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The electric field interactions with biological cells are of significant interest in various biophysical

and biomedical applications. In order to study such important aspect, it is necessary to evaluate the

time constant in order to estimate the response time of living cells in the electric field �E-field�. In

the present study, the time constant is evaluated by considering the hypothesis of electrical analog

of spherical shaped cells and assuming realistic values for capacitance and resistivity properties of

cell/nuclear membrane, cytoplasm, and nucleus. In addition, the resistance of cytoplasm and

nucleoplasm was computed based on simple geometrical considerations. Importantly, the analysis

on the basis of first principles shows that the average values of time constant would be around

2–3 �s, assuming the theoretical capacitance values and the analytically computed resistance

values. The implication of our analytical solution has been discussed in reference to the cellular

adaptation processes such as atrophy/hypertrophy as well as the variation in electrical transport

properties of cellular membrane/cytoplasm/nuclear membrane/nucleoplasm. © 2009 American

Institute of Physics. �DOI: 10.1063/1.3086627�

I. INTRODUCTION

In the area of biomedical engineering, one of the impor-

tant aspects is to investigate the influence of external field

�electric, magnetic, and electromagnetic� on the in vitro, in

vivo, or ex vivo cell fate processes �cell proliferation, cell

differentiation, etc.� or tissue formation. In the past, a num-

ber of experimental studies have been conducted to probe

into such aspect.
1–4

Such a study has major relevance to tai-

lor the effect of external field on the cell proliferation on new

biomaterial surfaces.
5–10

Since the cell fate processes under

the external stimulation involve the interaction of external

field with biological cells dispersed in extracellular matrix

�ECM�, it is important to initially understand such interaction

for a single cell. Also, the evaluation of the time scale for

such fundamental interaction requires careful theoretical

analysis, as precise experimental measurements can be diffi-

cult. At a much finer scale, one has to consider how the

electric current path will be influenced by the electric trans-

port properties of cell membrane, cytoplasm, nuclear mem-

brane, nucleoplasm, etc.

Typically, a biological cell contains various ions such as

K+, Na+, Cl−, Ca+2, etc. All such ions are also present in

ECM, however, with different concentration. As ECM and

cytoplasm have different chemical composition/chemistry,

the conductivity of the two medium will also differ and

hence, the mobilities of the ions. A dielectric membrane sur-

rounds the cellular organelles as well as all the inorganic ions

and organic compounds. As a potential difference is main-

tained due to the presence of the ions across the dielectric

cell membrane, the interaction of the cellular field with the

external electric fields is to be expected. If the membrane

potential difference reached in the range of 0.7–1 V in re-

sponse to externally applied E-field, structural changes in the

membrane occur with the transient pore formation across the

membrane, a process known as electroporation.
11,12

Elec-

troporation is one of the mechanisms for transportation of

ions and biological molecules between the extracellular ma-

trix and intracellular fluids. Electroporation is also important

for cell fusion, drug release, and transport of hydrophilic

compounds.
13

Apart from pore formation in the membrane,
14

dielectrophoresis
15

directed cell shape changes
16

and cell

rotation
17

have also been reported as the biophysical changes

in the presence of an external electric field. The effect of

electric field depends on the pulse duration, field strength,

and cell type.
17,18

Although the influence of electric field on various bio-

physical and biochemical processes is known or clinically

realized, the fundamental understanding of interaction of

electric field with single cell is still missing. In the present

work, we attempt to simulate the electrical analog of cells by

passive electrical parameters and subsequently evaluate time

constant. The concept of time constant can be used to predict

the electroporation from the cells, which may be helpful in

modifying the endogenous electric field inside the cell. In the

process, we have modeled an equivalent circuit for the bio-

logical cell. In our study, we have considered a fairly simple

cell model with nucleus as the only organelle. We used the

electrical equivalent of this cell model to evaluate the cell

time constant. Both the cell and the nucleus are taken to be

spherical and concentric to each other. Using geometrical

approaches, we have analytically determined the resistance

of the cytoplasm and nucleoplasm. Subsequently, the influ-

ences of cell size and resistance/capacitance of organelle/

membrane on the time constant were evaluated analytically.
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II. MODEL ASSUMPTIONS

In order to develop a simplistic model of electrical ana-

log for a biological cell, a number of assumptions are made.

�a� The near spherical nature of the cell and nucleus is

considered. For obtaining an analytical value of resis-

tance, finite deviation of 5° from the spherical symme-

try is assumed.

�b� The resistivity of cytoplasm and nucleoplasm is consid-

ered identical.

