condition ǫ < 1

break down.

After the analysis of the previous sections the actual potential is, with V0 ≡ λeff/(4ξ2
eff),

V (ϕ) = V0

(
1 − e−2ϕ/

√
6
)2

. (46)

Its behavior as a function of the field ϕ is shown in the right panel of Fig. 1. Note that inflation

takes place for trans-Planckian values of the field. The shaded region denotes the breakdown of

the slow-roll approximation, that we discuss straightaway. We can define the slow-roll parameters

in terms of the potential as

ǫ = 1

2

(
V ′

V

)2

= 4

3

e−4ϕ/
√

6

(1 − e−2ϕ/
√

6 )2
, (47)

η = V ′′

V
= −4

3
e−2ϕ/

√
6 1 − 2e−2ϕ/

√
6

(1 − e−2ϕ/
√

6 )2
. (48)

Both parameters, as functions of ϕ, are shown in the left panel of Fig. 1, as labeled. Note that

both are positive and monotonically increasing functions of the inflaton. The red region indicates

the breakdown of slow-roll condition ǫ < 1. Then, the number of e-folds becomes, using the

slow-roll equation 3Hϕ̇ + V ′ = 0,

N =
⋆∫

e

V

V ′ dϕ = 3

4

[
e2ϕ⋆/

√
6 − e2ϕe/

√
6 − 2√

6
(ϕ⋆ − ϕe)

]
. (49)

To determine the latter, we identify this moment as when ǫ(ϕe) = 1. Then we easily find

ϕe = −
√

6

2
log(2

√
3 − 3) = 0.940. (50)
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Fig. 2. The CP asymmetry for leptogenesis and asymmetric DM generated by the interference of tree and one-loop self

energy correction diagrams are shown in the first and second raw respectively.

The total number of e-folds after the Hubble length exit for instantaneous reheating is given by

�N⋆ = 55.6, using (44), enough to solve the flatness and horizon problems. We can find ϕ⋆ by

plugging ϕe into (49) as

ϕ⋆ = 5.36. (51)

From (49) we can immediately find

∂N

∂ϕ⋆

=
√

6

4

(
e2ϕ⋆/

√
6 − 1

)
= 48.3. (52)

The power spectrum is normalized at the pivot scale of WMAP7, k0 = 0.002 Mpc−1: PR(k0) =
(2.43 ± 0.11) × 10−9. The power spectrum of scalar perturbation at the pivot scale is given by:

PR(k0) = V (ϕ⋆)

12π2

(
∂N

∂ϕ⋆

)2

= V (ϕ⋆)

24π2ǫ(ϕ⋆)
. (53)

Thus as quoted several times before, λeff is fixed once we fix ξeff or vice versa, as

ξeff =
√

λeff√
96π2ǫ(ϕ⋆)PR(k0)

= 48646.2
√

λeff ∼ 5 × 104
√

λeff. (54)

Also, the spectral index nR is given by

nR = 1 − 2ǫ + 2η − 2

(∂N/∂ϕ⋆)2
= 0.965, (55)

which lies well within the 2σ range of WMAP7, nR = 0.963 ± 0.0014 [29].

4. Asymmetric DM and leptogenesis

From Eq. (3) we see that there are three different channels available for the decay of scalar

triplet �: � → LL, � → HH and � → ψψ . Since the couplings are in general complex, the

quasi-equilibrium decay of � via these channels produce asymmetries in lepton and DM sectors.

The CP asymmetry in either sector arises via the interference of tree level with the one-loop

self energy diagram as shown in Fig. 2. From these diagrams we see that to generate net CP

asymmetry at least two scalar triplets �1 and �2 are required. As a result the interaction of �1

and �2 is described by a complex mass matrix instead of a single mass term as mentioned in (1).

The diagonalization of the flavour basis spanned by (�1,�2) gives rise to two mass eigenstates

ζ+
1,2 = A+

1,2�1 + B+
1,2�2 with masses M1 and M2. The complex conjugate of ζ+

1,2 are given by
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ζ−
1,2 = A−

1,2�1 + B−
1,2�2. Unlike the flavour eigenstates �1 and �2, the mass eigenstates ζ+

1,2

and ζ−
1,2 are not CP eigenstates and hence their decay can give rise to CP asymmetry. Assuming

a mass hierarchy in the mass eigenstates of the triplets, the final asymmetry arises by the decay

of lightest triplet ζ+
1 and ζ−

1 . The CP asymmetries are defined as

ǫL = 2
[
BR

(
ζ−

1 → ℓℓ
)
− BR

(
ζ+

1 → ℓcℓc
)]

, (56)

ǫψ = 2
[
BR

(
ζ−

1 → ψDMψDM

)
− BR

(
ζ+

1 → ψc
DMψc

DM

)]
≡ ǫDM, (57)

where the front factor 2 takes into account of two similar particles are produced per decay. From

Fig. 2, the asymmetries are estimated to be:

ǫL = 1

8π2

M1M2

M2
2 − M2

1

[
M1

Γ1

]
Im

[(
f1ψf ∗

2ψ + f1H f ∗
2H

)∑

αβ

(f1L)αβ

(
f ∗

2L

)
αβ

]
, (58)

ǫDM = 1

8π2

M1M2

M2
2 − M2

1

[
M1

Γ1

]
Im

[
f1ψf ∗

2ψ

(
f1H f ∗

2H +
∑

αβ

(f1L)αβ

(
f ∗

2L

)
αβ

)]
, (59)

where

Γ1 = M1

8π

(
|f1H |2 + |f1ψ |2 + |f1L|2

)
, (60)

is the total decay rate of the lightest triplet. In the numerical calculations we will use this total

decay rate as: Γ1(mν,BL,BH ,M1), where BL and BH are the branching fractions in the de-

cay channels ζ1 → LL and ζ1 → HH respectively. In the following we set mν = 0.05 eV and

therefore the total decay rate depends only on three variables, namely BL, BH and M1.

When Γ1 fails to compete with the Hubble expansion scale of the Universe, ζ1 decays away

and produces asymmetries in either sectors. As a result the yield factors are given by:

YL ≡ nL

s
= ǫLXζ ηL, (61)

YDM ≡ nψ

s
= ǫDMXζ ηDM, (62)

where Xζ = nζ−
1
/s ≡ nζ+

1
/s, s = 2π2g∗T 3/45 is the entropy density and ηL, ηDM are the effi-

ciency factors, which take into account the depletion of asymmetries due to the number violating

processes involving ψ , L and H . At a temperature above EW phase transition a part of the lep-

ton asymmetry gets converted to the baryon asymmetry via the SU(2)L sphaleron processes.

As a result the baryon asymmetry is:

YB = − 8n + 4m

14n + 9m
YL = −0.55YL, (63)

where n is the number of generations and m is the number of scalar doublets. From (62) and (63)

the DM to baryon ratio is given by:

ΩDM

ΩB

= 1

0.55

mDM

mp

ǫDM

ǫL

ηDM

ηL

, (64)

where mp ∼ 1 GeV is the proton mass. From this equation it is clear that the criteria ΩDM ∼ 5ΩB

can be satisfied by adjusting the ratio ǫDM/ǫL and ηDM/ηL, where the efficiency factor:

ηi = Yi

ǫiXζ |T ≫M1

with i = DM,L (65)
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can be obtained by solving the relevant Boltzmann equations [58,94,95] given in Appendix A.

