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ABSTRACT

The linear stability analysis of a viscoelastic (Oldroyd-B) liquid layer subjected to an oblique temperature gradient (OTG) is investigated
numerically. For the case of low liquid elasticity, the analysis shows a strong stabilizing effect of the horizontal component (HTG) of the
OTG on the two elastic modes emerging due to the presence of the vertical component (VTG) of the OTG. However, if the liquid elasticity is
sufficiently large, the HTG fails to stabilize the upstream elastic mode. The liquid elasticity stabilizes the Newtonian interaction mode arising
out of the interaction between the HTG and the VTG. The thermocapillary flow introduced by the HTG leads to the development of a new
elastic mode absent in the case of a Newtonian liquid layer. The present paper thus shows that the elasticity of the liquid plays a major role in
the competition between various instability modes to determine the dominant mode of instability.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036202

I. INTRODUCTION

Viscoelastic liquid layers subjected to an oblique temperature
gradient (OTG) are found in numerous industrial processes and sci-
entific experimental settings. In industrial processes such as additive
manufacturing,1 material processing and crystal growth,2 coating
and drying operations,3 layers of viscoelastic fluids are frequently
present in nonisothermal processes, which may lead to the emer-
gence of a nonuniform temperature field in the bulk and along the
free surface. Viscoelastic fluids are also abundant in microfluidics4

and polymer patterning.5,6

Thermocapillary instability may arise because of the tempera-
ture dependence of the surface tension in a liquid layer and an ensu-
ing emergence of tangential stresses at the layer interface exposed to
the ambient gas phase. Thermocapillary or Marangoni instability in
a layer of a Newtonian liquid subjected to a purely vertical (normal
to the solid substrate) temperature gradient, the vertical compo-
nent (VTG), was first studied theoretically by Pearson.7 His study
was inspired by the experimental observations of Bénard.8 Pearson7

showed the emergence of the Marangoni instability of a finite crit-
ical wavenumber in a layer with a nondeformable interface if the

temperature was fixed at the substrate. He also showed that in the
case of a fixed temperature gradient at the substrate, the instability
may be long-wave. The investigation of the Marangoni instability
was further extended9–12 to liquid layers with a deformable interface
and revealed a strong effect of deformability expressed by a finite
capillary number.

Another class of thermocapillary instabilities emerges when a
layer of a Newtonian fluid is subjected to an imposed purely horizon-
tal (tangential to the substrate) temperature gradient, the horizontal
component (HTG), that affects the onset and the character of the
emerging instability.13 This setting was first investigated by Smith
and Davis14,15 who showed the emergence of oblique hydrothermal
waves and spanwise rolls as a result of the thermocapillary insta-
bility in this configuration where the base state is not quiescent as
in the layer subjected to a VTG but represents a flow driven by the
Marangoni stresses in the direction opposite to that of the imposed
HTG. The instabilities predicted in their study have been observed
in experiments.16–21

Thermocapillary instabilities in a viscoelastic liquid layer
subjected to a purely VTG was first studied by Getachew and
Rosenblat22 in the case of a nondeformable interface and then by
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several other authors23–26 for Maxwell and Jeffreys liquids. Recently,
Patne et al.27 studied the Marangoni instability in a layer of a lin-
ear Jeffreys liquid layer with a deformable interface. Their analyses
revealed the emergence of both stationary and oscillatory modes of
instability. As in the case of a Newtonian fluid layer, deformability
of the layer interface promotes long-wave instability for larger cap-
illary numbers and short-wave instability for small capillary num-
bers. Here, the terms stationary and oscillatory instabilities refer to
the cases when the leading eigenvalue of the spectrum of the cor-
responding problem has a zero real part with a zero or nonzero
imaginary part, respectively. The stationary instability mode is due
to the viscous component of the stresses since it is excited in a
layer of a Newtonian fluid. However, the elastic part of the fluid
stresses gives rise to two symmetric modes possessing an equal
growth rate but a phase speed of differing signs corresponding
to the propagation in the opposite directions. A coupled Rayleigh
(buoyancy-driven)–Marangoni convection in thin polymeric lay-
ers was experimentally studied, and hexagonal patterns were
observed.28

The work of Smith and Davis14 was extended to non-
Newtonian fluids and droplets by Hu and co-workers.29–31

Hu et al.29 studied an Oldroyd-B liquid layer subjected to a purely
HTG. They found the existence of three classes of unstable modes,
viz., oblique wave, streamwise wave, and spanwise stationary modes.
All the three modes were found to be significantly affected by the
variation in the elasticity of the liquid. The spanwise stationarymode
was shown to be the dominant mode of instability for highly elastic
liquid. As shown in Sec. IV, for a highly elastic liquid layer subjected
to an OTG, it is the elastic mode introduced by the VTG that dom-
inates the instability, which holds true even when the strength of
the imposed VTG is negligibly smaller than the imposed HTG. This
shows that a mere presence of the VTG component can drastically
alter the stability picture, thereby illustrating the need to study the
present problem.

It needs to be realized that in experiments dealing with ther-
mocapillarity, application of a purely vertical or horizontal temper-
ature gradient may be difficult, and then inadvertently, a liquid layer
becomes subjected to an oblique temperature gradient (OTG) with
the HTG andVTG. Due to such a presence of imperfection related to
the orientation of the temperature gradient with respect to the layer
itself, several authors undertook studies1,32–38 of the thermocapil-
lary instabilities in a Newtonian-liquid layer under an OTG. Their
analyses demonstrated a strong stabilizing effect of the imposed
HTG component on the instabilities caused by the imposed VTG.
The experiments of Schwabe21 and Mizev and Schwabe39 confirmed
these theoretical results.

These considerations motivated the present study for a non-
isothermal viscoelastic liquid layer subjected to an OTG with an
emphasis on the thermocapillary instability. To account for the vis-
coelasticity of the fluid, we employ a quasilinear Oldroyd-B model
due to its relative “simplicity,” which is yet capable of qualita-
tively representing the dynamic features of a viscoelastic liquid. The
present investigation aims to understand the effect of the HTG on
the thermocapillary instabilities introduced by the imposed VTG
and vice versa. Thus, the results obtained here may provide guide-
lines for future experimental studies carried out to understand the
emergence of the thermocapillary instabilities in a viscoelastic liquid
layer subjected to an OTG.

