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ABSTRACT

We consider thermocapillary instability in a three-dimensional liquid layer with a deformable interface with an ambient gas phase and
subjected to an oblique temperature gradient when the temperature gradient at the substrate is prescribed. We demonstrate that this config-
uration leads to a drastic change in the instability features with respect to those emerging when either a purely vertical temperature gradient
(VTG) or a purely horizontal temperature gradient (HTG) is present. In the case of the return flow as the base state, the spanwise long-
wave instability mode dominates except for the range of small Bond numbers Bo. Slippage at the substrate has a stabilizing (destabilizing)
effect on streamwise (spanwise) long-wave modes in the presence of a HTG. In the case of linear flow as the base state, both streamwise
and spanwise long-wave modes play a major role in the instability onset depending on the ratio between the HTG and the VTG η for
higher values of the capillary number Ca, e.g., Ca > 0.001. However, for lower values of Ca, e.g., Ca < 0.001, streamwise and spanwise
instability modes become finite-waves at large η. In contrast to the return flow, for the linear flow, slippage at the substrate destabilizes both
long-wave modes.
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I. INTRODUCTION

Thermocapillary instability arising from surface-tension inho-
mogeneity at the free interface of a liquid layer deposited on a pla-
nar solid wall and subjected to a purely vertical temperature gra-
dient (VTG) was first theoretically studied by Pearson1 in the case
of the flat interface. He showed the emergence of thermocapillary
instability as a consequence of surface-tension dependence on the
temperature at the layer interface. His results were extended2–5 to
liquid layers with a deformable surface, i.e., the liquid–gas inter-
face with a finite surface tension. This analysis revealed a strong
effect of a decrease in surface tension on the instability, which is
due to a stronger temperature variation along the interface. Ther-
mocapillary instabilities originating from temperature dependence
of the surface tension are frequently encountered in microfluidics

applications,6 additive manufacturing,7 material processing and
crystal growth,8 and also various industrial processes such as coating
and drying.9

Thermocapillary instabilities in a liquid layer subjected to a
purely horizontal temperature gradient (HTG) were studied first by
Smith and Davis10,11 and in subsequent studies.7,12–14 Instabilities
investigated by Smith and Davis10,11 were experimentally observed
in Refs. 15–20. Reviews on the subject of thermocapillary instabilities
can be found in Refs. 21 and 18.

In various applications and experiments, however, liquid layers
are exposed, intentionally due to the process design22,23 or unin-
tentionally due to practical imperfections, to an oblique tempera-
ture gradient (OTG) instead of either a purely VTG or a purely
HTG. Thus, an understanding of thermocapillary instabilities exhib-
ited by a liquid layer subjected to an OTG becomes an inevitable
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necessity to avoid undesirable dynamics and patterns. Nepom-
nyashchy et al.22–25 and Patne et al.26 studied the stability of a liquid
layer subjected to anOTG. These studies revealed a strong stabilizing
effect of the HTG on instabilities triggered by a purely VTG. Patne et
al.26 recently showed that in the case of a constant temperature dif-
ference across the layer, the stabilizing effect of the HTG arises due
to an additional VTG component induced by the HTG, which coun-
teracts the imposed VTG, leading thereby to a revealed stabilization.
Furthermore, an interaction between the VTG and the HTG leads
to the emergence of a new unstable mode, which becomes the domi-
nant mode of instability even when the strength of the HTG is higher
than that of the VTG.

Previous studies22–24,26 on thermocapillary instabilities in a liq-
uid layer subjected to an OTG assumed a constant temperature dif-
ference between the substrate and the ambient gas phase across the
layer. However, in numerous technological processes, the normal
temperature gradient at the substrate is preferred due to the ease
of operation or arises out of the physics of the problem. In addi-
tion, in the case of a solid substrate of thermal conductivity lower
than that of the liquid, the boundary condition of an imposed nor-
mal temperature gradient at the substrate becomesmore appropriate
than that of a prescribed temperature.27 The change in the thermal
boundary condition at the substrate leads to a drastic change in ther-
mocapillary instabilities exhibited by the system. Furthermore, as
shown in Secs. II, IV, and VI, the HTG interacts in a completely
different way with the VTG when compared with the case of a con-
stant temperature difference across the layer studied in previous
papers.22–24,26

The rest of this paper is arranged as follows: The problem
statement, the original governing equations and boundary condi-
tions, the base-state fields, and the governing equations for the
perturbations are presented in Sec. II. The pseudospectral numer-
ical approach used in the solution of the linear eigenvalue problem
obtained in the context of the general linear stability analysis (GLSA)
is outlined in Sec. III. The results of the GLSA are presented in
Sec. IV. The asymptotic analysis for the long-wave mode is car-
ried out in Sec. V. The major conclusions of the present study are
summarized in Sec. VI.

II. PROBLEM FORMULATION

We consider a three-dimensional horizontal layer of an incom-
pressible Newtonian liquid with temperature-independent proper-
ties such as dynamic viscosity μ, density ρ, kinematic viscosity ν, and
thermal diffusivity κ deposited on a horizontal planar substrate in
the gravity field g schematically shown in Fig. 1. The layer is assumed
to be of mean thickness d and have an infinite lateral extent. The liq-
uid layer is bounded by the ambient inert gas phase at the liquid–gas
interface, which is assumed to be deformable.