The ratio of CP asymmetries is

ǫDM

ǫL

=
Im[f1ψf ∗

2ψ (f1H f ∗
2H +

∑
αβ(f1L)αβ(f ∗

2L)αβ)]
Im[(f1ψf ∗

2ψ + f1H f ∗
2H )

∑
αβ(f1L)αβ(f ∗

2L)αβ ] . (66)

From the above equation we observe that if fψ > fH ≫ fL, then we get

ǫDM

ǫL

∼
O(f 2

H )

O(f 2
L)

. (67)

Taking 10−5 < fH < 0.1 and fL ∼ 10−5 we get the ratio of CP asymmetries in a broad range:

102–108.

5. Renormalization group equations in scalar triplet model

The RG equations of the scalar, gauge and Yukawa couplings in SM have been extensively

discussed in the literature, see for example [96,97] for discussions relative to the cosmological

framework. However, in the presence of scalar triplet the RG evolution of these couplings change

because of the additional lepton number violating interactions of the scalar triplet with SM Higgs

and leptons, as it has been described first in [98] and then improved by [99,100], which will be

our main references. Moreover, in our case, the triplet couples to the inert fermion doublet dark

matter ψ . In the following we list the modification to the standard running for λH as well as

the RG equations for the different couplings pertaining to � such as λ�, λH�, μH , fψ and the

non-minimal couplings to gravity ξ� and ξH .

Having defined βX = dX/d lnμ, where μ is the renormalization scale, the RG equations of

the quartic couplings in the scalar potential including the triplet are given by

16π2βλH
= 12λ2

H + 6λ2
H� −

(
9

5
g2

1 + 9g2
2

)
λH + 9

4

(
3

25
g4

1 + 2

5
g2

1g2
2 + g4

2

)

+
(
12λH Y 2

t − 12Y 4
t

)
, (68)

16π2βλ� = −
(

36

5
g2

1 + 24g2
2

)
λ� + 108

25
g4

1 + 18g4
2 + 72

5
g2

1g2
2 + 14λ2

� + 4λ2
�H

+ 4λ� Tr
(
f

†
LfL + f

†
ψfψ

)
− 8 Tr

(
f

†
LfLf

†
LfL + f

†
ψfψf

†
ψfψ

)
, (69)

16π2βλ�H
= −

(
9

2
g2

1 + 33

2
g2

2

)
λ�H + 27

25
g4

1 + 6g4
2 +

(
8λ� + 6λH + 4λ�H + 6Y 2

t

)
λ�H

+ 2Tr
(
f

†
LfL + f

†
ψfψ

)
λ�H − 4 Tr

(
f

†
LfLf

†
LfL + f

†
ψfψf

†
ψfψ

)
, (70)

where we have assumed that the dominant contribution to RG evolution comes from the top

quark Yukawa coupling Yt in the SM. Note that the beta function for λH gets a positive contri-

bution from λH�, whose importance will be discussed later on. g1, g2 and g3 are the couplings

corresponding to the gauge groups U(1)Y , SU(2)L and SU(3)C of the SM. In presence of the

scalar triplet the evolution of gauge couplings are given by:

16π2βg1 = 47

10
g3

1, (71)

16π2βg2 = −5

2
g3

2, (72)
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16π2βg3 = −7g3
3 . (73)

Since the triplet is a singlet under SU(3)C , the running of g3 is not affected. By the same argu-

ment the running of the Yukawa coupling for top quark is not affected either:

16π2βYt = 9

2
Y 3

t −
(

17

20
g2

1 + 9

4
g2

2 + 8g2
3

)
Yt . (74)

The RG evolution of the Majorana Yukawa couplings fL and fψ are given by:

16π2βfL
= 3

(
f

†
LfL + f

†
ψfψ

)
fL − 3

2

(
3

5
g2

1 + 3g2
2

)
fL +

[
Tr

(
f

†
LfL + f

†
ψfψ

)]
fL, (75)

16π2βfψ = 3
(
f

†
LfL + f

†
ψfψ

)
fψ − 3

2

(
3

5
g2

1 + 3g2
2

)
fψ +

[
Tr

(
f

†
LfL + f

†
ψfψ

)]
fψ . (76)

The RG equation of the coefficient of the trilinear �†HH coupling is given by

16π2βμH
=

(
λH − 4λ�H − 27

10
g2

1 − 21

2
g2

2 + 6Y 2
t

)
μH +

[
Tr

(
f

†
LfL + f

†
ψfψ

)]
μH . (77)

The anomalous dimensions of � and H are

16π2γM� = 9

5
g2

1 + 6g2
2 − 4λ� − Tr

(
f

†
LfL + f

†
ψfψ

)
−

(
2λ�H

M2
H

M2
�

+ 1

2

|μH |2

M2
�

)
, (78)

16π2γMH
= 9

20
g2

1 + 9

4
g2

2 − 3

2
λH − 3Y 2

t − 3

(
λ�H

M2
�

M2
H

+ |μH |2

M2
H

)
, (79)

where the symbol γX is defined by γX ≡ −X−1dX/d lnμ. The anomalous dimensions have a key

role in determining the RG equations for the non-minimal couplings ξH and ξ�. As described

in [101], for a general theory of scalars φi coupled non-minimally to gravity via ξij , the one-loop

bare and renormalized non-minimal couplings are defined as

ξ0ij =
(

ξkl − 1

6
δkl

)
Zkl

2ij + 1

6
δij , (80)

where Zkl
2ij denotes the mass renormalization term m2

0ij = Zkl
2ijm

2
kl . The RG equations for the ξij

are linked to the mass anomalous dimensions by

βξij
=

(
ξmn − 1

6
δmn

)
γ kl
ij . (81)

Consequently, plugging (78) into the definition (81), the beta function for the non-minimal cou-

plings are

16π2βξH
=

(
ξH + 1

6

)(
− 9

20
g2

1 − 9

4
g2

2 + 3

2
λH + 3Y 2

t

)

+ 3

(
ξ� + 1

6

)(
λH� +

μ2
H

M2
�

)
, (82)

16π2βξ� = 2

(
ξH + 1

6

)
λH�

+
(

ξ� + 1

6

)[
4λ� + 1

2

μ2
H

M2
�

+ Tr
(
f

†
LfL + f

†
ψfψ

)
− 9

5
g2

1 − 6g2
2

]
. (83)



C. Arina et al. / Nuclear Physics B 865 (2012) 430–460 445

For renormalization scales below M�, the triplet is decoupled and should be integrated out.

Therefore, the set of equations reduces to the SM ones with one important modification. Indeed

in the decoupling limit (μ < M�) we see that the trilinear �†HH term provides an effective

term

−1

2

(
μ

†
H μH

M2
�

)(
H †H

)2
. (84)

As a result the effective quartic coupling of the SM Higgs is modified as

Λ = λH − 1

2

(
μ

†
H μH

M2
�

)
, (85)

with a beta function equivalent to the SM one following the prescription2 λH → Λ:

16π2βΛ = 12Λ2 −
(

9

5
g2

1 + 9g2
2

)
Λ + 9

4

(
3

25
g4

1 + 2

5
g2

1g2
2 + g4

2

)

+
(
12ΛY 2

t − 12Y 4
t

)
. (86)

In the decoupling limit, the beta functions of the gauge couplings are also given by

16π2βg1 = 41

10
g3

1, (87)

16π2βg2 = −19

6
g3

2, (88)

16π2βg3 = −7g3
3 . (89)

The RG equations above and below the mass scale of the triplet are matched at M�, with

particular care of the condition in (85) for the quartic coupling of the Higgs. For the initial

conditions at EW scale we use the renormalization scale μ = mt as suggested in [102], with

mt = 172.9 GeV [103] and v = 246.22 GeV. The gauge coupling constants are fixed at the fol-

lowing values: α1(mt ) = 0.01027, α2(mt ) = 0.03344 and α3(mt ) = 0.1071. We use the pole

matching scheme for λH (mt ) and Yt (mt ) as detailed in [100] and references therein, to relate the

physical pole masses to the couplings in the MS renormalization scheme. The free parameters

λ�, λH�, f�, fψ and μH are fixed as well at μ = mt , the only difference being that their running

will start only at μ = M�. Below M� only Λ will have an effect on the ξi , fixed at mt as well.