The rest of the paper is arranged as follows: The problem
statement, the original governing equations, and the boundary con-
ditions, the base-state fields, and the governing equations for the per-
turbations are all brought out in Sec. II. The pseudospectral numeri-
cal approach used in the solution of the linear eigenvalue problem
for the linear stability analysis is briefly outlined in Sec. III. The
results of the linear stability analysis of the base-state flow and the
related discussion are presented in Sec. IV. The major conclusions
of the present paper are summarized in Sec. V.

II. PROBLEM FORMULATION

We consider a three-dimensional layer of an incompressible
viscoelastic liquid of a mean thickness d deposited on the upper sur-
face of a horizontal planar solid substrate in the gravity field g. The
physical properties of the fluid such as density ρ, thermal conduc-
tivity kth, thermal diffusivity κ, and the relaxation and retardation
constants λ1 and λ2, respectively, are assumed to be temperature-
independent. The viscosity μ0 is also assumed to be temperature-
independent. Note that the subscript 0 denotes the zero-shear vis-
cosity, which is the viscosity of a polymer solution before shear-
thinning sets in. The latter is observed in the case of concentrated
polymer solutions and polymer melts.40 Since the Oldroyd-B model
does not exhibit shear-thinning, it is applicable in a zero-shear
domain. For dilute polymer solutions, viscosity is a weak function
of the shear-rate.41 Hence, the Oldroyd-B model is valid for an arbi-
trary shear-rate. We also denote this by ν ≙ μ0/ρ, the kinematic vis-
cosity of the fluid. The layer is assumed to be sufficiently thin, so the
buoyancy effect could be neglected.

The layer is assumed to be of an infinite lateral extent and
bounded by the ambient inert gas phase at the upper surface, which
is assumed to be deformable. The coordinate system used here is
Cartesian with the axes x∗ and z∗ located within the substrate plane,
whereas the axis y∗ is normal to the substrate and directed into the
liquid layer with the reference point y∗ ≙ 0 located on the substrate
plane. In what follows, the asterisk denotes dimensional variables,
whereas their dimensionless counterparts are denoted without an
asterisk.

The temperature of the planar substrate is imposed to vary lin-

early in the x∗-direction as T∗0 − η
∗x∗, whereas that of the ambient

gas phase isT∗∞ − η∗x∗ so the temperature difference across the layer

ΔT∗ ≡ T∗0 − T
∗
∞ > 0, where T∗0 and T∗∞ are constant reference tem-

peratures and η∗ is the imposed HTG. Thus, the entire system con-
taining the substrate, the liquid layer, and the gas phase is subjected
to a constant HTG in the x∗-direction.

The present setting suggests that the temperature field in the
liquid layer varies in both vertical and horizontal directions, hence
depending on both x∗ and y∗; thus, an OTG is imposed on the layer.
We note in passing that, as shown below in Eq. (9b), the base-state
temperature has a cubic term in addition to the linear term vary-
ing in the vertical direction y. The cubic term in y arises due to the
presence of advection of energy.

Surface tension at the liquid–gas interface σ∗ is assumed to be
temperature-dependent,

σ∗ ≙ σ∗0 − σ
∗
T (T

∗ − T∗0 ), (1)
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where σ∗T ≡ −
dσ∗

dT∗
> 0 and σ∗0 is the reference surface tension of the

fluid at the reference temperature of the lower plate taken as T∗0 .
To nondimensionalize the governing equations of the problem,

length, time, velocity, and temperature are normalized with respect

to d, d2/κ, κ/d, and a∗d, respectively, where a∗ is the imposed verti-
cal temperature gradient (VTG) to be specified below. Furthermore,

pressure and stresses are nondimensionalized by μ0κ/d
2.

We denote the dimensionless fluid velocity, pressure, and tem-
perature fields by v ≙ (vx, vy, vz), with vi being the velocity com-
ponents in the direction i ≙ x, y, z; p and T, respectively, and τ is
the stress tensor. The dimensionless continuity and momentum
conservation (Cauchy) equations are

∇ ⋅ v ≙ 0, (2a)

1

Pr
∥∂tv + (v ⋅ ∇)v∥ ≙ −∇p −GPr∇y +∇ ⋅ τ, (2b)

where Pr ≙ μ0/ρκ is the Prandtl number, G ≙ gd3/ν2 is the Galileo

number,∇ ≙ (∂x,∂y,∂z) is the gradient operator,∇2 ≡ ∂2
x + ∂

2
y + ∂

2
z

is the Laplacian operator, p is the pressure, and ∂ i denotes the par-
tial derivative with respect to the variable i. The dimensionless heat
advection-diffusion equation is

∂tT + (v ⋅ ∇)T ≙ ∇2
T. (2c)

The governing equations (2) are subjected to the following
boundary conditions: no-slip, impermeability, and a specified tem-
perature at the solid substrate y ≙ 0 yields

vx ≙ 0, vy ≙ 0, vz ≙ 0, T ≙ T0 − ηx, (3a)

where η ≙ η∗/a∗ represents the dimensionless HTG.
At the deformable gas–liquid interface located at y

≙ 1 + ξ(x, y, t), ξ(x, z, t) representing the infinitesimal displacement
of the interface from its undisturbed position y ≙ 1. The boundary
conditions at the interface represent the kinematic boundary
condition, the tangential and normal components of the stress
balance,12 and the continuity of the heat flux, respectively, is

∂tξ + v� ⋅ ∇ξ ≙ vy, (3b)

tj ⋅ τ ⋅ n ≙ −Ma∇T ⋅ tj, (3c)

− p + n ⋅ τ ⋅ n ≙ −Ca−1(∇ ⋅ n) − BoCa−1ξ, (3d)

∇T ⋅ n ≙ −Bi(T − T∞ + ηx), (3e)

where

Ma ≙
γ∗a∗d2

μ0κ
,Bo ≙

ρgd2

σ∗0
,Bi ≙

qd

kth
,Ca ≙

μ0κ

σ∗0 d
(4)

are, the Marangoni, Bond, Biot and capillary numbers, respectively,

Bo ≙ GCa and j ≙ 1, 2. Here q, σ∗0 , g, and kth are the coefficient of
thermal convection at the free surface, surface tension evaluated at
the free surface temperature, gravity acceleration, and thermal con-
ductivity of the fluid, respectively. The vectors tj and n represent the
unit tangent and normal vectors to the free surface, respectively. In

addition, the vector v� is a two-dimensional vector obtained by pro-
jection of v onto the x–z plane, v� ≙ (vx, vz). The linearized expres-
sions, i.e., not containing the interfacial metrics, for the normal n
and tangential vectors t1 and t2 at the free surface in the perturbed
state are

n ≙ −∂xξ ex + ey − ∂zξ ez, t1 ≙ ex + ∂xξ ey, t2 ≙ ∂zξ ey + ez. (5)

The vectors ex, ey, and ez are the unit vectors in x, y, and z-directions,
respectively.