�c� The capacitance per unit area of the cell membrane and

nuclear membrane is considered equal to each other.

�d� Although a biological cell contains a number of or-

ganelles, only the presence of nucleus is assumed and

the presence of other organelles in cytoplasm, e.g.,

golgi apparatus, mitochondria is neglected.

�e� The conductivity of the cell membrane and nuclear

membrane is neglected.

�f� The entire analysis holds only in situations prior to the

onset of electroporation. Once electroporation initiates

at high electric field, the membrane resistance changes

dynamically and the present analysis cannot be directly

applied.

III. MODEL DESCRIPTION

The cross section of a spherical cell, embedded in ECM,

is shown in Fig. 1. Electrical charges are accumulated on the

surface of the cell as well as on the nuclear membrane. Con-

sequently, a voltage is developed due to the resulting current

generated by externally applied electric field. Because of in-

sulating nature of membrane, the membrane has been treated

like a capacitor. Also, cytoplasm and nucleoplasm have been

treated like a resistor. To calculate the time constant of the

cell, we have considered two electric equivalents of the cell

�Figs. 2�a� and 2�b��. Consequently, two different equivalent

circuits were analyzed. While, model 1 was proposed by

Deng et al.,
19

we have proposed model 2 with a few modi-

fications in model 1. It can be noted that Deng et al.
19

did not

make any attempt to analytically compute the time constant

values. The basic difference between model 1 and model 2 is

difference in the ion paths considered. In model 2, we have

considered three paths: a path only through the cytoplasm,

one from both cytoplasm and nucleoplasm, and the third

from the ECM. The difference in ion path essentially impli-

cates the corresponding differences in the current path.

In Figs. 2�a� and 2�b�, Cs and Rs are the capacitance and

resistance of ECM, respectively, Cm and Cn are the capaci-

tance of cell and nuclear membrane, respectively, and Rc1,

Rc2, and Rc3 are resistances of different spatial regions of

cytoplasm.

A. Time constant calculation

For both models 1 and 2, we have applied the fundamen-

tal Kirchhoff’s laws at various nodes and the first principle

analysis for various circuit components is adopted to solve

the current flow. In reference to model 1 �see Fig. 2�a��,
applying Kirchhoff’s current law at the nodes A, B, and F,

we have

I = i + i�, �1�

i� = i1� + i2�, �2�

i = i1 + i2. �3�

Applying Kirchhoff’s voltage law in the loops EFGHE, one

can obtain

FIG. 1. Schematic representation of the cross section of an ideal spherical

shaped biological cell embedded in ECM.

FIG. 2. �a� Equivalent electrical analog of cell �model 1� after Deng et al.

�19�. �b� Equivalent electrical analog of cell for model 2.
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i2Rc2 = i1Rn + �2/Cn��
0

t

i1dt . �4�

Again, the application of Kirchhoff’s voltage law in the

loops JAFEDKJ results in the following expression:

V = � 2

Cm

��
0

t

idt + i�Rc1 + Rc3� + i2Rc2. �5�

Using these basic circuit equations, we can arrive at the

following equation:

I = �ek1t + �ek2t + k +
V

Rs

, �6�

where

� = A1 +
A1Rn

Rc2

+
2A1

Rc2Cnk1

,

� = A2 +
A2Rn

Rc2

+
2A2

Rc2Cnk2

,

k = −
2A1

Rc2Cnk1

−
2A2

Rc2Cnk2

.

Comparing the exponential term with i= i0e−t/�, we can

find that time constants for the circuit shown in Fig. 2�a� are

�−1 /k1� and �−1 /k2�. Hence,

�1,�2 =
− CnCm�RnRc + Rc2Rc − Rc2

2 �

− �Rc2Cn + RnCn + RcCm� � ��Rc2Cn + RnCn − RcCm�2 + 4Rc2
2

CnCm

. �7�

Similar calculation for model 2 �Fig. 2�b�� yields the values of time constants as below,

�1,�2 =
− CnCmRc2Rc

− �Rc2Cn + RCCn + RC2Cm� � ��Rc2Cn + RcCn − Rc2Cm�2 + 4Rc2
2

CnCm

. �8�

In both the above cases, the values of �1 and �2 are always

real and positive.

IV. RESULTS AND DISCUSSION

We consider the cytoplasm and the nucleoplasm to be

homogeneous fluids. The cell membrane and the nuclear

membrane are considered to behave as capacitors while the

fluids, i.e., the cytoplasm and nucleoplasm, as resistors.