The running of the coupling is stopped at the unitarity scale μU = min(Mpl/ξH ,Mpl/ξ�).

The Higgs mass is taken to be 125 GeV, the value at which CMS [20] has reported an excess

for a Higgs like particle with a significance of about 5σ (and Tevatron [104] with a smaller

significance), similarly to the 5σ significance of the Higgs boson like found by ATLAS [19] at

around 126 GeV. The Higgs quartic coupling will then have a definite value (λH = 0.26 at mt )

through the matching pole condition. The running of this coupling in the SM is then fixed and

goes negative at around 109 GeV. A possible way of avoiding such a metastable vacuum of the

SM is to introduce the scalar triplet at that scale. As a result the positive correction proportional

to λH� in (68) prevent the Higgs quartic coupling to run towards negative values. The role played

by the triplet is illustrated in Fig. 3. The blue solid line stands for the running of λH in the SM:

2 We will use both Λ and λH to indicate the Higgs quartic coupling. It should be intended that in the decoupling limits

the two are strictly equivalent, while above the triplet mass scale both notations refer to λH .
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Fig. 3. Evolution of the Higgs quartic coupling Λ as a function of the renormalization scale μ until the unitarity scale.

In both panels, the blue solid line denotes the SM evolution with λH ≡ Λ and the horizontal gray line denotes the

metastability bound. The Higgs mass is fixed at MH = 125 GeV and hence λH = 0.26 at the matching scale μ = mt .

The common triplet parameters are λ� = 0.4 and λH� = 0.33, fL = fψ = 0.01 and ξ� = ξH = 104 . Left, effect of μH :

the green dashed curve stands for μH = 0.1M� , while the magenta dotted line is for μH = 0.05M� . In both cases the

triplet mass is M� = 108 GeV. Right, effect of M�: the cyan dashed line denotes the running for M� = 5 × 108 GeV,

while the brown dot-dashed line is for M� = 1010 GeV. Both curves have μH fixed at 0.01M� . (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

it is clear that at 109 GeV this coupling goes below zero, denoted by the gray horizontal line.

Additionally to this curve, in the left panel we show the running of Λ for different values of μH

taking M� = 108 GeV. Since the contribution of μH in (85) is always negative, the larger its

value the sooner Λ becomes negative: the magenta dotted curve is for fH = 0.05, while the

green dashed line stands for fH = 0.1, which is the upper bound on this parameter in order to

prevent instability below 108 GeV. The small step is due to the matching condition at M� of

Λ and λH . In the right panel, together with the SM running of λH , we illustrate the role of the

triplet mass: the cyan dashed line shows that taking the triplet mass at 5 × 108 GeV and λH� at

least larger than 0.33 will permit the quartic coupling of the Higgs to stay positive until unitarity

scale, at which it has the value of O(0.1). On the contrary, if the triplet mass scale is too high,

as shown by the brown dot-dashed line with M� = 1010 GeV, the theory cannot be rescued from

vacuum instability. In the above discussions, the values of other parameters can be read from

caption.

Assuming the Higgs mass is fixed at 125 GeV, the following conclusions can be drawn:

1. Effect of μH : The contribution of μH to Λ is always negative, therefore it lowers the in-

stability threshold. In order not to loose the interest of the seesaw mechanism to produce

neutrino masses in the sub-eV range, we keep the mass of the triplet at around 108 GeV.

In addition the ratio fH ≡ μH /M� gives the neutrino mass via type-II seesaw, which cannot

be negligibly small, hence fH should be at least O(10−2). We note that those values of fH

have negligible effect on the running of λH and hence on the Higgs mass (a large μH could

shift the Higgs mass via the tree level relation MH =
√

Λv) however may not be too small

for neutrino masses.

2. Effect of M�: In order to avoid instability of the potential, the mass of the triplet should be

lower than the instability point. Therefore, masses of the triplet larger than 7 × 108 GeV are
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Fig. 4. An example of RG evolution as a function of μ from mt to the unitary scale μU . The fixed parameters are:

MH = 125 GeV, λH = 0.26, fL = fψ = 0.5, μH /M� = 0.09. Left: Running of the coupling constants in the scalar

potential as labeled in the plot. Right: RG evolution of the non-minimal couplings to gravity as labeled.

disfavored. In the following we fix M� = 108 GeV, which is still in the ballpark to get the

correct sub-eV neutrino masses, with a corresponding upper bound on fH of O(0.1).

In the left panel of Fig. 4, we show an example of RG running of various quartic couplings

in the scalar potential, while on the right panel we show the running of non-minimal couplings

to gravity, as labeled in the plots. Below the mass scale of triplet M� the quartic couplings λH�

and λ� remain constant and start to running above M� due to the globally positive correction

from gi and fi . The non-minimal coupling of the Ricci scalar with the Higgs receives a neg-

ative contribution from the SM parameters below the triplet mass scale, while above M� the

corrections due to the triplet parameters set on and increase the value of ξH , which ends up to be

larger than its EW value. On the other hand, ξ� does not receive any contribution from the SM

parameters and therefore remains constant up to M� and then increases.

We note that for numerical purpose, we use the RG equations with two-loop corrections for

SM variables while one-loop level corrections for the running of triplet scalar couplings, as de-

scribed in [100].

6. Results and discussions

In this section we discuss the model parameter space which satisfy the inflationary, DM and

leptogenesis constraints. The following points are in order:

• The requirement of a positive definite scalar potential leads to a negligible contribution of

the angular mode θ for inflation (see Table 1), that is μH � 10−7;

• The scalar potential for single field inflation takes the form: V (ϕ) = V
(i)
0 (1 − e−2ϕ/

√
6 )2,

with i = H , � and mixed;

• The constraints from neutrino masses and Higgs mass (see discussion on μH and M� in the

previous section) sets M� �O(108) GeV and μH /M� = fH < 0.1.
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Table 2

MCMC parameters and priors for the scalar potential

parameters and non-minimal coupling to gravity at EW

scale μ = mt . All priors are uniform over the indicated

range.

MCMC parameter Prior

λ� 0.1 → 1

λH� −1 → 1.2

log10 ξi with i = H,� 0 → 6

fL, fψ 0.005 → 1

μH /M� 0.009 → 0.09

We see that the inflationary constraints are not capable to put stringent limits for the generation

of the CP asymmetries and vice versa, because different couplings are involved in each step.

We therefore discuss separately the inflationary and DM-leptogenesis constraints. The sampling

of the parameter space is performed via Markov-Chain Monte Carlo (MCMC) techniques, using

a modified version of the public codes CosmoMC [105,106] and SuperBayes [107]. In all plots

the triplet mass is fixed at 108 GeV and MH = 125 GeV.

6.1. High energy scale – single field inflation

The region of the parameter space compatible with inflation is obtained by solving the RG

equations from EW scale up to unitarity scale (μU ≡ min(Mpl/ξH ,Mpl/ξ�)), and by imposing

the constraints on both the power spectrum measured by WMAP7 (53), and the positivity of the

scalar potential. The likelihood follows a Gaussian distribution centered on the measured value

of the primordial density perturbations. Further constraints are:

1. All couplings at the unitary scale should satisfy the perturbativity bound: λi <
√

4π ;

2. All quartic couplings should be definite positive at all scales, the run down to negative values

is forbidden: λ�, λH > 0 (below M�, λH = Λ);

3. λH� +
√

λH λ� > 0;

4. The vacuum energy should be positive: V (ϕ) � 0.

The sampling is performed over 7 parameters, listed in Table 2, together with their uniform prior

ranges.