In what follows, we use the Oldroyd-B model42 to describe the
relationship between the shear stress τ and the strain rate γ̇ in the
viscoelastic fluid, which reads

τ +W(∂τ
∂t
+ (v ⋅ ∇)τ − (∇v)T ⋅ τ − τ ⋅ (∇v))

≙ γ̇ + β(∂γ̇
∂t
+ (v ⋅ ∇)γ̇ − (∇v)T ⋅ γ̇ − γ̇ ⋅ (∇v)), (6a)

γ̇ ≙ (∇v) + (∇v)T , (6b)

where

W ≙
λ1κ

d2
, β ≙

λ2κ

d2
(7)

are the Weissenberg number and dimensionless retardation time,
respectively. For vanishing λ1 and λ2, the Oldroyd-B model reduces
to a Newtonian fluid model. It must be also noted that the Oldroyd-
B model represents an extension of the linear Jeffreys fluid model to
include the effect of the base-state flow present in the system under
consideration. Thus, if the imposed HTG is turned off, i.e., η ≙ 0,
then the Oldroyd-B model reduces to the Jeffreys model, and the
results regarding the stability of the thermocapillary flow in the sys-
tem will reduce to those for the viscoelastic liquid layer subjected to
a pure VTG,23,27 whereas in the case of λ1 ≙ 0 and λ2 ≙ 0, the results
will reduce to those for a Newtonian liquid layer with a deformable
interface subjected to an oblique temperature gradient considered by
Patne et al.37

The Oldroyd-B model is applicable for dilute polymer solu-
tions, which do not exhibit a strong shear-thinning, whereas for con-
centrated polymer solutions and polymer melt non-linear models,
FENE-P, Giesekus, and White-Metzner models,41,43 reptation based
pom-pom44 and Rolie-Poly45 models are appropriate. The Oldroyd-
B model used here can faithfully describe polymer flows for a low-
shear rate such that the fluid exhibits shear-thinning in which case
its viscosity is referred to as the zero-shear viscosity. The results dis-
cussed here are thus restricted to either dilute polymer solutions with
a negligible shear-thinning or to a low shear-rate domain in the case
of concentrated polymer solutions and polymer melts.

A. Base state

For the base state, the governing equations (2) are amended
with the boundary conditions expressing no-slip, impermeability,
and a constant temperature gradient at the solid substrate y ≙ 0,

v̄x ≙ 0, v̄y ≙ 0, v̄z ≙ 0, T̄ ≙ T0 − ηx. (8a)

At the undisturbed gas–liquid interface y ≙ 1, the boundary con-
ditions are the kinematic boundary condition, the tangential com-
ponent of the stress balance, and the continuity of the heat
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flux, respectively,

v̄y ≙ 0, τ̄xy ≙ −Ma∂x T̄, ∂y T̄ ≙ −Bi(T̄ − T∞ + ηx), (8b)

The governing equations (2) and the boundary condition equations
(8) determine the base state in the form

v̄x ≙ ηMa y, v̄y ≙ 0, v̄z ≙ 0, p̄ ≙ pa −GPr y, (9a)

T̄(x, y) ≙ T0 − ηx + [ η2Ma

2(1 + Bi)(1 +
Bi

3
) − 1]y − η2Ma

6
y
3
. (9b)

Note also that the vertical component of the temperature gradient
a∗ is related to the temperature drop across the layer ΔT∗ via

a
∗ ≙

BiΔT∗

(1 + Bi)d . (10)

It follows from Eq. (9b) that, similar to the case considered by
Patne et al.,37 in addition to the vertical component of the imposed
OTG, the HTG induces an additional VTG, which has a positive
sign and counteracts the imposed negative VTG. Furthermore, the
induced VTG is proportional to η2 and is always positive for posi-
tive Marangoni numbers. As shown in Sec. IV, the induced VTG has
a strong effect on theMarangoni instability set by the imposed VTG.

The base-state stresses in the liquid layer are obtained from
Eq. (6a),

τ̄xx ≙ 2(W − β)(dv̄x
dy
)2, τ̄xy ≙

dv̄x

dy
, τ̄yy ≙ 0 (11)

with the rest of the stresses τzi ≙ 0 for all i. For physically rele-
vant viscoelastic liquids,W > β, so the first normal stress difference,
i.e., τxx − τyy, is positive, as dictated by the rules of the rheological
analysis.41

B. Perturbed state

Next, infinitesimally small perturbations are imposed on the
base state equation (9) to carry out the linear stability analysis of the
system. Although Squire’s theorem46 is not applicable in the present
case due to the imposed HTG, Patne et al.37 demonstrated that two-
dimensional disturbances are more unstable than the corresponding
three-dimensional disturbances for a Newtonian liquid layer sub-
jected to an oblique temperature gradient. In the same spirit, for the
present problem, we assume two-dimensional disturbances.

The governing equations are then linearized around the base
state equation (9) and normal modes

f
′(x, t) ≙ f̃ (y) exp(ikx + st), ξ(x, t) ≙ ξ̃ exp(ikx + st). (12)

are substituted into those. Here, f ′(x, t) is a perturbation to a
dynamic variable f (x, t), such as the components of the fluid veloc-
ity field vx, vy, and vz , pressure p, temperature T, and the com-

ponents of the stress tensor τ, f̃ (y) is the corresponding complex

eigenfunction in the Laplace–Fourier space, and ξ̃ is a constant.
The parameter k is the wavenumber of the perturbations in the
x-direction, and the value s ≙ sr + isi is the complex growth rate. The
base-state flow is linearly unstable if at least one eigenvalue satisfies
the condition sr > 0.