The resistivity of the cytoplasm and the nucleoplasm is

assumed to be the same and equal to 100 � cm. The capaci-

tance per unit area of the cell membrane and the nuclear

membrane is equal to 1 �F /cm2.
19

The radius of the cell is

taken to be 25 �m. For the purpose of our calculation, we

have taken the volume of the nucleus to be one tenth of the

volume of the whole cell. Therefore, the nuclear radius �rn�
for the given cell radius �rc� of 25 �m is computed to be

11.6 �m. In Sec. IV A, we report the variation in various

parameters as a function of both rn and r0.

A. Model 1: Calculation of resistance and capacitance
values

In order to obtain values of �1 and �2 �see Eqs. �7� and

�8��, it is imperative to know the values of various resistance

parameters. In the following, the resistance values are ana-

lytically obtained. Figure 3 shows the resistances of the dif-

ferent parts of the cell, which are encountered during the ion

transportation in model 1. For a perfect sphere, the resistance

is infinite and therefore, to obtain a numerical solution of the

time constant, we have considered a finite deviation of 5°

from the exact spherical geometry. This assumption is valid

physically as biological cells mostly deviate from the perfect

spherical nature. In the Appendix, the estimation of the re-

sistance values from simple geometrical considerations will

be illustrated.

The cytoplasm resistance can be computed by consider-

ing various spatial resistances �Rc1, Rc2, and Rc3� to be in

series,

Rc = Rc1 + Rc2 + Rc3.

All the spatial resistances are computed by adopting the geo-

metrical approaches/symmetry and applying the following

fundamental relationship:

FIG. 3. Geometry illustrating the distribution of the resistances in model 1.
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R =
�l

A
,

where l is the length of geometrical segment and A is the

cross sectional area of the given segment. The value of � is

considered to be uniform in the cytoplasm and independent

of spatial region. The detailed calculation to obtain values of

Rc1, Rc2, and Rc3 can be found in the Appendix. From the

computed values, the value of cytoplasm and nucleoplasm

resistances is obtained as 82.14 and 174.24 K �, respec-

tively.

Reiterating the assumption that both cell membrane and

nuclear membrane have the same capacitance per unit area,

the total membrane capacitance can be calculated as follows:

Cm = c�4�r0
2� = 7.85 	 10−11 F,

Cn = c�4�rn
2� = 1.69 	 10−11 F.

Therefore, upon substituting the values of resistances and

capacitances in Eq. �7�, we obtain the numerical values of the

two time constants as follows:

�1 = 3.26 �s and �2 = 1.55 �s.

B. Model 2: Calculation of resistance and capacitance
values

Similar to model 1, it is imperative to first calculate the

values of various resistance parameters. Figure 4 shows the

resistances of the different parts of the cell, which are en-

countered during the ion transportation in model 2. In the

Appendix, the resistance values are analytically obtained.

Using simple geometrical approaches and adopting the sym-

metry aspect, the resistance values are obtained as follows:

Rc1 = Rc3 = 74.63 K � and Rc2 = 16.72 K � ,

Rn = 174.24 K � .

Therefore,

Rc = Rc1 + Rc3 + Rn = 323.5 K � .

The capacitance values Cm and Cn of model 2 are the same

as the capacitances of model 1,

Cm = 7.85 	 10−11 F and Cn = 1.69 	 10−11 F.

Therefore, upon substituting the values of resistances

and capacitances in Eq. �8�, we obtain �1=2.8 �s and �2

=0.52 �s. The values of time constant, as obtained above,

are deterministic in nature. It can be mentioned here that the

realistic interaction of current path with various cellular

micro-organelles would evidently modify the time constant

values.

C. Model implications

From Eqs. �7� and �8�, it is clear that the time constant of

cell depends on various cell parameters. We observe that

three independent sets of parameters for the cell are impor-

tant and they include radius of the cell, resistance of the

cytoplasm and nucleoplasm, as well as the capacitance of the

cell and nuclear membranes. Using MATLAB, the influence of

all these parameters on time constant is analytically investi-

FIG. 5. Plot of time constant ��1� versus cell size for

both the models.