The coordinate system used here is Cartesian with the axes x∗

and z∗ located in the substrate plane, whereas the axis y∗ is normal
to the substrate and directed into the liquid layer with the reference
point y∗ = 0 located on the substrate plane. In what follows, the
asterisk denotes dimensional variables, whereas their dimensionless
counterparts are denoted by the same letters without an asterisk.

The entire system consisting of the substrate, the liquid layer,
and the gas phase is subjected to an oblique temperature gradient
with the constant horizontal (HTG) and vertical (VTG) components

FIG. 1. Sketch of the system considered here. A liquid layer supported by a sub-
strate at y = 0 is subjected to an OTG with the VTG component −β∗ and the HTG
component −η∗, each shown by an arrow. The HTG induces a thermocapillary
flow shown by the linear velocity profile. If the side walls are present in the x-
direction, then the HTG leads to the emergence of the return flow and the velocity
profile changes. The waves shown at the gas–liquid interface illustrate interfacial
perturbations.

−η∗ and −β∗, respectively. The layer is assumed to be sufficiently
thin, so the buoyancy effect could be neglected.

Surface tension at the liquid–gas interface σ∗ is assumed to vary
linearly with the temperature

σ∗ ≙ σ∗0 − γ
∗(T∗ − T∗0 ), (1)

where γ∗ ≙ −dσ
∗

/dT∗ > 0 and σ∗0 is the reference surface ten-
sion of the fluid at the reference temperature, for instance, that
related to the lower plate taken as T∗0 . This variation of surface
tension along the liquid–gas interface generates Marangoni shear
stresses, which may be liable for the onset of instability of the base
state of the system. The present study assumes a linear depen-
dence of the interfacial tension on the temperature. Thermocap-
illary instabilities in a liquid layer with a nonlinear relationship
between the surface tension and the temperature subjected to a VTG
were studied by Oron and Rosenau,28 Batson et al.,29 and Sarma
and Mondal.30

A liquid layer subjected to an OTG can exhibit two types of
flows. One of them is a linear flow where the presence of side bound-
aries is neglected, yielding thereby a linear velocity profile.10,11 A
schematic of the linear flow that may be encountered in indus-
trial processes7 is shown in Fig. 1. The other one is the return
flow, which arises if the presence of the side boundaries is not
neglected and is taken into account. It may arise in industrial pro-
cesses or experiments where thermocapillary instabilities are stud-
ied in cavities.10,11 The forthcoming analysis considers both types
of flows.

The length, time, velocities, and temperature gauged against
T∞ are nondimensionalized by d, d2/κ, κ/d, and β∗d, respectively,
and pressure and stresses are nondimensionalized by μκ/d2. We
denote the dimensionless fluid velocity field as v = (vx, vy, vz), with
vi being the respective velocity components in the direction i = x,
y, z. The dimensionless continuity and momentum conservation
equations are

∇ ⋅ v ≙ 0, (2a)

1

Pr
∥∂tv + (v ⋅ ∇)v∥ ≙ −∇p −GPr∇y +∇2

v, (2b)
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where Pr ≙ μ/ρκ is the Prandtl number, G ≙ gd3/ν2 is the Galileo

number, ∇ ≙ (∂x,∂y,∂z) is the gradient operator, ∇2 ≡ ∂
2
x

+∂
2
y +∂

2
z is the Laplacian operator, p is the pressure, and ∂× denotes

the partial derivative with respect to ×. The dimensionless heat
advection–diffusion equation is

∂tT + (v ⋅ ∇)T ≙ ∇2
T. (2c)

When a liquid layer is deposited on a rough-walled hydropho-
bic surface,31 a slip of the liquid at the substrate is possible in gen-
eral, and in thermocapillary flows promoted by an imposed HTG,
in particular. In the additive manufacturing process, to model the
dynamics of a fluid system, a slip at the substrate is essential,7 and
the present analysis assumes the existence of slippage.

The governing equations (2) are subjected to the following
dimensionless boundary conditions: Navier slip, impermeability,
and a constant specified normal temperature gradient at the solid
substrate y = 0, yielding

vx ≙ ζ∂yvx; vy ≙ 0; vz ≙ ζ∂yvz ; ∂yT ≙ −1, (3a)

where ζ is the dimensionless Navier slip parameter.
At the deformable gas–liquid interface located at y = 1 + ξ(x, y,

t), where ξ(x, z, t) is the infinitesimal displacement of the interface
from its undisturbed position y = 1, the boundary conditions are
the kinematic boundary condition, the tangential and normal com-
ponents of the stress balance,5 and the continuity of the heat flux,
respectively,

∂tξ + v⊥ ⋅ ∇ξ ≙ vy, (3b)

tj ⋅ τ ⋅ n ≙ −Ma∇T ⋅ tj, (3c)

− p + n ⋅ τ ⋅ n ≙ −Ca−1(∇ ⋅ n) − BoCa−1ξ, (3d)

∇T ⋅ n ≙ −Bi(T + ηx), (3e)

where

Ma ≙
γβ∗d2

μκ
,Bo ≙

ρgd2

σ∗0
,Bi ≙

qd

kth
,Ca ≙

μκ

σ∗0 d
,η ≙

η∗

β∗
(4)

are, respectively, the Marangoni, Bond, Biot, and capillary numbers
and the dimensionless HTG, with Bo = GCaPr and j = 1, 2. Here, q,
σ∗0 , g, and kth are the coefficient of thermal convection at the free sur-
face, surface tension evaluated at the temperature at some location
along the free surface, gravity acceleration, and the thermal conduc-
tivity of the fluid. The vectors tj and n represent the unit tangent and
normal vectors to the free surface, respectively. In addition, τ is the

deviatoric stress tensor with the components τij ≙ 1/2(∂jvi + ∂ivj),(vx, vy, vz) ≡ (v1, v2, v3), and (x, y, z) ≡ (x1, x2, x3), and the vector
v� is the two-dimensional vector obtained by projection of v onto
the x–z plane, v⊥ ≙ (vx, vz).