6.1.1. Mixed inflaton ≡ V
(mixed)
0

We require additionally the conditions (35)–(37) should be satisfied, in order r = r0 to be

a positive minimum of the potential V (r) given by (33). Fig. 5 shows the 1D marginal posterior

probability distribution functions (pdf) for all the MCMC parameters at EW scale plus the results

for λH at the unitarity scale. The preferred values for λ� span all the sampled range with a pref-

erence for the central values from 0.2 up to 0.8, while λH� is very constrained. This is a result

of (35). The 2D credible region in the plane {λ�(μEW), λH�(μEW)} is shown in the left panel

of Fig. 6, which ultimately indicates that λH� is constrained to be in the range 0.2 → 0.4 and

positive definite. Even though the non-minimal couplings to gravity are not observable, we show

their preferred value in the third and fourth panels of the first raw of Fig. 5: ξ� follows a distri-

bution sharply peaked around 104, while ξH prefers smaller values than ξ� in a much broader



C. Arina et al. / Nuclear Physics B 865 (2012) 430–460 449

Fig. 5. 1D marginal posterior for λ� , λH� , log10 ξi (with i = H , �), μH /M� , fL and fψ at EW scale. In addition we

show the 1D marginal posterior for λH at the unitarity scale μU , while at EW scale λH = 0.26. All of other parameters

in each plane have been marginalized over.

Fig. 6. Left: 2D marginal posterior in the {λ�(μEW), λH�(μEW)}-plane for mixed inflation. The black solid lines

enclose the 68% and 95% credible region. Center and right: Same as left for pure Higgs and pure triplet inflation

respectively. All of other parameters in each plane have been marginalized over.

range: from 1 up to 104. Those values prevent the unitarity scale to be too low and insure the

requirement that the quartic term dominates the potential. The parameter for lepton violation

(second raw, first panel) is loosely constrained: no value is found to be significantly preferred.

Same for the Yukawa couplings fL and fψ (second and third panels, second raw), except that

values close to one are slightly disfavored. Eventually the last panel shows λH (μU ), which is

positive definite of course and can reach at most values of about 0.3.

6.1.2. Pure Higgs as inflaton ≡ V
(H)
0

We require additionally the conditions (39) and (40) should be satisfied for the positivity

and stability of the vacuum energy. The 1D marginalized posterior pdfs are shown in Fig. 7:
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Fig. 7. Same as Fig. 5 for pure Higgs inflation.

the first and second panel denote the preferred values for λ� and λH�. These couplings are less

constrained than the mixed case, since λH� can acquire any positive values from 0.2 up to 1,

although the pdf is peaked for values of about 0.5–0.6. The 2D credible region as a function

of both couplings is plotted in Fig. 6, middle panel: note that it is larger than the mixed case.

The non-minimal coupling of the Higgs to gravity is well constrained and its pdf is peaked

at 104, while ξ� can span a broad range of values from 1 up to 104. The parameters related to

DM and leptons are unconstrained as in the previous case. The Higgs quartic coupling can reach

large values up to perturbativity bound. Similar pdfs for all the couplings are obtained setting ξ�

to zero.

6.1.3. Pure triplet as inflaton ≡ V
(�)
0

Here we require additionally the conditions (42) and (43) should be satisfied. For all param-

eters but ξH and ξ�, the 1D marginal posterior pdfs are very similar to the case pure Higgs

inflation (Fig. 8) as well as the 2D credible region for λ�, λH� (Fig. 6, right panel). From Fig. 8,

the third and fourth panel (first raw) depict the behavior of the non-minimal couplings to gravity.

ξH is essentially unconstrained and can vary with almost equal probability from 1 up to 104,

while ξ� is described by a narrow Gaussian centered on its mean value O(104), a case similar to

mixed inflation. Note that the case of ξH = 0 gives equivalent results.

6.2. Low energy scale – DM and visible sectors

The abundances of matter in the dark and visible sectors satisfying (64) are produced by the

quasi-equilibrium decay of the triplet scalar ζ1. The free parameters are the CP asymmetries ǫi for

all the species, the branching ratios Bi and the dark matter mass mDM. The following constraints

apply:
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Fig. 8. Same as Fig. 5 for pure triplet inflation.

Table 3

MCMC parameters and priors for the CP asym-

metries, branching ratios and mDM. All priors are

uniform over the indicated range.

MCMC parameter Prior

log10(mDM/GeV) 1.66 → 3

log10 ǫDM −5 → −2

log10 ǫL −9 → −4

log10 BDM −2 → 0

log10 BL −4.5 → −3

∑

j

ǫj = 0, (90)

∑

j

Bj = 1, (91)

|ǫj | � 2Bj . (92)

The first and third conditions ensure that all amplitudes are physical and the total amount of CP

violation cannot exceed 100% in each channel, while the second one simply demands unitarity of

the model. The five free parameters are ǫL, ǫDM,BL,BDM and mDM. In addition to that we allow

a hierarchy between the CP asymmetries: ǫH ≃ ǫDM ∼ 102–105ǫL, as remarked in Section 4.

From RG evolution and vacuum stability above 108 GeV we require fH < 0.1. Those are the

main novelties with respect to the analysis in [58].

The sampling of the parameter space is done via MCMC methods and the parameter inference

is Bayesian, following the same setup of [58]. We note that the likelihood is given by the product

of a ratio function satisfying (64), that is r ≡ ΩDM/Ωb , and a Gaussian distribution describing

the baryon to photon ratio, centered on η̄b ± σηb = (6.15 ± 0.25) × 10−10. The prior ranges are

given in Table 3. The DM allowed range starts at 45 GeV: doublet candidates are excluded below

this value by the invisible decay width of the Z boson.
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Fig. 9. Left: 1D posterior pdf for the DM mass mDM . Right: 2D credible regions at 68% and 95% C.L. in the

{mDM, ηDM/ηL}-plane. All of other parameters in each plane have been marginalized over.

In the left panel of Fig. 9 we show the 1D posterior pdf for mDM, while all other parameters

are marginalized over. We see that all the mass range from 45 GeV up to 1 TeV can lead to

successful leptogenesis, namely YL ∼ 10−10 and an asymmetric dark matter candidate satisfy-

ing (64). Note from the posterior pdf that the most favored region is for low mass candidates,

even though there are candidates viable up to 1 TeV with smaller statistical significance. On

the right panel of Fig. 9 the 68% and 95% credible regions are shown in the {mDM, ηDM/ηL}-

plane. From there we see that for DM mass up to around 150 GeV, the preferred values of the

ratio ηDM/ηL are of O(10−4–10−5), which compensate the large CP asymmetry ratio: ǫDM/ǫL.