FIG. 4. Geometry illustrating the distribution of the resistances in model 2.
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gated for a given cell type. The variation in time constant

��1� with the radius of cell is observed to be linear for both

the models, as shown in Fig. 5. For this purpose, we have

kept the ratio of rn /ro to be equal to 0.46. This assumption is

based on the fact that volume of the nucleus is typically

reported to be one tenth of the volume of the entire cell.
20

From Fig. 5, it is clear that model 1 predicts more rapid

change in the time constant values with the cell radius. From

the fundamental theory of cell-material interaction, it is

known that any biological cell initially interacts with pro-

teins adsorbed on a biomaterial.
21

During the process of in-

teraction, a cell eventually spreads with time and as a result,

the cell undergoes the shape and size change. In addition,

during the cellular adaptation process, cells can undergo at-

rophy �decrease in size� or hypertrophy �increase in size�. In

view of the present observations, it can therefore be said that

the interaction time of the electrical pulse will increase dur-

ing the adhesion of a given cell type.

In Fig. 6, the variation in �1 with the capacitance of the

nuclear and cell membrane for both the models has been

plotted. For obtaining these results, the radius of the cell was

kept constant, while the capacitance per unit area of the

membranes was varied. Although a linear relationship be-

tween time constant and Cn or Cm was observed, the varia-

tion with Cn was found to be steeper. Therefore, a small

change in Cn value can cause more rapid change in time

constant, compared to that in case of Cm. Linear variation of

the time constant with Cm and Cn can be explained by the

fact that first order linear circuit assumption has been con-

sidered for both the nuclear and cellular membranes. As per

our assumption, the capacitance per unit area of both nucleus

and cell membrane is equal and if one follows Eqs. �7� and

�8� closely, the linear dependence of time constant with ca-

pacitance will clearly emerge. It needs to be pointed out here

that such linear relationship will hold true as far as the as-

sumption of neglecting the conductivity of the membranes is

valid. With the onset of the electroporation, the linear rela-

tionship will be disturbed because of the transportation of the

ions across the cell membrane.

Figure 7 illustrates the variation in time constant ��1�

with various resistances of the equivalent circuit for both the

models. �1 is observed to vary inversely with all the resis-

tance values in both the cases. From the plotted results, it

appears that the variation in nuclear resistance will cause an

asymptotic change in time constant values. In case of model

2, although similar variation in �1 with resistance is noted,

the decrease in �1 with nuclear resistance is much slower

than that with cytoplasm resistance. As far as the influence of

cytoplasm resistance is concerned, model 1 predicts a more

rapid change in time constant values with a small change in

resistance values. It is interesting to note that the plots of �2

versus cell size/resistance/capacitance of the cell and nuclear

membranes reveal a similar kind of variation for models 1

and 2 �not shown�.
Figure 8 shows the variation in time constant with the

radius of the cell with various rn /r0 values ranging from 0.2

to 0.8. It has been observed that as the ratio of rn /r0 in-

creases, the time constant ��1� also increases. From Fig. 8,

we can conclude that if the value of r0 is kept constant, the

time constant ��1� also increases with increase in rn.

The present work has major implications on the follow-

ing aspects. Any experimental study to probe into the cell-

material interaction can use short electrical pulses of micro-

second pulse width. Also, the less chances of any cellular

damage with electrical pulse width of less than a microsec-

ond can be predicted. In order to realize the external electric

field on wound damage repair involving cellular adaptation

process, one has to use electrical pulses of microsecond or

larger. However, in order to obtain a more rigorous solution

for electrical analog of biological cells with multiple cellular

organelles, further analytical/computational study is re-

quired. Also required is the estimation of the time constant

values for the case of multiple cells dispersed in ECM, as

this will be the situation close to the realistic case of a bio-

logical tissue. Nevertheless, the present study can be consid-

FIG. 6. Plot of time constant ��1� versus capacitance of

cell membrane �Cm� and time constant ��1� versus

nuclear membrane �Cn� for Model 1 and Model 2 keep-

ing the radius of cell constant while varying capacitance

per unit area.
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ered as a preliminary step for further experimental/analytical/

computational investigation to probe into the influence of

external electric field on cellular response.

Finally, it is instructive to comment on the use of two

different models to predict the time constant. In the present

work, two different models �models 1 and 2� are proposed on

the basis of consideration of two different ion paths or cur-

rent flow through the entire cell and consequently, two dif-

ferent linear circuits were analyzed. Based on the first prin-

ciples calculations, it is clear that the time constant values

vary within the same order of magnitude �microseconds� for

both the models. On closer observations of the data pre-

sented in Figs. 5–7, we notice that model 1 overestimates,

although to a small extent, the time constant values com-

pared to model 2 for a given cell size or capacitance or

resistance value. However, the model predictions are almost

similar under the given set of assumptions.