The linearized (without taking into consideration the interfa-
cial metrics) expressions for the normal n and tangential t1 and t2
vectors at the free surface in the perturbed state are given by

n ≙ −∂xξ ex + ey − ∂zξ ez, t1 ≙ ex + ∂xξ ey, t2 ≙ ∂zξ ey + ez. (5)

The vectors ex, ey, and ez are the unit vectors in the x-direction, y-
direction, and z-direction, respectively.

A. Base state

A liquid layer subjected to an OTG can exhibit two types of
flows. One of them is a linear flow for which the presence of the side
boundaries is neglected, thereby yielding a linear velocity profile.10,11

Such a flow could be encountered in geophysical systems or indus-
trial processes.7 The other one is the return flow, which arises if the
presence of the side boundaries is taken into account. The return
flow can arise in the industrial processes or during the experiments
to study thermocapillary instabilities10,11 in cavities.

For the base state, the properties are denoted with a double
overbar; the governing equations (2) are subjected to the bound-
ary conditions of Navier slip, impermeability, and a constant normal
temperature gradient at the solid substrate y = 0, which are

vx ≙ ζ∂yvx. vy ≙ 0, vz ≙ ζ∂yvz , ∂yT ≙ −1. (6a)

At the undisturbed gas–liquid interface y = 1, the boundary con-
ditions are the kinematic boundary condition, the tangential com-
ponent of the stress balance, and the continuity of the heat flux,
respectively,

vy ≙ 0, ∂yvx ≙ −Ma∂x T, ∂y T ≙ −Bi(T + ηx). (6b)

For the return flow, there will be an additional boundary condition
implying a zero total volumetric flow rate,

∫ 1

0
vxdy ≙ 0. (6c)

The governing equations (2) and boundary conditions (6) determine
the base state for the linear flow in the form

vx ≙ ηMa (y + ζ), vy ≙ 0, vz ≙ 0, p ≙ pa −GPr y, (7a)

T(x, y) ≙ C1 − ηx − y − 1

2
ζη2May

2 − 1

6
η2May

3
, (7b)

where C1 is an integration constant. A comparison of the base-
state temperature for the fixed temperature difference across the
layer given by Patne et al.26 with the base-state temperature for a
fixed temperature gradient at the substrate given by Eq. (7b) reveals
that the HTG induces an additional linear VTG in the former case,
whereas in the latter case, it does not.

Similarly, the base state for the return flow is

vx ≙
ηMa[y(−2 + 3y) + ζ(−2 + 6y2)]

4(1 + 3ζ) ,

vy ≙ 0, vz ≙ 0, p ≙ pa −GPr y,

(8a)

T(x, y) ≙ C2 − ηx − y − η2Ma

4(1 + 3ζ)(−ζy2 −
y3

3
+
(1 + 2ζ)y4

4
), (8b)

where C2 is an integration constant. The exact values of the con-
stants C1 in Eq. (7b) and C2 in Eq. (8b) are immaterial for the further
analysis to be carried out below.

B. Perturbed state

Next, infinitesimal perturbations are imposed on each of the
base states [Eqs. (7) and (8)] to carry out the linear stability analysis
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of the respective base states of the system. Squire’s theorem32 is not
applicable in the present case due to the imposed HTG; thus in what
follows, three-dimensional disturbances are considered. The gov-
erning equations are then linearized around the base states [Eqs. (7)
and (8)], and normal modes,

f
′(x, t) ≙ f̃ (y) exp (ikx + imz + st),

ξ(x, z, t) ≙ ξ̃ exp (ikx + imz + st),
(9)

are substituted into these. Here, f ′(x, t) is a perturbation to a
dynamic quantity f (x, t), such as the components of the fluid veloc-

ity field vx, vy, and vz , pressure p, and temperature T, f̃ (y) is the
corresponding eigenfunction in the Laplace–Fourier space, and ξ̃ is
a constant. The parameters k andm are the wavenumbers of the per-
turbations in the x-direction and z-direction, respectively, and the
value s = sr + isi is the complex growth rate. The base-state flow is
linearly unstable if at least one eigenvalue of the resulting problem
satisfies the condition sr > 0. This procedure leads to the linearized
continuity, momentum conservation, and energy equations, which
read as

ikṽx +Dṽy + imṽz ≙ 0, (10a)

1

Pr
[sṽx + ikvxṽx + ṽyDvx] ≙ −ikp̃ + (D2 − k2 −m2)ṽx, (10b)

1

Pr
[sṽy + ikvxṽy] ≙ −Dp̃ + (D2 − k2 −m2)ṽy, (10c)

1

Pr
[sṽz + ikvxṽz] ≙ −imp̃ + (D2 − k2 −m2)ṽz , (10d)

sT̃ + ikvxT̃ + ∂x T ṽx + ∂y T ṽy ≙ (D2 − k2 −m2)T̃, (10e)

where D ≡ d/dy. Equations (10) are then supplemented with the

boundary conditions

y ≙ 0 : ṽx ≙ ζDṽx, ṽy ≙ 0, ṽz ≙ ζDṽz , DT̃ ≙ 0. (11a)