However, for DM masses around O (TeV), ǫDM/ǫL is even larger for the preferred values of

ηDM/ηL, which decreases down to 10−6. For a triplet mass of 108 GeV the important quantities

which drive Boltzmann equations are the branching ratios. In Fig. 10 we show the correlation of

ηDM/ηL versus BDM and BL respectively in the left and right panels, within the 68% and 95%

credible regions. We see that the largest efficiency ratio ηDM/ηL is preferred when BDM → 1 and

small BL → 10−3–10−4. This is because of the required hierarchy between the sub-eV neutrino

mass and the Majorana mass splitting between the DM mass eigenstates. We note that without

this constraint the preferred values would be the opposite ones, as shown in [58]. Since BDM

is large, which implies small BL as
∑

i Bi = 1 (with i = L,H,DM), the washout is large as

well, which leads to small ηDM. On the contrary smaller is the BL the washout effect is small

due to inverse decay and hence large ηL is preferred. Note that in either case the production of

asymmetry is proportional to Γ1 ∝ 1/
√

BLBH . Therefore when BL approaches towards 10−5

the asymmetry (YL) as well as the efficiency (ηL) get increased. On the other hand when BDM

approaches towards 1, which implies small BL, the asymmetry YDM gets increased but efficiency

gets decreased. These behaviors of ηDM and ηL can be confirmed from Fig. 11 where we have

shown the 2D credible regions at 68% and 95% C.L. The extreme left one, which constitutes the

summary of middle and right ones, reveals that a successful asymmetric dark matter and lepton

asymmetry can be generated with small ηDM and large ηL. For large BDM and small BL, the CP

asymmetry in the DM sector should be larger by more than an order of magnitude with respect

to ǫL to compensate the small value of ηDM/ηL. The same behavior is recovered for large DM

masses.
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Fig. 10. Left: 2D posterior pdf in the {BDM, ηDM/ηL}-plane. Right: Same as left in the {BL, ηDM/ηL}-plane. The cred-

ible regions are given at 68% and 95% C.L. All of other parameters in each plane have been marginalized over.

Fig. 11. Left: 2D posterior pdf in the {ηDM, ηL}-plane. Central: 2D posterior pdf in the {BDM, ηDM}-plane. Right: same

as left in the {BL, ηL}-plane. The credible regions are given at 68% and 95% C.L. All of other parameters in each plane

have been marginalized over.

To illustrate the mechanism of the generation of the asymmetries via triplet decay we show

two benchmark points in Fig. 12, which are representative examples from our sampling. In all

cases the slow channel that builds and conserves the asymmetry is the leptonic one: the small-

ness of its branching ratio is due to the hierarchy between neutrino and DM Majorana masses.

The fast channels are both the Higgs, to compensate the neutrino mass in Γ1, and the DM one.

Since the DM channel is not related to the neutrino mass via Γ1, its branching ratio can assume

different values all along the DM mass range. The first point in the parameter space is shown

in the left panel, which leads to a successful model for the DM with a mass of ∼ 76 GeV,

r ∼ 4.7 and YL = 1.5 × 10−10. The second point in the parameter space is depicted in the right

panel and accounts for a DM candidate with mDM ∼ 60 GeV, r ∼ 5.1 and successful baryon

asymmetry YL = 1.6 × 10−10. The details about the parameters are given in the caption. For the

left panel the branching ratios are BL = 9 × 10−5 and BDM = 0.51, which implies large ηL

and small ηDM. Therefore, the ratio of ηDM/ηL ≃ 6 × 10−6 is small and can be confirmed

from Fig. 10. The fastest channel will be the DM one, with the largest branching ratio. For the

figure in right panel the branching ratio for leptons is comparable with the other benchmark,
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Fig. 12. Absolute value for the yield of leptons (cyan solid), DM (dotted magenta), Higgs (dashed black), ζ asymmetry

(solid red) plus scalar triplet abundancy (black solid) for two successful points as follows. Left: mDM = 76 GeV, BL =
9.1×10−5 , BDM = 0.51, ǫL = 6.8×10−8 , ǫDM = 3.3×10−4 which leads to r ≡ ΩDM/Ωb = 4.7, YL = 1.53×10−10

and ηDM/ηL = 6.49 × 10−6 . Right: mDM = 60 GeV, BL = 8.6 × 10−5 , BDM = 0.017, ǫL = 8.9 × 10−8 , ǫDM =
1.4 × 10−5 , ΩDM/Ωb = 5.1 and YL = 1.64 × 10−10 and ηDM/ηL = 2.8 × 10−4 . The |Yi | are rescaled in terms of CP

asymmetries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

BL = 8.5 × 10−5, while the DM one, BDM = 0.017, is much smaller. This implies a larger value

for the ratio ηDM and ηL, because in this case the fastest channel is the Higgs one. The small

values for the efficiency ratio are compensated by the large CP asymmetry ratio, as already dis-

cussed and confirmed from Fig. 10.

The DM symmetric component is depleted by the efficient gauge interactions before it freezes

out and is totally negligible at present day [56], while the asymmetric DM abundance in accor-

dance with WMAP is proportional to the yield YDM.

Thus we see that in a large portion of the parameter space, in particular around DM masses

of O(100) GeV the constraints of having sub-eV neutrino masses and keV mass splitting for

mass eigenstates of ψ are satisfied. In this case, the ratio of the CP asymmetries ranges from

103 up to 105 and (67) is easily satisfied. We note that those values of the Yukawa couplings are

perfectly compatible with the inflationary constraints.

Regarding detection constraints for the DM particles, our asymmetric candidate may scatter

off nuclei in underground terrestrial detectors, giving rise to direct detection signature. Due to

the particularity of inert fermion DM, the interaction will be inelastic and mediated by the Z bo-

son. For this kind of scattering, a Majorana splitting of about 100 keV can explain the DAMA

modulated signal and is only partially excluded by the upper limit of Xenon100 [82] released in

2011 and which is the most stringent bound up to now. Therefore ψDM as inelastic candidate is

allowed in all the range from 45 GeV up to 350 GeV. Further details about direct detection of

fermion doublet DM can be read from [58].

7. Conclusions

The indication at the Large Hadron Collider (LHC) of a SM like Higgs boson with mass

around 125–126 GeV suggests that the SM vacuum might be metastable at around 109 GeV,
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although it can be extended up Planck scale by considering the present theoretical and experi-

mental uncertainties. In this paper we studied the scalar triplet extension of the SM which not

only evades the possibility of having a metastable vacuum at least up to the unitarity scale,

O(1014) GeV, of the theory but also has a rich phenomenology in presence of a vectorial

fermionic doublet stabilized by means of a remnant Z2 flavour symmetry and thereby playing

the role of a DM candidate.

We introduced non-minimal couplings to gravity for both scalar triplet and the SM Higgs.

In presence of these couplings the scalar triplet, mixed with the SM Higgs, drives inflation in the

early Universe. We showed that the extended scalar potential gives rise to slow-roll single field

inflation, once the heavy field is stabilized at a minimum of the potential. In general the infla-

ton is an admixture of triplet scalar and the SM Higgs. However, depending on the minimum,

the inflaton could either be a triplet scalar or be a SM Higgs. Taking into account that the po-

tential should be positive definite, these three scenarios give different constraints on the quartic

couplings, namely λ� and λH�. We recall that the quartic coupling λH is fixed assuming that

the Higgs mass is around 125 GeV.

Unfortunately it is not possible to measure the quartic couplings of the triplet at the LHC,

because of its large mass. Hence it is not possible to distinguish between the three type of infla-

tionary pictures. Also the inflationary scenario does not constrain the Yukawa couplings of scalar

triplet to DM and leptons. It only constrains the dimensionful coupling μH between scalar triplet

and the SM Higgs to be smaller than 10−7Mpl in order not to destabilize the scalar potential. This

is also in agreement with another constraint arises from the RG evolution of the quartic coupling

of the SM Higgs, which shows that the scale of new physics should be order of 108 GeV in order

not to jeopardize the stability of the SM Higgs potential. Based on these constraints we set the

mass scale of triplet to be ≃ O(108) GeV such that it not only stabilized the scalar potential but

also gave masses to active neutrinos via type-II seesaw.

Since the triplet couples to leptons and fermion doublet DM and in general these couplings

are complex, its out-of-equilibrium decay produce asymmetries simultaneously in either sectors.