Typically, the current path/ion flow path follows the least

resistance path. In addition, the cell size/shape changes dur-

ing cellular adaptation processes will also influence the cur-

rent path. As mentioned earlier, the biological cells, in real

life scenario, constantly undergo atrophy or hypertrophy in

response to external stimulations/field. From the physical

shape aspect, model 2 explains the time constant more pre-

cisely in both cases when the cell tends to be more ellipsoi-

dal in nature and nucleus size is much smaller in comparison

to cell size �i.e., rn /r0 is low�.

V. CONCLUSIONS

In the present work, an analytical solution for the time

constant for the electrical analog of the biological cell, origi-

nally proposed by Deng et al.,
19

has been obtained upon

application of the first principles theory. In addition, a similar

FIG. 7. Plot of time constant of the cell ��1� versus

resistance of cytoplasm �Rc1 , Rc2� and nucleoplasm

�Rn� for Model 1 and Model 2.

FIG. 8. Plot of time constant with radius of cell with

various values of rn /r0 values for both Model 1 and

Model 2.
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solution for a modified electrical analog with slightly differ-

ent ionic transport path has been achieved. Also, simple geo-

metrical approaches are adopted in the present work to ana-

lytically compute the resistance properties of cytoplasm and

nucleoplasm for both models. Besides this aspect, the fol-

lowing points emerge as major conclusions:

�a� The value of the time constant of the cell for both the

models has been estimated to vary around 2–3 �s.

�b� The analytical solutions using MATLAB reveals that the

time constant values can linearly increase with the cell

size and this will have a major implication on the in-

teraction of the electric field during the cellular adap-

tation process of atrophy/hypertrophy.

�c� The variation in capacitance of nuclear membrane has

been found to have a much stronger influence on the

increase in time constant than the cell membrane.

�d� The cytoplasm resistance, in contrast to nucleoplasm

resistance, is analytically observed to cause a steep de-

crease in time constant.

APPENDIX: CALCULATION OF THE RESISTANCE
VALUES

1. Model 1

a. Calculation of Rc1

Referring to Fig. 3, we can write the expression for Rc1

as following:

Rc1 =
�

�r0

ln� sec�85°� + tan�85°�

sec��� + tan���
� ,

where

� = sin−1� rn sin�85°�

r0

� = 27.53 ° .

Finally, we obtain, Rc1=33.57 K �. Considering the geo-

metrical symmetry, it is clear that Rc3=Rc1=33.57 K �.

b. Calculation of Rc2

Referring to Fig. 3, we obtain

Rc2 =
2�

��r0
2 − rn

2�
�rn sin�85°�� ,

Rc2 = 15 K � .

Therefore, the total cytoplasm resistance is

Rc = Rc1 + Rc3 + Rc2 = 82.14 K � .

c. Calculation of Rn

Referring to Fig. 3, one can get

Rn =
�

�rn

ln	 sec�85°� + tan�85°�

sec�85°� − tan�85°�

 .

Therefore, Rn=174.24 K �.

2. Model 2

a. Calculation of Rc1

Referring to Fig. 9, Rc1 can be calculated in three steps.

This is because Rs1, Rs2, and Rs3 are in series with each other,

Rc1 = Rs1 + Rs2 + Rs3.

b. Calculation of Rs1

Referring to Figs. 4 and 9, one can get

Rs1 =
�

�r0

ln� sec�85°� + tan�85°�

sec��� + tan���
� ,

where

� = cos−1� rn

r0

� .

Therefore, Rs1=22.04 K �.

c. Calculation of Rs2

Again, referring to Figs. 4 and 9, one can write

Rs2 =
�

�rn
2
�r0 sin��� − rn sin�85°�� .

Therefore, Rs2=25.05 K �.

d. Calculation of Rs3

Referring to Figs. 4 and 9, we get

Rs3 =
�

�rn sin�85°�
.

Therefore, Rs3=27.54 K �. Finally, Rc1=Rs1+Rs2+Rs3

=74.63 K �. From symmetry of the model, Rc1=Rc3

=74.63 K �.

FIG. 9. Geometry illustrating the calculation of cytoplasm resistance �Rc1�
in Model 2.
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e. Calculation of Rc2

Referring to Fig. 4, one can write

Rc2 =
2�

�rt

�ln� rt + r0 cos���

rt − r0 cos���
�� ,

Rc2 = 16.72 K � .

Referring to Fig. 4, we observe that Rn calculation is the

same as in model 1, and therefore we can write

Rn =
�

�rn

ln� sec�85°� + tan�85°�

sec�85°� − tan�85°�
� ,

Rn = 174.24 K � .
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