At the deformable boundary, following the standard procedure of
projection of the boundary conditions at the deformed interface
y = 1 + ξ onto y = 1, the boundary conditions at y = 1 read as

ṽy ≙ sξ̃ + ikvx ξ̃, (11b)

τ̃xy + ξ̃D
2
vx ≙ −i kMa(T̃ + ξ̃ ∂y T), (11c)

τ̃yz ≙ −imMa(T̃ + ξ̃ ∂y T), (11d)

− p̃ + τ̃yy − 2ikξ̃Dvx ≙ −(Bo + k2 +m2)
Ca

ξ̃, (11e)

DT̃ + BiT̃ + (−ik∂x T + ∂
2
y T + Bi∂y T)ξ̃ ≙ 0. (11f)

While deriving the normal stress balance boundary condition (11e),
it has been assumed that the thermocapillary contribution to the
normal stress balance is negligible, i.e.,

γ∗(T∗∣y∗≙d − T∗0 )/σ∗0 ≙Ma Ca(T∣y≙1 − T0)≪ 1. (12)

Since for most of liquidsMa Ca≪ 1 at the onset of linear instability,

this assumption holds true provided that (T∣y≙1 − T0) ≙ O(1). This
also helps to proceed with the normal mode analysis by removing

the term T∣y≙1, which depends on x and therefore could represent an
obstacle.

Equations (10) and (11) constitute a generalized linear eigen-
value problem, which is to be solved in terms of the eigenvalues s
and the eigenfunctions for a specified set of parameter values Bi, Bo,
Ca, Pr, andMa. To determine the spectrum of the eigenvalue prob-
lem (10) and (11), the pseudospectral method is employed, details of
which are presented below.

III. NUMERICAL APPROACH

To carry out the linear stability analysis of the problem at hand,
the pseudospectral method is employed in which the eigenfunctions
corresponding to each dynamic field are expanded into a series of
Chebyshev polynomials as

f̃ (y) ≙ m≙N∑
m≙0

amTm(y), (13)

where Tm(y) are Chebyshev polynomials of degree m and N is the
highest degree of the polynomial in the series expansion or, equiv-
alently, the number of collocation points. The series coefficients am
are the unknowns to be solved for.

For convenience, the domain 0 ≤ y ≤ 1 is transformed into−1 ≤ y ≤ 1 by stretching mapping y → 2y − 1. The generalized
eigenvalue problem is finally obtained in the form

Ae + sBe ≙ 0, (14)

whereA and B are matrices derived following the discretization pro-
cedure and e is the vector containing the coefficients of all series
expansions (A1).

Further details of the discretization of the governing equations
and boundary conditions and of the construction of the matrices
A and B can be found in the standard procedure described by
Trefethen33 and Schmid and Henningson.32 The application of the
pseudospectral method for similar problems can be found in Patne
et al.26,34 We use the polyeig MATLAB routine to solve the con-
structed generalized eigenvalue problem given by Eq. (14). To filter
out the spurious modes from the genuine numerically computed
spectrum of the problem, the latter is obtained for N and N + 2
collocation points, and the eigenvalues are compared with a spec-
ified tolerance, e.g., 10−4. The genuine eigenvalues are verified by
increasing the number of collocation points by 25 and monitoring
the variation of the obtained eigenvalues. Whenever the eigenvalue
does not change more than a specified precision, e.g., to the sixth
significant digit, the same number of collocation points is used to
determine the critical parameters of the system. In the present work,
N = 75 is found to be sufficient to achieve convergence and to deter-
mine the leading, most unstable eigenvalue within the investigated
parameter range.

IV. RESULTS AND DISCUSSION

For the ease of the presentation of the results and their dis-
cussion, the contents of this section have been split into Sec. IV A
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dedicated to the return flow and Sec. IV B to the linear flow.
The ranges for the dimensional parameters are d ∼ 10−6–10−3 m,
ρ ∼ 103 kg/m3, γ ∼ 10−5 ∼ 10−3 N m/K, kth ∼ 10−6–10−3 J/(m s K),
q ∼ 1–102 J/(m2 s K), κ ∼ 10−7–10−5 m2/s, μ ∼ 10−3–102 Pa s,
and σ∗0 ∼ 10−3 − 10−1 N/m.19,35–37 Accordingly, the corresponding
dimensionless numbers are Bi ∼ O(10−3–10), Bo ∼ O(10−3–10−1),
Ca ∼ O(10−6–10−1), and Pr ∼ O(1–103). To describe technological
processes such as additive manufacturing, fluid-flow models require
accounting for slippage with the slip parameter7 ζ ∼ O(10). In other
cases such as flows past hydrophobic and grooved surfaces,38 ζ
ranges from 0.001 to 0.1. This parameter range will be used in the
present study to analyze various modes of instability.

A. Return flow

The stability of the return flow subjected to a purely HTG was
first studied by Smith and Davis.10,11 Their analysis indicated the
absence of the stationary rolls unlike in the case of the linear flow.
However, oblique hydrothermal waves were predicted in their study
for the return flow.