The lepton asymmetry produced by the triplet decay can be converted to observed baryon asym-

metry in presence of the EW sphalerons. The relic abundance of DM can be accounted by an

asymmetric component rather than the symmetric component which is usually generated by the

freeze-out mechanism. Since DM is a doublet its mass is necessary to be larger than 45 GeV in

order not to increase the invisible Z width. Moreover, DM is inelastic and therefore scattered-

off nuclei through Z boson. Since the mass splitting between the two companions of DM is

about 100 keV, an order of 100 GeV DM can explain the annual modulation signal at DAMA

and the null result of Xenon100.

An interesting possibility will be to perform a detailed numerical treatment of the inflation

scenarios taking into account the variation due to the reheating parameter and of multi-field

dynamics, on the lines of [108,93]. Another attractive possibility is to lower the triplet mass

scale down to TeV scale, in that case same sign dilepton signal will be accessible at the LHC.

The neutrino masses are preserved by means of a variant of the type-II seesaw, which involves

two scalar triplets [109,110]. We leave these investigations for further works.
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Appendix A. Boltzmann equations for quasi-equilibrium evolution of triplet scalars

We briefly report the relevant Boltzmann equations relating the generation of the CP asym-

metries in the dark and leptonic sectors. A more in depth discussion can be found in [58] and

references therein.

The evolution of ζ±
1 density is described the following Boltzmann equation:

dXζ

dz
= − ΓD

zH(z)

(
Xζ − X

eq
ζ

)
− ΓA

zH(z)

(
X2

ζ − X
eq
ζ

2

X
eq
ζ

)
, (A.1)

with z = M1/T and Xζ ≡ nζ−
1

/s = nζ+
1

/s, if the mass of the triplet stays the same after EW

symmetry breaking. The decay term is described by

ΓD = Γ1
K1(z)

K2(z)
, (A.2)

where K1 and K2 are the modified Bessel functions. The scattering term and the scattering den-

sities are given by:

ΓA = γA

n
eq
ζ1

, (A.3)

γ
(
ζ+

1 ζ−
1 → f̄ f

)
=

M4
1 (6g4

2 + 5g4
Y )

128π5z

∞∫

xmin

dx
√

xK1(z
√

x )r3, (A.4)

γ
(
ζ+

1 ζ−
1 → H †H

)
=

M4
1 (g4

2 + g4
Y /2)

512π5z

∞∫

xmin

dx
√

xK1(z
√

x )r3, (A.5)

γ
(
ζ+

1 ζ−
1 → W aW b

)
=

M4
1g4

2

64π5z

∞∫

xmin

dx
√

xK1(z
√

x )

×
[
r

(
5 + 34

x

)
− 24

x2
(x − 1) log

(
1 + r

1 − r

)]
, (A.6)

γ
(
ζ+

1 ζ−
1 → BB

)
=

3M4
1g4

Y

128π5z

∞∫

xmin

dx
√

xK1(z
√

x )

×
[
r

(
1 + 4

x

)
− 4

x2
(x − 2) log

(
1 + r

1 − r

)]
, (A.7)

γ
(
ζ+

1 ζ−
1 → ψ̄ψ

)
=

M4
1 (6g4

2 + 5g4
Y )

128π5z

∞∫

xmin

dx
√

xK1(z
√

x )r3, (A.8)

where H(z) = H(T = M1)/z
2, r =

√
1 − 4/x and x = ŝ/M2

1 , where ŝ is the center of mass

energy of the process.

The asymmetry Yζ = (nζ−
1

− nζ+
1

)/s evolves due to the decay and inverse decay of ζ±
1 parti-

cles. The corresponding Boltzmann equation is given by
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dYζ

dz
= − ΓD

zH(z)
Yζ +

∑

j

Γ
j

ID

zH(z)
2BjYj , (A.9)

where Yj = (nj − nj̄ )/s, with j = L,H,ψ and

Γ
j

ID = ΓD

X
eq
ζ

X
eq
j

and Bj = Γj

Γ1
, (A.10)

where Xj = nj/s. The evolution of the asymmetries Yj is given by the Boltzmann equation:

dYj

dz
= 2

{
ΓD

zH(z)

[
ǫj

(
Xζ − X

eq
ζ

)]
+ Bj

(
ΓD

zH(z)
Yζ −

Γ
j

ID

zH(z)
2Yj

)

−
∑

k

Γ k
S

zH(z)

X
eq
ζ

X
eq
k

2Yk

}
, (A.11)

where ΓS = γS/n
eq
ζ1

is the scattering rate involving the number violating processes, such as

LL → ζ1 → HH . The front factor in (A.11) takes into account of the two similar particles

produced in each decay. Note that because of the conservation of hypercharge the Boltzmann

equations (A.1), (A.9) and (A.11) satisfy the relation: 2Yζ +
∑

j Yj = 0.

References

[1] A.H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23

(1981) 347–356.

[2] A.D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity,

isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389–393.

[3] A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking,

Phys. Rev. Lett. 48 (1982) 1220–1223.

[4] D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys.

Rept. 314 (1999) 1–146, arXiv:hep-ph/9807278.

[5] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, Cambridge, UK, 2005, pp. 1–421.

[6] J. Martin, Inflationary perturbations: The cosmological Schwinger effect, Lect. Notes Phys. 738 (2008) 193–241,

arXiv:0704.3540.

[7] D.H. Lyth, A.R. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure,

Cambridge Univ. Press, Cambridge, UK, 2009, pp. 1–497.

[8] A. Mazumdar, J. Rocher, Particle physics models of inflation and curvaton scenarios, Phys. Rept. 497 (2011)

85–215, arXiv:1001.0993.

[9] B. Spokoiny, Inflation and generation of perturbations in broken symmetric theory of gravity, Phys. Lett. B 147

(1984) 39–43.

[10] F.S. Accetta, D.J. Zoller, M.S. Turner, Induced gravity inflation, Phys. Rev. D 31 (1985) 3046.

[11] D. Salopek, J. Bond, J.M. Bardeen, Designing density fluctuation spectra in inflation, Phys. Rev. D 40 (1989) 1753.

[12] C. Burgess, H.M. Lee, M. Trott, Power-counting and the validity of the classical approximation during inflation,

JHEP 0909 (2009) 103, arXiv:0902.4465.

[13] J. Barbon, J. Espinosa, On the naturalness of Higgs inflation, Phys. Rev. D 79 (2009) 081302, arXiv:0903.0355.

[14] M.P. Hertzberg, On inflation with non-minimal coupling, JHEP 1011 (2010) 023, arXiv:1002.2995.

[15] R.N. Lerner, J. McDonald, A unitarity-conserving Higgs inflation model, Phys. Rev. D 82 (2010) 103525, arXiv:

1005.2978.

[16] F. Bezrukov, M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703–

706, arXiv:0710.3755.

[17] F. Bezrukov, D. Gorbunov, M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 0906 (2009) 029,

arXiv:0812.3622.



458 C. Arina et al. / Nuclear Physics B 865 (2012) 430–460

[18] F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, Higgs inflation: Consistency and generalisations,

JHEP 1101 (2011) 016, arXiv:1008.5157.

[19] F. Gianotti, Latest update in the search for the Higgs boson, Talk given at CERN.

[20] J. Incandela, Latest update in the search for the Higgs boson, Talk given at CERN.

[21] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, et al., Higgs mass implications on the stability of

the electroweak vacuum, Phys. Lett. B 709 (2012) 222–228, arXiv:1112.3022.

[22] N. Arkani-Hamed, S. Dubovsky, L. Senatore, G. Villadoro, (No) eternal inflation and precision Higgs physics,

JHEP 0803 (2008) 075, http://dx.doi.org/10.1088/1126-6708/2008/03/075, arXiv:0801.2399.

[23] R.N. Lerner, J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev. D 80 (2009)

123507, arXiv:0909.0520.