As a result of this procedure, the linearized continuity, momen-
tum conservation, and energy equations become

ikṽx +Dṽy ≙ 0, (13a)

1

Pr
∥sṽx + ikv̄xṽx + ṽyDv̄x∥ ≙ −ik̃p + ik̃τxx +Dτ̃xy, (13b)

1

Pr
∥sṽy + ikv̄xṽy∥ ≙ −Dp̃ + ik̃τxy +Dτ̃yy, (13c)

sT̃ + ikv̄xT̃ + ∂x T̄ ṽx + ∂y T̄ ṽy ≙ (D2 − k2)T̃, (13d)

while the linearized constitutive equations become

W∥(ikv̄x + s)̃τxx + ṽyDτ̄xx − 2ikτ̄xxṽx − 2Dv̄xτ̃xy − 2τ̄xyDṽx∥
+ τ̃xx − 2ikṽx − 2iβksṽx + 2βk2v̄xṽx + 2iβkDv̄xṽy
+ 4βDv̄xDṽx ≙ 0, (13e)

W∥(ikv̄x + s)̃τxy + ṽyDτ̄xy − ikτ̄xyṽx −Dv̄xτ̃yy − ikτ̄xxṽy − τ̄xyDṽy∥
+ τ̃xy − ik(1 + βs)ṽy − iβksṽy + βk2v̄xṽy + iβkDv̄xṽy
− (1 + βs)Dṽx − iβkv̄xDṽx + 3βDv̄xDṽy − βD2

v̄xṽy ≙ 0, (13f)

and

W∥(ikv̄x + s)̃τyy − 2ikτ̄xyṽy∥ + τ̃yy + 2iβkṽyDv̄x − 2Dṽy
− 2βsDṽy − 2iβkv̄xDṽy ≙ 0, (13g)

where D ≡ d
dy
. It must be noted that the linearized perturbation

equation (13) is applicable for a general flow of a layer of an
Oldroyd-B fluid possessing the base-state velocity field in the x-
direction.

Equation (13) is next supplemented with the following bound-
ary conditions: at y ≙ 0, the no-slip and impermeability conditions
at the lower plate imply

ṽx ≙ 0, ṽy ≙ 0, T̃ ≙ 0 (14a)

at the deformable layer interface, and additional stresses are gen-
erated due to the presence of the Marangoni forces, which are
responsible for the thermocapillary instabilities and base-state flow.

Thus, a standard procedure of projection of the boundary con-
ditions specified at the deformed interface y ≙ 1 + ξ onto y ≙ 1 leads
to the boundary conditions at y ≙ 1 in the form

ṽy ≙ s̃ξ + ikv̄x ξ̃, (14b)

τ̃xy ≙ −i kMa(T̃ + ∂y T̄ ξ̃), (14c)

− p̃ + τ̃yy − 2ikDv̄x ξ̃ ≙ −(Bo + k2)
Ca

ξ̃, (14d)

DT̃ + BiT̃ + (−ik∂x T̄ + ∂2
y T̄ + Bi∂y T̄)̃ξ ≙ 0. (14e)

In the process of derivation of the normal stress balance bound-
ary condition (14d), it has been assumed that the thermocapillary
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contribution to the normal stress balance is negligible, i.e.,

γ∗(T̄∗∣y∗≙d − T∗0 )/σ∗0 ≙Ma Ca(T̄∣y≙1 − T0) ≪ 1. (15)

Since for most of the liquidsMaCa≪ 1, this assumption is well jus-
tified provided that the temperature difference across the layer is not
large. This also helps in proceeding with the normal mode analy-
sis by removing the term T̄∣y≙1, which explicitly depends on x and
therefore could have presented a technical obstacle.

Equations (13) and (14) constitute a generalized linear eigen-
value problem, which is to be solved for the eigenvalue s and
the eigenfunctions for a specified set of the parameter values
k,Bi,Bo,Ca,Pr, W,β, and Ma. To determine the spectrum of the
eigenvalue problem (13) and (14), the pseudospectral method is
employed, and its details are in brief presented below.

III. NUMERICAL APPROACH

To carry out the linear stability analysis of the problem at hand,
the pseudospectral method is employed in which the eigenfunctions
corresponding to each dynamic field are expanded into a series of
the Chebyshev polynomials as

f̃ (y) ≙
m≙N∑
m≙0

a f ,mTm(y), (16)

where Tm(y) are Chebyshev polynomials of degreem,N is the high-
est degree of the polynomial in the series or, equivalently, the num-
ber of collocation points, and the coefficients of the series for all of
the relevant dynamic fields such as a f ,m in Eq. (16) are unknowns to
be determined.

As a result of substitution of the expansions (16) into Eqs. (13)
and (14), the problem is amenable to the generalized eigenvalue
problem in the form

Ae + sBe ≙ 0, (17)

where A and B are matrices obtained from the discretization pro-
cedure and e is the vector containing the coefficients of all series
expansions.

Further details of the discretization of the governing equations,
boundary conditions, and construction of the matrices A and B
can be found in the standard procedure described by Trefethen47

and Schmid and Henningson.46 Application of the pseudospectral
method for similar problems was also described by Patne et al.27,37

The MATLAB routine polyeig is used to solve the generalized eigen-
value problem given by Eq. (17). To filter out the spurious modes
from the genuine numerically computed spectrum of the problem,
the latter is determined from the solution with N and N + 2 col-
location points, and the obtained eigenvalues are compared with a
specified tolerance, e.g., 10−4. The genuine eigenvalues are verified
by increasing the number of collocation points by 25 and monitor-
ing their variation. Whenever the eigenvalue does not change up to
a prescribed precision, e.g., to the sixth significant digit, the same
number of collocation points is employed to determine the critical
parameters of the system. In the present work, N ≙ 75 was found
to be sufficient to achieve the convergence and to determine the
leading, most unstable eigenvalue for each parameter set within the
investigated parameter range.