A liquid layer with a deformable surface subjected to a purely
VTG exhibits a long-wave mode of instability either due to the con-
stant temperature gradient at the substrate1 or due to the deforma-
bility of the free surface.5 If an OTG is imposed, then the lin-
ear or return flow will affect the long-wave instability, as shown
in Fig. 2.

Figure 2 shows that an increase in η, i.e., in the strength of the
imposed HTG component, has a destabilizing effect on both stream-
wise and spanwise long-wave modes. Furthermore, for a nonzero
η, the streamwise long-wave mode becomes an upstream travel-
ing mode. It must be stressed that for the linear flow irrespective
of the boundary condition at the substrate, the imposed HTG, as
shown below, makes the stationary streamwise mode a downstream
traveling mode.26

In the case of a constant imposed temperature difference across
the layer of Patne et al.,26 the imposed HTG component induces a
VTG counteracting the imposed VTG component, which leads to
the stabilization of the streamwise long-wave mode originated from
the deformability of the free surface. However, the lack of the oppos-
ing VTG induced by the imposed HTG in the present problem leads
to the absence of the stabilization of the long-wave instability. As
shown in Fig. 2(b), the imposed HTG also destabilizes the spanwise
long-wave mode, but in contrast to the streamwise long-wave mode,
it remains stationary, si = 0.

The variation of the critical Marangoni number Mac for the
streamwise and spanwise long-wave modes is shown in Fig. 3 for
two representative values of the capillary number. Irrespective of the
value of the capillary number, the curves, if extended into the range
of large η, scale as Mac ∼ 1/η. For Ca = 0.01, as shown in Fig. 3(a),
the spanwise long-wave mode possesses a lower Mac as compared
to the streamwise long-wave mode. Thus, the spanwise long-wave
mode represents the dominant mode of instability. The curves for
Ca = 0.0001, as displayed in Fig. 3(b), show that an increase in the
HTG has a stabilizing effect on the streamwise long-wave mode.
However, an increase in the HTG has a destabilizing effect on the
spanwise long-wave mode. Thus, to enable the emergence of the
streamwise mode in the domain of higher values of η, a sufficiently
large value of the capillary number is necessary. It is important to
note that a liquid layer subjected to a purely HTG does not exhibit
a long-wave thermocapillary instability11 revealed here. However,
even at high η, we observe that the liquid layer not only supports the
long-wave thermocapillary instability but also represents the domi-
nant mode of instability. In addition, with a low capillary number,
the streamwise long-wave instability is confined to an island similar
to that was found in the case of an imposed constant temperature
across the layer.26

Figure 4 shows the effect of variation in the Biot number
Bi in panel (a) and in the Bond number Bo in panel (b) on the

FIG. 2. Variation of the complex growth rate of the (a) streamwise long-wave mode for k = 0.01 and m = 0 and (b) spanwise long-wave mode for k = 0 and m = 0.01 with an
increase in η in the case of the return flow. The parameters set here is Bi = 0, Bo = 0.1, Pr = 7, Ma = 10, ζ = 0, and Ca = 0.001. The HTG component of the imposed OTG
makes the streamwise long-wave mode an upstream mode, whereas the spanwise long-wave mode remains stationary. An increase in the strength of the HTG, i.e., in η,
leads to an increase in the growth rate of both modes. Thus, the HTG has a destabilizing effect on both the streamwise and spanwise long-wave modes.
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FIG. 3. Variation of the critical Marangoni number Mac with η at Bi = 0, Bo = 0.1, ζ = 0, and Pr = 7 for the return flow. (a) Ca = 0.01; (b) Ca = 0.0001. In both panels, the
spanwise mode exhibits scaling Mac ∼ 1/η, whereas the streamwise long-wave mode exhibits a similar scaling for Ca = 0.01 but forms an island of instability for Ca = 0.0001.
The figure illustrates that an increasing deformability of the interface, i.e., higher values of Ca, promotes the emergence of the streamwise long-wave mode for larger values
of η. The spanwise long-wave mode exists at larger values of η independently of the interface deformability, although an increasing interface deformability equivalent to an
increasing Ca lowers the critical Marangoni number Mac .

FIG. 4. Variation of the critical Marangoni number Mac with η at Ca = 0.01, ζ = 0, and Pr = 7 for the return flow. (a) An increase in the Biot number Bi stabilizes the spanwise
long-wave mode more than the streamwise one. Note that the curve corresponding to the spanwise mode for k = 0 and Bi = 0.1 coincides with that for the streamwise
mode for m = 0 and Bi = 0.1. (b) A decrease in the Bond number Bo leads to destabilization for both modes, which is more pronounced for the streamwise mode. Thus, the
streamwise mode is the dominant mode of instability at a lower Bo. Here Bi = 0.

critical Marangoni numberMac. An increase in Bi causes a dramatic
increase in Mac for both long-wave modes. The stabilizing effect of
an increase in Bi is stronger on the spanwise long-wave mode and
leads to the merging of the curves for the streamwise and spanwise
modes with Bi = 0.1, as shown in Fig. 4(a). Thus, both streamwise
and spanwise long-wave modes represent the dominant modes of
instability. A decrease in Bo leads to a decrease in Mac for both
modes, however, to a greater extent for the streamwise mode as
compared to the spanwise mode. This causes the streamwise long-
wave mode to become the dominant instability mode for a lower
Bond number since it is destabilized at lower Mac compared to the
spanwise long-wave mode. The spanwise mode, however, is domi-
nant for a higher value of the Bond number. The variation in the

Prandtl number Pr, albeit not shown here, has a negligible effect on
the critical parameters.

