This work presents numerical computations for the analysis of Dam-Break Flow using two-dimensional flow equations in a vertical plane. The numerical model uses the general approach of the simplified marker and cell method combined with the volume of fluid approach for the surface tracking. The time evolution of flow depth at the dam site and the evolution of the pressure distribution are investigated for both wet and dry bed conditions. The effect of the initially nonhydrostatic state on the long term surface profile and wave velocity are studied. These long term effects are found to be marginal in the case of wet-bed conditions, but are significant in dry-bed conditions. The dry-bed tip velocity immediately after the dam break, computed numerically, compares well with analytical results published previously. The time taken to obtain a constant flow depth at the dam site increases with decreasing initial depth ratio. The numerical result for this time elapse for dry-bed conditions is close to the experimentally obtained value. This work presents numerical computations for the analysis of Dam-Break Flow using two-dimensional flow equations in a vertical plane. The numerical model uses the general approach of the simplified marker and cell method combined with the volume of fluid approach for the surface tracking. The time evolution of flow depth at the dam site and the evolution of the pressure distribution are investigated for both wet and dry bed conditions. The effect of the initially nonhydrostatic state on the long term surface profile and wave velocity are studied. These long term effects are found to be marginal in the case of wet-bed conditions, but are significant in dry-bed conditions. The dry-bed tip velocity immediately after the dam break, computed numerically, compares well with analytical results published previously. The time taken to obtain a constant flow depth at the dam site increases with decreasing initial depth ratio. The numerical result for this time elapse for dry-bed conditions is close to the experimentally obtained value.