IV. RESULTS AND DISCUSSION

In what follows, to investigate the instability of the sys-
tem at hand, we consider polymer solutions whose physical
properties belong to the range19,28 d ∼ 10−6 mto10−3 m, ρ ∼ 103

kg/m3, σ0 ∼ 10−3 N/m to 10−1 N/m, γ ∼ 10−5 N/(m K) to 10−3

N/(m K), kth ∼ 10−6 J/(m s K) to 10−3 J/(m s K), q ∼ 0 J/(m2

s K) to 102 J/(m2 s K), α ∼ 10−7 m2/s to 10−5 m2/s, μ0 ∼ 10
−3

Pa s to 102 Pa s, λ1 ∼ 10−7 s to 10−1 s, and λ2 ∼ 10−7 s to
10−3 s. Thus, the typical values of the dimensionless num-
bers are Bi ∼ O(10−3–10),Bo ∼ O(10−3–10−1),Ca ∼ O(10−4–10−1),
W ∼ O(10−3–102),β ∼ O(10−3–10−1), and Pr ∼ O(1–103). This
parametric range will be used here to study the various modes of
instability.

A. Modes of instability

A viscoelastic liquid layer subjected to a purely VTG exhibits a
stationary mode and two elastic instability modes.23,27 The station-
ary mode is a consequence of the viscosity alone since it exists even
for a Newtonian fluid. However, the two elastic oscillatory modes
exist only in the case of a layer of an elastic liquid, and their emer-
gence is a consequence of fluid elasticity. The elastic modes in the
presence of the VTG possess the same growth rate and phase speed
but travel in the opposite directions, i.e., one of the modes travels
downstream (si < 0), whereas the other one travels upstream (si > 0).
These elastic modes are presented in Fig. 1(a) with two blue circles
representing the case of η ≙ 0. However, the imposed HTG breaks
the left-right symmetry and stabilizes the downstream mode with
an increase in η. For the sake of brevity, henceforth, the upstream
and downstream elastic modes arising due to the VTGwill be simply
referred to as the “upstream elastic mode” and “downstream elastic
mode,” respectively.

Patne et al.37 demonstrated a stabilizing effect of the HTG on
the long-wave instability mode in the case of a layer of a Newtonian
liquid. A similar stabilizing effect also exists in the case of elas-
tic modes, as presented in Fig. 1. The downstream elastic mode is
suppressed at much lower η than the upstream elastic mode. Inter-
estingly, for low η, as shown in Fig. 1(a), the upstream elastic mode
exhibits an increasing growth rate with an increase in the strength of
the imposedHTG, η, i.e., becomesmore unstable. However, Fig. 1(b)
demonstrates that a further increase in η by two orders of magnitude
also leads to the stabilization of the upstream mode. Furthermore,
when the upstreammode becomes stable, i.e., when sr < 0, the mode
also becomes downstream.

The stabilization of the elastic modes can be explained by the
following argument: the emergence of the symmetric elasticmodes is
caused by the imposed VTG since they exist with η ≙ 0. The imposed
HTG induces a VTG, which then counteracts the imposed VTG.

The term η2Ma
2(1+Bi)

(1 + Bi
3
) in the base-state temperature equation (9b)

represents the induced VTG. The induced VTG is of opposite sign
and thus opposes the imposed VTG, thereby weakening the driving
force for the elastic mode instability. This leads to the stabiliza-
tion of the elastic modes shown in Fig. 1. When the imposed VTG
and induced VTG are of the same magnitude, then the quantity
η2Ma

2(1+Bi)
(1 + Bi

3
) − 1 must vanish, which after solving forMa at Bi ≙ 0

yields Ma ≙ 2/η2 below which instabilities induced by the VTG can
exist.

Phys. Fluids 33, 012107 (2021); doi: 10.1063/5.0036202 33, 012107-5

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 1. Variation in the elastic modes with an increase in the strength of the HTG η for the parameter set Bi = 0, Bo = 0.1, Pr = 7, W = 0.1, Ma = 95, k = 4.5, and β = 0.01
presented in the sr –si plane: (a) the case of low values of η. An imposed HTG causes the stabilization of the downstream (si < 0) elastic mode and the destabilization of
the upstream (si > 0) elastic mode with an increase in η. (b) The case of higher values of η. Even the upstream elastic mode becomes stable at sufficiently high η. Note the
switching of the propagation direction from upstream to downstream as the mode becomes stable. Recall that sr > 0 implies an unstable mode.

With higher values of W, however, the imposed HTG fails to
stabilize the upstream elastic mode, as illustrated in Fig. 2(b). This
feature may arise from the destabilization caused by the HTG itself.
Thus, even though the induced VTG nullifies the imposed VTG,
thereby causing stabilization, the thermocapillary flow caused by the
imposed HTG leads to the predicted destabilization. This also indi-
cates that the driving mechanism for the upstream elastic mode for
η < 1 is the imposed VTG, whereas for η > 1, it is the imposed HTG.
Note an increase in si of the upstream elastic mode with η in Fig. 2(b)
which implies that the HTG also fails to convert the upstream elastic
mode to a downstreammode, unlike in the case ofW ≙ 0.1 shown in

Fig. 1(b). Even though an HTG fails to stabilize the upstream elastic
mode with an increase in η, the HTG still stabilizes the downstream
elastic mode, see Fig. 2(a), albeit at a higher strength of an HTG than
the case ofW ≙ 0.1 displayed in Fig. 1(a).

For the layer of a Newtonian liquid subjected to an OTG,
Patne et al.37 predicted the emergence of a new mode of instability
originating as a consequence of the interaction between the imposed
HTG and VTG, which will be referred to as the “Newtonian inter-
action mode” in the following discussion. This Newtonian interac-
tion mode represents the dominant mode of instability at higher
values of η, i.e., η > 1. Figures 3(a) and 4(a) show the stabilizing

FIG. 2. Stabilizing/destabilizing impact of the HTG on the elastic modes with an increase in the strength of the HTG η presented in the sr –si plane for Bi = 0, Bo = 0.1, Pr = 7,
W = 10, Ma = 1, k = 2.5, and β = 0.01: (a) the case of smaller η. The stabilization of the downstream elastic mode due to the imposed HTG is evident, whereas the
upstream elastic mode is destabilized. (b) The case of larger η. Due to higher values of W , the imposed HTG fails to stabilize the upstream elastic mode.
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FIG. 3. Effect of fluid elasticity on the Newtonian interaction mode by Patne et al.37 and the emergence of the new elastic unstable mode for Bi = 0, Bo = 0.1, Pr = 7, η = 1,
and β = 0.01 presented in the sr –si plane: (a) variation in the growth rate of the Newtonian interaction mode with W at Ma = 35 and k = 0.3. The stabilization of the
Newtonian interaction mode by fluid elasticity at W ≈ 0.048. (b) The new elastic mode arises as a consequence of the interaction between the elastic stresses and the
viscous stresses enhanced by the thermocapillary flow driven by the imposed OTG at Ma = 20 and k = 1.3 for W ≈ 0.083.