Finally, to understand the effect of slippage at the substrate
on the critical parameters, a typical variation of Mac with the slip
parameter ζ is presented in Fig. 5 for a fixed parameter set and typ-
ical values of η. In the case of an imposed purely VTG, i.e., η = 0,
the curves for both long-wave streamwise and spanwise modes nat-
urally coincide due to the isotropy in the x–z plane, and an increase
in ζ leads to an increase in Mac. For η = 0, the slip at the substrate
can only affect the perturbed state through the boundary conditions
at the substrate. However, for a non-zero η, slippage at the substrate
also affects the base state as seen in Eqs. (7) and (8), which leads to
the symmetry breaking of the streamwise and spanwise long-wave
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FIG. 5. Variation of the critical Marangoni number Mac with the slip parameter ζ
for Bi = 0, Bo = 0.1, Ca = 0.01, and Pr = 7 in the case of the return flow. In the
absence of a HTG, η = 0, an increasing slippage at the substrate has a stabilizing
effect on both modes. In the presence of a HTG, η ≠ 0, slippage stabilizes the
streamwise long-wave mode and destabilizes the spanwise long-wave mode.

modes. Figure 5 demonstrates that an increase in the slip coefficient
causes an increase in Mac in the case of the streamwise long-wave
mode and a decrease in Mac in the case of the spanwise long-wave
mode. Thus, slippage at the substrate has a stabilizing effect on
the streamwise long-wave mode and a destabilizing effect on the
spanwise long-wave mode.

B. Linear flow

When the effect of the walls along the streamwise direc-
tion is neglected, then the thermocapillary flow originating as

a consequence of the imposed HTG is a linear flow. The effect of
the linear flow on the streamwise and spanwise long-wave modes
due to the imposed OTG is shown in Fig. 6. While with an increase
in η, the imposed HTG leads to an increase in the growth rate of the
streamwise long-wave mode similar to the case of the return flow,
for the spanwise long-wave mode, a non-vanishing HTG leads to
the emergence of a pair of spanwise modes originating as a result
of the splitting of an eigenvalue present for an imposed purely VTG
having symmetry in the x–z plane. The lack of a counteracting VTG
induced due to the imposed HTG for the present problem leads to
the absence of stabilization that was observed by Patne et al.,26 where
the system was held at a constant temperature difference across the
layer. In addition, the emerging streamwise long-wave mode prop-
agates downstream, which is different from the case of the return
flow.

The variation of the critical value of the Marangoni number
Mac with the relative strength of the HTG η is presented in Fig. 7.
If the HTG is weaker compared to the VTG, i.e., η < 1, then the
streamwise long-wave mode determines the stability of the system.
In the limit of small η, both modes exhibit an increase in Mac with
the spanwise mode displaying a larger increase as compared to the
streamwise one, making the overall variation of Mac with η non-
monotonic, as shown in Fig. 7. This differential stabilizing effect
with an increase in the HTG at low η makes the streamwise mode
to dominate the instability onset there. On the other hand, because
of a rapid decrease in Mac for the spanwise mode in the domain of
η > 0.1, the situation changes, and in the domain of η > 1, the
spanwise long-wave mode dominates the instability.

As discussed above in the case of the return flow, for higher
surface tension, i.e., a lower value of the capillary number, e.g., Ca
= 0.0001, the streamwise long-wave mode forms an island of long-
wave instability presented in Fig. 3(b). However, in the case of the
linear flow, both long-wave instability modes transform to become
finite-waves, i.e., with finite kc andmc, as η increases. Neutral stabil-
ity curves for a representative value of η = 0.5 for both streamwise

FIG. 6. Variation of the leading eigenvalue with η for Bi = 0, Bo = 0.1, Pr = 7, Ma = 5, ζ = 0, and Ca = 0.001 in the case of the linear flow for (a) the streamwise long-wave
mode with k = 0.01 and m = 0 and (b) the spanwise long-wave mode with k = 0 and m = 0.01. An increase in η leads to an increase in the growth rate of both streamwise
and spanwise long-wave modes. The streamwise long-wave mode propagates downstream. The spanwise long-wave mode consists of a pair of long-wave modes with the
same growth rate and two frequencies with a different sign, i.e., traveling in opposite directions at the same speed.
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FIG. 7. Variation of the critical Marangoni number Mac with η for Bi = 0, Bo = 0.1,
Ca = 0.01, ζ = 0, and Pr = 7 in the case of the linear flow. If the strength of the HTG
is weaker than that of the VTG, i.e., η < 1, then the streamwise long-wave mode
is the dominant mode of instability, while for η > 1, the spanwise long-wave mode
dominates the system stability. Both modes scale as Mac ∼ 1/η for η > 1. Thus, in
contrast to the return flow, for the linear flow, both modes of instability play a major
role and compete in determining the stability of the system.

and spanwise modes are displayed in Fig. 8(a). The critical values
of the streamwise kc and spanwise mc wavenumbers and the criti-
cal Marangoni numberMac are determined from the minima of the
streamwise and spanwise neutral curves similar to those of Fig. 8(a),
respectively, for each value of η. The results are then presented in
Fig. 8(b). For η < 0.005, both instability modes are long-waves in
nature and also dominant modes. For 0.005 < η < 0.5, the critical
Marangoni number is almost constant, while the critical wavenum-
bers slowly increase with an approximate scaling of η0.1. For η > 0.5,