[24] O. Lebedev, H.M. Lee, Higgs portal inflation, Eur. Phys. J. C 71 (2011) 1821, arXiv:1105.2284.

[25] J.-O. Gong, S.K. Kang, H.M. Lee, Inflation and dark matter in two Higgs doublet models, arXiv:1202.0288.

[26] O. Lebedev, On stability of the electroweak vacuum and the Higgs portal, arXiv:1203.0156.

[27] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee, A. Strumia, Stabilization of the electroweak vacuum by

a scalar threshold effect, arXiv:1203.0237.

[28] G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005)

279–390, arXiv:hep-ph/0404175.

[29] E. Komatsu, et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological

interpretation, Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538.

[30] E.W. Kolb, M.S. Turner, The early universe, Front. Phys. 69 (1990) 1–547.

[31] S. Nussinov, Technocosmology: Could a technibaryon excess provide a ‘natural’ missing mass candidate? Phys.

Lett. B 165 (1985) 55.

[32] S.M. Barr, R. Chivukula, E. Farhi, Electroweak fermion number violation and the production of stable particles in

the early Universe, Phys. Lett. B 241 (1990) 387–391.

[33] S. Dodelson, B.R. Greene, L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys. B 372

(1992) 467–493.

[34] D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741–

743.

[35] V.A. Kuzmin, A simultaneous solution to baryogenesis and dark matter problems, Phys. Part. Nucl. 29 (1998)

257–265, arXiv:hep-ph/9701269.

[36] M. Fujii, T. Yanagida, A solution to the coincidence puzzle of ΩB and ΩDM, Phys. Lett. B 542 (2002) 80–88,

arXiv:hep-ph/0206066.

[37] D.H. Oaknin, A. Zhitnitsky, Baryon asymmetry, dark matter and quantum chromodynamics, Phys. Rev. D 71

(2005) 023519, arXiv:hep-ph/0309086.

[38] D. Hooper, J. March-Russell, S.M. West, Asymmetric sneutrino dark matter and the Omega(b)/Omega(DM) puz-

zle, Phys. Lett. B 605 (2005) 228–236, arXiv:hep-ph/0410114.

[39] R. Kitano, I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510, arXiv:hep-ph/0411133.

[40] N. Cosme, L. Lopez Honorez, M.H. Tytgat, Leptogenesis and dark matter related? Phys. Rev. D 72 (2005) 043505,

arXiv:hep-ph/0506320.

[41] G.R. Farrar, G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302, arXiv:hep-ph/

0510079.

[42] L. Roszkowski, O. Seto, Axino dark matter from Q-balls in Affleck–Dine baryogenesis and the Ωb–ΩDM coinci-

dence problem, Phys. Rev. Lett. 98 (2007) 161304, arXiv:hep-ph/0608013.

[43] J. McDonald, Right-handed sneutrino condensate cold dark matter and the baryon-to-dark matter ratio, JCAP 0701

(2007) 001, arXiv:hep-ph/0609126.

[44] K. Kohri, A. Mazumdar, N. Sahu, P. Stephens, Probing unified origin of dark matter and baryon asymmetry at

PAMELA/Fermi, Phys. Rev. D 80 (2009) 061302, arXiv:0907.0622.

[45] H. An, S.-L. Chen, R.N. Mohapatra, Y. Zhang, Leptogenesis as a common origin for matter and dark matter,

JHEP 1003 (2010) 124, arXiv:0911.4463.

[46] D.E. Kaplan, M.A. Luty, K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016, arXiv:0901.4117.

[47] J. Shelton, K.M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010)

123512, arXiv:1008.1997.

[48] H. Davoudiasl, D.E. Morrissey, K. Sigurdson, S. Tulin, Hylogenesis: A unified origin for baryonic visible matter

and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304, arXiv:1008.2399.

[49] N. Haba, S. Matsumoto, Baryogenesis from dark sector, arXiv:1008.2487.

[50] P.-H. Gu, M. Lindner, U. Sarkar, X. Zhang, WIMP dark matter and baryogenesis, arXiv:1009.2690.



C. Arina et al. / Nuclear Physics B 865 (2012) 430–460 459

[51] M. Blennow, B. Dasgupta, E. Fernandez-Martinez, N. Rius, Aidnogenesis via leptogenesis and dark sphalerons,

JHEP 1103 (2011) 014, arXiv:1009.3159.

[52] J. McDonald, Baryomorphosis: Relating the baryon asymmetry to the ‘WIMP Miracle’, arXiv:1009.3227.

[53] L.J. Hall, J. March-Russell, S.M. West, A unified theory of matter genesis: Asymmetric freeze-in, arXiv:

1010.0245.

[54] B. Dutta, J. Kumar, Asymmetric dark matter from hidden sector baryogenesis, Phys. Lett. B 699 (2011) 364–367,

arXiv:1012.1341.

[55] A. Falkowski, J.T. Ruderman, T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 1105 (2011) 106,

arXiv:1101.4936.

[56] E.J. Chun, Minimal dark matter and leptogenesis, JHEP 1103 (2011) 098, arXiv:1102.3455.

[57] Y. Cui, L. Randall, B. Shuve, A WIMPy baryogenesis miracle, JHEP 1204 (2012) 075, arXiv:1112.2704.

[58] C. Arina, N. Sahu, Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis, Nucl.

Phys. B 854 (2012) 666–699, arXiv:1108.3967.

[59] S. Barr, The unification and cogeneration of dark matter and baryonic matter, Phys. Rev. D 85 (2012) 013001,

arXiv:1109.2562.

[60] K. Petraki, M. Trodden, R.R. Volkas, Visible and dark matter from a first-order phase transition in a baryon-

symmetric universe, JCAP 1202 (2012) 044, arXiv:1111.4786.

[61] H. Iminniyaz, M. Drees, X. Chen, Relic abundance of asymmetric dark matter, JCAP 1107 (2011) 003, arXiv:

1104.5548.

[62] M.L. Graesser, I.M. Shoemaker, L. Vecchi, Asymmetric WIMP dark matter, JHEP 1110 (2011) 110, arXiv:

1103.2771.

[63] M.R. Buckley, Asymmetric dark matter and effective operators, Phys. Rev. D 84 (2011) 043510, arXiv:

1104.1429.

[64] C. Kouvaris, Limits on self-interacting dark matter, Phys. Rev. Lett. 108 (2012) 191301, arXiv:1111.4364.

[65] M. Cirelli, P. Panci, G. Servant, G. Zaharijas, Consequences of DM/antiDM oscillations for asymmetric WIMP

dark matter, JCAP 1203 (2012) 015, arXiv:1110.3809.

[66] B. von Harling, K. Petraki, R.R. Volkas, Affleck–Dine dynamics and the dark sector of pangenesis, JCAP 1205

(2012) 021, arXiv:1201.2200.

[67] H. Davoudiasl, R.N. Mohapatra, On relating the genesis of cosmic baryons and dark matter, Invited review for the

New Journal of Physics focus issue on ‘Origin of Matter’, arXiv:1203.1247.

[68] S. Tulin, H.-B. Yu, K.M. Zurek, Oscillating asymmetric dark matter, JCAP 1205 (2012) 013, arXiv:1202.0283.

[69] M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo, P. Serra, Asymmetric dark matter and dark radiation,

arXiv:1203.5803.

[70] K. Kohri, A. Mazumdar, N. Sahu, Inflation, baryogenesis and gravitino dark matter at ultra low reheat temperatures,

Phys. Rev. D 80 (2009) 103504, arXiv:0905.1625.

[71] D.G. Walker, Dark baryogenesis, arXiv:1202.2348.