effect of an increasing Weissenberg number (relaxation constant)
W on the Newtonian interaction mode for η ≙ 1 and η ≙ 10, respec-
tively. Interestingly, for a higher value of η, η ≙ 10, the interaction
mode initially exhibits an increase in the growth rate withW. A fur-
ther increase in W thereafter causes a stabilizing effect, as shown in
Fig. 4(a). Thus, the elastic stresses represented by W have a strong
stabilizing effect on the Newtonian interaction mode. In the case
of the Oldroyd-B liquid, the Newtonian interaction mode at high
η, however, is replaced by a new instability mode arising from the
interaction between the HTG, the imposed VTG, and the elastic
stresses. Henceforth, the new instability mode will be referred to as

the “new elastic mode.” The destabilization of such a mode due to
an increase inW is shown in Figs. 3(b) and 4(b). Since for the desta-
bilization of the new elastic mode the value of W should exceed a
certain threshold, this mode does not exist in layers of a Newtonian
liquid that were the subject of the analysis by Patne et al.37 Note
also that the Newtonian interaction mode is a downstream travel-
ing mode, whereas the new elastic mode is an upstream traveling
one.

To understand the origin of the new elastic mode, the spatial
variation of the perturbations for the streamwise velocity and tem-
perature at the instability threshold are presented in Fig. 5. In the

FIG. 4. Effect of fluid elasticity on the Newtonian interaction mode and the emergence of the new elastic unstable mode for Bi = 0, Bo = 0.1, Pr = 7, η = 10, and β = 0.01:
(a) variation in the growth rate of the Newtonian interaction mode with W at Ma = 3.5 and k = 0.3. (b) The emergence of a new elastic mode arises as a consequence of
the interaction between the elastic stresses and the viscous stresses enhanced by the thermocapillary flow driven by the imposed OTG at Ma = 2 and k = 1.3.
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FIG. 5. Normalized perturbation fields for the new elastic mode in the case of the parameter set of Bi = 0, Bo = 0.1, Pr = 7, η = 1, Ma = 16.41, k = 1.31, W = 0.1, β = 0.01,

and Ca = 0.01 for the marginally stable eigenvalue s = 43.580 37i: (a) v′x =R∥ṽx exp(ikx)∥ and (b) T′ =R[T̃ exp(ikx)]. The length of the domain in the x-direction

is the wavelength of the perturbations 2π/k. For convenience, both axes are normalized to the interval ∥0, 1∥. The perturbations exhibit the strongest variation near the
substrate instead of the free surface where the Marangoni stresses are active. This implies that the thermocapillary flow induced by the imposed HTG plays the major role
in causing the new elastic mode via the shear stress at the substrate. Note that the corresponding field for v′y =R∥ṽy exp(ikx)∥ looks very similar to that for T′.

case of instabilities introduced due to thermocapillarity, the per-
turbations typically exhibit the strongest variation at or near the
free surface since the thermocapillary stresses act there and drive
the emerging flow.27 However, the perturbations corresponding to
the new elastic mode exhibit their strongest variation near the sub-
strate instead, i.e., at y ≙ 0. This implies that the Marangoni stresses
in the perturbed state might not play a major role in introduc-
ing the new elastic mode, which is indeed the case as illustrated in
Table I.

In Table I, we present the eigenvalues obtained in the pres-
ence/absence of the Marangoni term in the tangential stress balance
at the free surface for the perturbed state, Eq. (14c). The two columns
on the right show that the Marangoni stresses in the perturbed state
at the free surface y ≙ 1 have a stabilizing effect on the new elastic
mode. Note that the Marangoni term in the base-state tangential
stress balance equation (8b) has been retained for both the cases,
so the base state remains unchanged, and the thermocapillary flow
is present due to the imposed HTG. The thermocapillary base-state
flow induced by the imposed HTG is necessary for the emergence of
the new elastic mode since the latter is absent in a viscoelastic liquid
layer subjected to a purely VTG.23,27 We conclude that the base-
state thermocapillary flow introduces the new elastic mode via the

disturbances in the bulk and the thermocapillary stresses acting at
the free surface stabilize the new elastic mode.

B. Critical parameters

The variation in the growth rate of the new elastic mode with
the disturbance wavenumber for a specified parameter set is pre-
sented in Fig. 6(a). Note that the curves display the growth rate of
the most unstable (least stable) mode at a given k, which results
in multiple local maxima. The unstable peaks in the curves of
Fig. 6(a) in k ∈ ∥0.5, 2∥ correspond to the new elastic mode. For
k < 0.5 and k > 2, the extension of the long-wave mode to higher
k exhibits a higher growth rate than the new elastic mode. This
results in the emergence of the curves that display sharp cor-
ners, as shown in Fig. 6(a). Thus, the stretch of the growth rate
curve in the domain k ∈ ∥0.5, 2∥ is due to the new elastic mode
whereas those in the domains k < 0.5 and k > 2 are due to the exten-
sion of the long-wave mode to higher k. A combination of these
leads to the multiple peaks in the growth rate curves. As seen in
Fig. 6(a), the growth rate of the new elastic mode and the wavenum-
ber of the fastest growing mode increase with the Marangoni
numberMa.

TABLE I. The leading eigenvalues corresponding to the new elastic mode in the presence and absence of the Marangoni

term [−i k Ma(T̃ + ∂y T̄ ξ̃)] in the tangential stress balance at the free surface equation (14c) shown in the middle and right

columns, respectively, for β = 0.01 and Ca = 0.01. Note that sr > 0 implies an unstable mode.