FIG. 9. Variation of the critical Marangoni number Mac with the slip parameter ζ
at Bi = 0, Bo = 0.1, Ca = 0.01, and Pr = 7 for the linear flow. Slippage at the
substrate has a small stabilizing effect on both long-wave modes when only the
VTG is imposed. However, for a nonzero η, an increase in the slip coefficient has
a destabilizing effect on both the long-wave modes in contrast to the return flow,
as shown in Fig. 5.

the scaling for the critical Marangoni number isMac ∼ 1/η, whereas
kc and mc each attain a constant value of O(1). The effect of varia-
tion of other parameters such as Bi, Bo, and Pr is qualitatively similar
to that presented above in the case of the return flow. Thus, in the
interest of brevity, those results are not presented here.

Finally, the impact of the slip at the substrate on the critical
parameters is shown in Fig. 9. For the return flow, as shown in Fig. 5,
an increase in slippage at the substrate has a stabilizing effect on the
streamwise long-wave mode and a destabilizing effect on the span-
wise long-wave mode provided that the HTG has a nonzero value.

FIG. 8. Instability of the system with Bi = 0, Bo = 0.1, ζ = 0, Ca = 0.0001, and Pr = 7 in the case of the linear flow. (a) Neutral stability curves for η = 0.5 exhibit finite-wave
modes illustrating the transition of the long-wave instability to the finite-wave instability. (b) Variation of the critical values of the wavenumbers kc , mc and the Marangoni
number Mac with η. While Mac scales as Mac ∼ 1/η for η > 1, the critical wavenumbers each tend to a constant finite value. The figure illustrates switching from the long-wave
streamwise and spanwise modes emerging for higher Ca as in Fig. 7 to the finite-wave modes with an increase in the relative strength of the HTG η.
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However, Fig. 9 demonstrates that for a nonzero η, an increase in
the slip coefficient leads to a decrease in Mac for both the long-
wave modes. For the streamwise long-wave mode, a decrease inMac
with an increase in ζ is stronger than that in the spanwise long-wave
mode, thereby making it the dominant mode of instability. Thus,
slippage at the substrate can lead to a qualitative change in the sta-
bility map of the system by switching between the dominant modes
of instability.

V. LONG-WAVE ASYMPTOTIC ANALYSIS

In this section, the asymptotic analysis is carried out in the
long-wave limit with an emphasis on the role of the HTG in the sta-
bilization of the long-wave streamwise instability triggered by the
presence of the VTG in the limit of small η. This feature is observed
in both the return and linear flows as demonstrated in Figs. 3 and
8(b), respectively. The following analysis is restricted to the nonde-
formable case, i.e., Ca = 0 and Bo = 0, and no-slip (ζ = 0) boundary
condition at the substrate. The governing equations for the pertur-
bations (10) remain the same, while the boundary conditions at the
substrate y = 0 become

ṽx ≙ 0, ṽy ≙ 0, ṽz ≙ 0, DT̃ ≙ 0. (15a)

At the free surface y = 1, the assumption of a nondeformable
interface (Ca = 0) leads to the boundary conditions

ṽy ≙ 0, (15b)

Dṽx ≙ −i kMaT̃, (15c)

DT̃ + BiT̃ ≙ 0. (15d)

The continuity of the normal stress at the free surface is satisfied
automatically.

In what follows, we assume two-dimensional streamwise dis-
turbances withm = 0. In the governing equations (10) and boundary
conditions (11), the streamwise and transverse eigenfunctions of the
perturbation velocities are expressed via the streamfunction ψ using
the relation

ṽx(y) ≙ Dψ(y), ṽy(y) ≙ −ikψ(y). (16)

As noted above, we assume small values of η, η ≙ ϵη̂, so that
η̂ ≙ O(1) and ϵ≪ 1, and apply the following scaling:39

k ≙ ϵk̂, s ≙ ϵ2 ŝ, Bi ≙ ϵ4B̂i, ψ ≙ ϵψ̂ (17)

with hat decoration used to denote the scaled values. Equation (17)
is then substituted into the governing equations (10) and the bound-
ary conditions (15) modified using Eq. (16). Furthermore, the
scaled streamfunction, the growth rate, the temperature, and the
Marangoni number are expanded as

ψ̂ ≙ ψ0 + ϵ
2ψ2 + ϵ

4ψ4 +⋯, (18a)

T̂ ≙ T0 + ϵ
2
T2 + ϵ

4
T4 +⋯, (18b)

Ma ≙Ma0 + ϵ
2
Ma2 + ϵ

4
Ma4 +⋯, (18c)

ŝ ≙ s0 + ϵ2s2 + ϵ4s4 +⋯. (18d)

Following elimination of pressure, Eqs. (10) and (11) are rewrit-
ten along with Eq. (18) to yield at the zeroth order approximation

D
4ψ0 ≙ 0, D

2
T0 ≙ 0. (19a)

The boundary conditions at y = 0 and y = 1 become

z ≙ 0 : ψ0 ≙ 0, Dψ0 ≙ 0, DT0 ≙ 0, (19b)

z ≙ 1 : ψ0 ≙ 0, D
2ψ0 + i kMa0 T0 ≙ 0, DT0 ≙ 0, (19c)

respectively. Note that Eqs. (19) do not contain the base-state com-
ponents, and thus, they are valid for both the return and linear
flows.