[72] J.J. Heckman, S.-J. Rey, Baryon and dark matter genesis from strongly coupled strings, JHEP 1106 (2011) 120,

http://dx.doi.org/10.1007/JHEP06(2011)120, arXiv:1102.5346.

[73] J. March-Russell, J. Unwin, S.M. West, Closing in on asymmetric dark matter I: Model independent limits for

interactions with quarks, arXiv:1203.4854.

[74] M.T. Frandsen, S. Sarkar, K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys.

Rev. D 84 (2011) 051703, arXiv:1103.4350.

[75] A. Belyaev, M.T. Frandsen, S. Sarkar, F. Sannino, Mixed dark matter from technicolor, Phys. Rev. D 83 (2011)

015007, http://dx.doi.org/10.1103/PhysRevD.83.015007, arXiv:1007.4839.

[76] E. Ma, U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716–

5719, arXiv:hep-ph/9802445.

[77] T. Hambye, E. Ma, U. Sarkar, Supersymmetric triplet Higgs model of neutrino masses and leptogenesis, Nucl.

Phys. B 602 (2001) 23–38, arXiv:hep-ph/0011192.

[78] C.-S. Chen, C.-M. Lin, Type II seesaw Higgs triplet as the inflaton for chaotic inflation and leptogenesis, Phys.

Lett. B 695 (2011) 9–12, arXiv:1009.5727.

[79] R. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. Dai, et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67

(2010) 39–49, arXiv:1002.1028.

[80] D. Tucker-Smith, N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502, arXiv:hep-ph/0101138.

[81] C. Arina, F.-S. Ling, M.H. Tytgat, IDM and iDM or the inert doublet model and inelastic dark matter, JCAP 0910

(2009) 018, arXiv:0907.0430.

[82] E. Aprile, et al., Implications on inelastic dark matter from 100 live days of XENON100 data, Phys. Rev. D 84

(2011) 061101, arXiv:1104.3121.



460 C. Arina et al. / Nuclear Physics B 865 (2012) 430–460

[83] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Mass hierarchies and non-decoupling in multi-

scalar field dynamics, Phys. Rev. D 84 (2011) 043502, arXiv:1005.3848.

[84] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Features of heavy physics in the CMB power

spectrum, JCAP 1101 (2011) 030, arXiv:1010.3693.

[85] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Effective theories of single field inflation when

heavy fields matter, JHEP 1205 (2012) 066, arXiv:1201.6342.

[86] A.A. Starobinsky, Multicomponent de Sitter (inflationary) stages and the generation of perturbations, JETP Lett. 42

(1985) 152–155.

[87] M. Sasaki, E.D. Stewart, A General analytic formula for the spectral index of the density perturbations produced

during inflation, Prog. Theor. Phys. 95 (1996) 71–78, arXiv:astro-ph/9507001.

[88] M. Sasaki, T. Tanaka, Superhorizon scale dynamics of multiscalar inflation, Prog. Theor. Phys. 99 (1998) 763–782,

arXiv:gr-qc/9801017.

[89] J.-O. Gong, E.D. Stewart, The power spectrum for a multicomponent inflaton to second order corrections in the

slow roll expansion, Phys. Lett. B 538 (2002) 213–222, arXiv:astro-ph/0202098.

[90] D.H. Lyth, Y. Rodriguez, The inflationary prediction for primordial non-Gaussianity, Phys. Rev. Lett. 95 (2005)

121302, arXiv:astro-ph/0504045.

[91] J.-O. Gong, J.-c. Hwang, W.-I. Park, M. Sasaki, Y.-S. Song, Conformal invariance of curvature perturbation,

JCAP 1109 (2011) 023, arXiv:1107.1840.

[92] J. Martin, C. Ringeval, Inflation after WMAP3: Confronting the slow-roll and exact power spectra to CMB data,

JCAP 0608 (2006) 009, arXiv:astro-ph/0605367.

[93] J. Martin, C. Ringeval, First CMB constraints on the inflationary reheating temperature, Phys. Rev. D 82 (2010)

023511, arXiv:1004.5525.

[94] T. Hambye, M. Raidal, A. Strumia, Efficiency and maximal CP-asymmetry of scalar triplet leptogenesis, Phys.

Lett. B 632 (2006) 667–674, arXiv:hep-ph/0510008.

[95] E.J. Chun, S. Scopel, Analysis of leptogenesis in supersymmetric triplet seesaw model, Phys. Rev. D 75 (2007)

023508, arXiv:hep-ph/0609259.

[96] A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation in the Standard Model, Phys. Lett. B 678 (2009)

1–8, arXiv:0812.4946.

[97] J. Espinosa, G. Giudice, A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 0805 (2008)

002, arXiv:0710.2484.

[98] W. Chao, H. Zhang, One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw

model, Phys. Rev. D 75 (2007) 033003, arXiv:hep-ph/0611323.

[99] M.A. Schmidt, Renormalization group evolution in the type I + II seesaw model, Phys. Rev. D 76 (2007) 073010,

arXiv:0705.3841.

[100] I. Gogoladze, N. Okada, Q. Shafi, Higgs boson mass bounds in a type II seesaw model with triplet scalars, Phys.

Rev. D 78 (2008) 085005, arXiv:0802.3257.

[101] I. Buchbinder, S. Odintsov, I. Shapiro, Effective Action in Quantum Gravity, IOP, Bristol, UK, 1992, pp. 1–413.

[102] T. Hambye, K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997)

7255–7262, arXiv:hep-ph/9610272.

[103] K. Nakamura, P.D. Group, Review of particle physics, J. Phys. G: Nucl. Part. Phys. 37 (7A) (2010) 075021.

[104] Combined CDF and D0 search for Standard Model Higgs boson production with up to 10.0 fb−1 of data, Prelimi-

nary results prepared for the Winter 2012 Conferences, arXiv:1203.3774.

[105] A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev.

D 66 (2002) 103511, arXiv:astro-ph/0205436.

[106] A. Lewis, S. Bridle, CosmoMC notes, http://cosmologist.info/notes/CosmoMC.pdf.

[107] R.R. de Astrui, R. Trotta, F. Feroz, SuperBayeS package, http://www.superbayes.org/.

[108] C. Ringeval, The exact numerical treatment of inflationary models, Lect. Notes Phys. 738 (2008) 243–273, arXiv:

astro-ph/0703486.

[109] S.K. Majee, N. Sahu, Dilepton signal of a type-II seesaw at CERN LHC: Reveals a TeV scale B–L symmetry,

Phys. Rev. D 82 (2010) 053007, arXiv:1004.0841.

[110] J. McDonald, N. Sahu, U. Sarkar, Type-II seesaw at collider, lepton asymmetry and singlet scalar dark matter,

JCAP 0804 (2008) 037, arXiv:0711.4820.


	Unifying darko-lepto-genesis with scalar triplet inﬂation
	1 Introduction
	2 Scalar triplet as the origin of inﬂation and darko-lepto-genesis
	3 Scalar triplet - Higgs inﬂation
	3.1 Action in the Einstein frame
	3.2 Scalar potential analysis
	3.3 Constraints on the scalar potential
	3.4 Slow-roll analysis for single ﬁeld inﬂation

	4 Asymmetric DM and leptogenesis
	5 Renormalization group equations in scalar triplet model
	6 Results and discussions
	6.1 High energy scale - single ﬁeld inﬂation
	6.1.1 Mixed inﬂaton ≡V0(mixed)
	6.1.2 Pure Higgs as inﬂaton ≡V0(H)
	6.1.3 Pure triplet as inﬂaton ≡V0(Δ)

	6.2 Low energy scale - DM and visible sectors

	7 Conclusions
	Acknowledgements
	Appendix A Boltzmann equations for quasi-equilibrium evolution of triplet scalars
	References