Parameters WithMa term in Eq. (14c) WithoutMa term in Eq. (14c)

W ≙ 0.1, k ≙ 1.3,Ma ≙ 15,η ≙ 1 −0.587 544 + 42.319 8i 0.172 870 + 43.197 7i
W ≙ 0.1, k ≙ 1.3,Ma ≙ 20,η ≙ 1 1.559 90 + 46.033 92i 2.358 46 + 47.129 2i
W ≙ 0.1, k ≙ 1,Ma ≙ 20,η ≙ 1 0.669 364 + 37.303 4i 1.684 70 + 38.361 4i
W ≙ 0.2, k ≙ 1,Ma ≙ 20,η ≙ 1 5.499 76 + 45.342 2i 6.335 89 + 46.759 0i
W ≙ 0.2, k ≙ 1,Ma ≙ 20,η ≙ 2 10.817 4 + 74.246 7i 11.298 0 + 76.722 6i
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FIG. 6. Growth rate and neutral stability curve for the new elastic unstable mode at Bi = 0, Bo = 0.1, Pr = 7, η = 1, Ca = 0.01, W = 0.1, and β = 0.01: (a) variation in the
growth rate with the wavenumber k and (b) the neutral stability curve in the Ma − k plane. The system is unstable in the domain above the neutral stability curve.

For a further analysis, evaluation of the critical parameters
kc and Mac is necessary. Figure 6(b) presents a neutral stability
curve for the same parameter set. The critical wavenumber kc cor-
responds to the minimum of this curve, i.e., kc ∼ 1.3, and the critical
Marangoni number Mac corresponding to k ≙ kc from Fig. 6(b) is
Mac ∼ 16.4. A similar procedure has been followed to determineMac
in the following discussion.

The effect of variation in the elasticity on the critical Marangoni
number of the Newtonian interaction mode, the new elastic mode,
and the upstream elastic mode is displayed in Fig. 7. The upstream

FIG. 7. Variation in the critical Marangoni number Mac with W for the parame-
ter set Bi = 0, Bo = 0.1, Ca = 0.01, β = 0.01, and Pr = 7. In the legend, the term
“elastic modes” refers to the new elastic mode and the upstream elastic mode
together. The new elastic and the upstream elastic modes are the dominant modes
of instability in the domains 0.075 < W < 1 and W > 1, respectively, and the dis-
continuity in the slope of the corresponding curves at W = 1 is a consequence of
this mode switching. The Newtonian interaction mode prevalent for W < 0.075 is
stabilized by the elastic stresses for W > 0.075. The new elastic and the upstream
elastic modes show a characteristic scaling as Mac ∼ W−1 and Mac ∼ W−1.5,
respectively. The base-state is linearly stable for Ma < Mac .

elastic mode was shown above to survive the stabilization caused
by the imposed HTG in Fig. 2(b) provided that W is sufficiently
high. Such a condition is met for W ∼ 1, and thus in Fig. 7, we
show switching of the most unstable mode from the new elastic
mode to the upstream elastic mode at W ∼ 1. In addition, the New-
tonian interaction mode is found to be stable for W > 0.075. Note
that as shown in Fig. 7, the neutral curves for the Newtonian inter-
action mode reach an asymptote at a certain value of W denoted as
W ≙WN .

It must be noted that the value of W ≙WN at which the New-
tonian interaction mode loses its dominance depends very weakly
on η. It also depends on other parameters of the problem. We have

FIG. 8. Variation in Mac with η at Bi = 0, Bo = 0.1, Ca = 0.01, W = 0.1, β = 0.01,
and Pr = 7. Since W < 1, the stationary and elastic modes introduced by the
imposed VTG are stabilized by the imposed HTG. The new elastic mode exhibits
a characteristic scaling as Mac ∼ η−1 for η > 0.2. For the entire range of η, it
exhibits the scaling Mac ∼ 1/ηn, where the exponent n varies from 2 at very low η
to 1 at high η.
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found that a decrease in Ca by one order from Ca ≙ 0.01 to Ca
≙ 0.001 causesWN to weakly reduce from 0.075 to 0.071, while other
parameters are kept the same as in Fig. 7. Similarly, with an increase
in the Prandtl number from Pr ≙ 7 to Pr ≙ 50, WN reduces signifi-
cantly from 0.075 to 0.0146, almost at the same inverse proportion
as the change in Pr. Thus, a variation in Ca weakly affectsWN ; how-
ever, the effect of a variation in Pr on WN is strong. We have also
found that the variation in the Biot number Bi and the Bond number
Bo does not affectWN significantly.

In Fig. 7, the variation in the critical Marangoni number with
W is presented for two selected values of η. To obtain a complete
picture of the instability onset as the strength of the HTG η varies,
the different stability modes are tracked, and the results are pre-
sented in Fig. 8. It is shown that for sufficiently small values of η,
the instability is long-wave stationary. For sufficiently large values of
η, the new elastic mode of instability, which is oscillatory by nature,
takes over. Since the downstream elastic mode is stabilized at a much
lower strength of the HTG than the upstream elastic mode seen in
Fig. 1, the island of unstable values of Mac is smaller for the down-
stream elastic mode than the one for the upstream elastic mode.
Interestingly, the upper boundary of the island for the upstream
elastic mode extends beyond the asymptotic line Mac ≙ 2/η2. This
crossing is possible because of the acting elastic stresses at play.
Thus, to destabilize the base-state flow, the induced VTG not only
has to counteract the imposed VTG but it has to also overcome the
elastic stresses responsible for the stabilization of the elastic modes.
This feature enables the neutral curve of the VTG mode to cross the
asymptotic boundary unlike that of the stationary mode remaining
always underneath it. The critical wavenumber kc shows a small vari-
ation with η for all these modes. Thus, kc ∼ 4.4, kc ∼ 4.6, and kc ∼ 1.3
for the upstream elastic, downstream elastic, and new elastic modes,
respectively, whereas the stationary mode is long-wave with kc ≙ 0.
It must be also noted that the stationary mode is negligibly affected
by the elasticity of the fluid.

We deduce from Figs. 7 and 8 that the critical Marangoni
number for the new elastic mode shows scaling as Mac ∼W−1 and

Mac ∼ η−1. Combining both scalings yields Mac ∼ (ηW)−1. The
degree of elasticity of a viscoelastic fluid is represented by the param-
eter ω defined as the ratio between the first normal stress difference
and the tangential stress.41 Accounting for the base state given by
Eq. (9a), ω becomes

ω ≙
τ̄xx − τ̄yy

τ̄xy
≙ (W − β)ηMa. (18)

However, since W ≫ β,41 ω ≈WηMa. For a Newtonian liquid
undergoing a rectilinear flow, τ̄xx − τ̄yy ≙ 0; thus, ω ≙ 0. The numer-
ator of ω describes the elastic stresses, whereas the denominator is
related to the viscous stresses. If the elastic and viscous stresses are
comparable, then ω ≙ O(1), thereby yielding Ma ∼ (ηW)−1, which
is indeed the scaling exhibited by the new elastic mode. Thus, the
new elastic mode becomes unstable when the viscous and elastic
stresses induced by the thermocapillary flow are comparable in their
magnitude. This also shows the important role played by the elastic
stresses in destabilizing the new elastic mode.

To further understand the new elastic mode, the capillary num-
berCa and Prandtl number Pr are varied while the rest of the param-
eters remain constant, and the resulting change in the onset of the
new elastic mode is then reflected through the variation in Mac, as
presented in Fig. 9. An increase in Pr leads to the stabilization, as
shown in Fig. 9(b).

The effect of variation in the other parameters, Bi and Bo, on the
critical parameters for the new elastic mode is found to be negligi-
ble. Figure 10 demonstrates the effect of variation in the retardation
parameter β, which is related to the solvent concentration in poly-
mer solutions. A decrease in β corresponds to a reduction in the
solvent concentration, leading to an enhancement in the liquid elas-
ticity. This enhancement results in a decrease inMac pointing to the
destabilization, as presented in Fig. 10.

For sufficiently high values of W, e.g., W > 1, the induced
VTG fails to stabilize the upstream elastic mode, as demonstrated in
Fig. 2(b). Thus, forW > 1, the stability regimes shown in Fig. 8 alter

FIG. 9. Effect of variation in Ca and Pr on the new elastic unstable mode presented in the Mac − η plane for Bi = 0, Bo = 0.1, W = 0.1, and β = 0.01: (a) the destabilization
of the new elastic mode with an increase in Ca and (b) the stabilization caused by an increase in Pr .
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FIG. 10. Variation in Mac with η at Bi = 0, Bo = 0.1, Ca = 0.01, W = 0.1, and Pr
= 7 for two values of the retardation parameter β. A decrease in the retardation
parameter results in a destabilizing effect on the new elastic mode.

FIG. 11. Variation in Mac with η at Bi = 0, Bo = 0.1, Ca = 0.01, W = 10, and
Pr = 7 for W = 1 compared with Fig. 8. Due to a sufficiently high value of W ,
the imposed HTG fails to stabilize the upstream elastic mode, thereby making it
the dominant mode of instability for any value of η. For η > 0.5, the upstream elas-

tic mode shows scaling Mac ∼ η−1, which is the same as the new elastic mode.
Since the fluid elasticity negligibly affects the stationary VTG mode, it is stabilized
by the HTG via the presence of the induced VTG.

significantly. Figure 11 depicts the altered picture for W ≙ 10, for
which the upstream elastic mode represents the dominant mode of
instability for any value of η. For η > 0.5, the upstream elastic mode
exhibits scaling Mac ∼ η−1, which is the same as for the new elastic
mode. Note that in this case, the critical wavenumber kc ≈ 2.4 with a
small variation over the entire range of η.

V. SUMMARY

The present work focuses on the linear stability analysis of a
viscoelastic liquid layer with a free deformable interface exposed to

the ambient gas lying on a planar solid wall and subjected to an
oblique temperature gradient (OTG) with the horizontal and ver-
tical components, HTG and VTG, respectively. The dynamics of
the liquid is described by employing the Oldroyd-B model. Linear
stability analysis reveals that if subjected to a purely VTG, a vis-
coelastic liquid layer exhibits a long-wave viscous stationary mode
and two elastic oscillatory modes with the same growth rate and
phase speeds of opposite signs. These oscillatory modes correspond
to the disturbances propagating in the opposite directions and are
referred to as the upstream and downstream elastic modes. Both
of these modes are stabilized with an increase in the magnitude of
the imposed HTG, i.e., η at low values of the Weissenberg number
W. This stabilization originates from the additional VTG induced
by the presence of the imposed HTG in the base-state flow. The
induced VTG counteracts the imposed one, thereby nullifying the
mechanism driving the emergence of the elastic modes. At high
Weissenberg numbersW, however, the imposed HTG stabilizes the
downstream elastic mode, but the upstream elastic mode remains
unstable.

At a certain value ofW ≙WN , the Newtonian interactionmode
is stabilized by the elastic stresses in the liquid, being only neg-
ligibly affected by them for W <WN . In addition, in the param-
eter ranges considered here, the elastic modes are stabilized by
the HTG for W <WN . Thus, for W <WN , the stability proper-
ties of the liquid layer are the same as those of a Newtonian liq-
uid layer studied by Patne et al.,27 where the interaction mode
emerging from the induction of an extra VTG sets in. However, for
W >WN , the Newtonian interaction instability mode is stabilized
by the fluid elasticity and is replaced by a new elastic mode that
becomes the dominant mode of instability for WN <W < 1, while
for W > 1, the upstream elastic instability mode dominates for any
value of η. It is emphasized that the valueW ≙WN depends weakly
on η and the capillary number Ca, and strongly on the Prandtl
number Pr.

The new elastic mode, which does not exist in a layer of a New-
tonian liquid, results from the presence of the thermocapillary flow
generated by the imposed HTG and the perturbations triggering this
mode, which are confined near the wall. In addition, a stress balance
reveals that for destabilization of the new elastic mode, the viscous
shear and the elastic stresses must be comparable, which explains

the scaling exhibited by the new elastic mode as Mac ∼ (ηW)−1. A
further analysis reveals a stabilizing effect of an increase in Pr, a
decrease in Ca, and an increase in the retardation number β.

Since the critical wavenumber of the instability modes pre-
dicted here varies widely, the present work illustrates a potential
application of the imposed OTG and the ensuing thermocapillary
instability in a viscoelastic liquid layer in achieving the desired
pattern relevant in industrial processes and experimental settings.
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