Equations (19) admit the solution for ψ0 and T0 in the form

T0 ≙ α1, ψ0 ≙ 12α1 i k̂ (1 − y) y2, (20)

where α1 is an arbitrary constant, which, for the sake of lin-
ear stability analysis, may be set equal to unity without loss of
generality.

At O(ϵ2), the governing equations for the return and lin-
ear flows differ due to the presence of the base-state compo-
nents. In what follows, we present the solution procedure for the
return flow. A similar procedure can also be carried out for the
linear flow.

For the return flow, the bulk equations (10) at O(ϵ2) read as

6 i η̂ k̂Ma0 ψ0 − [8 k̂2 Pr + 4 s0 + i η̂ k̂Ma0 y (−2 + 3 y)]D2ψ0

+ 4PrD
4ψ2 ≙ 0, (21a)

− i k̂ψ0 −
1

4
[4 s0 + k̂(4 k̂ + i η̂Ma0 y (−2 + 3 y))]T0

+ η̂Dψ0 +D
2
T2 ≙ 0. (21b)

The boundary conditions (15) at O(ϵ2) are, respectively,

y ≙ 0 : ψ2 ≙ 0, Dψ2 ≙ 0, DT2 ≙ 0 (22a)

and

y ≙ 1 : ψ2 ≙ 0, D
2ψ2 + i kMa0 T2 ≙ 0, DT2 ≙ 0. (22b)

To obtain the leading-order approximation for the growth rate
s0, Eq. (21b) is integrated with respect to y across the layer y ∈ (0, 1)
and the boundary conditions at y = 0 and y = 1, Eq. (22), are utilized.
The resulting equation is then solved for s0 to yield

s0 ≙
1

48
k̂
2(−48 +Ma0). (23a)

A similar procedure for the linear flow leads to

s0 ≙
1

48
k̂ [k̂(−48 +Ma0) − 24 i η̂Ma0]. (23b)

The instability threshold is determined by the growth rate sr
crossing from the negative to the positive value via sr = 0. There-
fore, Eq. (23) yields the value of the Marangoni number Ma0 = 48,
which is in agreement with that of Pearson1 and validates the current
analysis. Another interesting feature to note is that while the imag-
inary part of s0 for the return flow vanishes, it is nonzero for the
linear flow. This is a consequence of the velocity fields of the average
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base state for both flows. In the case of the return flow, the aver-
age base-state velocity vanishes due to the boundary condition (6c);
thus, the long-wave disturbances do not propagate in the x-direction
at O(1). However, for the linear flow, the average base-state velocity
is nonzero and given by ηMa/2, which represents the travel speed
of long-wave disturbances, as obtained from the imaginary part of
Eq. (23b).

In the case of the return flow, the solution of Eq. (21) at O(ϵ2)
satisfying the boundary conditions (22) is

ψ2 ≙
k̂2(y − 1)y2η̂Ma20

6720Pr
[−19 + 2y(3 + 3y − 4y2 + 3y

3)]
− 28ik̂(y − 1)y

6720Pr
(60Ma2Pry + 2k̂

2
Ma0Pry(−3 − 2y + 3y

2))
− 28ik̂(y − 1)y

6720Pr
∥Ma0s0y(−3 + y(−2 + 3y))

+60Ma0PryT2(y ≙ 1)∥, (24a)

T2 ≙
1

240
[10iη̂k̂Ma0y

3(−4 + 3y) + 120(2α2 + s0y
2)]

+
k̂2y2

2
[120 +Ma0y

2(−5 + 3y)], (24b)

where α2 is an integration constant.
At O(ϵ4), the energy equation reads as

η̂2 k̂Ma0 (−1 + y) y2 ψ0 + 4 k̂ψ2 − 4i s2 T0 − 2 η̂ k̂Ma2 y T0

+3 η̂ k̂Ma2 y
2
T0 − 4 i k̂2 T2 − 4i s0 T2 − 2 η̂ k̂Ma0 y T2

+3 η̂ k̂Ma0 y
2
T2 + 4i η̂Dψ2 + 4i D

2
T4 ≙ 0. (25)

To obtain s2, the solution of O(ϵ2) given by Eq. (21) needs to be
substituted into Eq. (25), and the latter is integrated with respect to
y across the layer y ∈ (0, 1) along with the boundary conditions

y ≙ 0 : DT4 ≙ 0, and y ≙ 1 : DT4 ≙ −B̂iT0. (26)

As a result, we obtain in the case of the return flow

s2 ≙ − B̂i − 1

1680Pr
k̂
2(6912η̂2Pr + 7(16k̂2 − 5Ma2)Pr

+168iη̂k̂(4 + 13Pr)). (27a)

A similar procedure followed for the linear flow yields

s2 ≙ − B̂i − 72η̂2k̂2

5
− k̂4

15
+
k̂2Ma2

48
− iη̂k̂

70Pr

× [35Ma2Pr + k̂
2(40 + 426Pr)]. (27b)

It must be noted that the real part of s2 contributes to the growth of
the perturbations when the HTG appears via η̂.

As obtained from Eq. (27), the real part of s2, s2r ≡ R(s2),
reads as

s2r ≙ −B̂i − k̂2

1680
[6912iη̂2 + 7(16k̂2 − 5Ma2)], for the return flow,

(28a)

s2r ≙ −B̂i − 72η̂2k̂2

5
− k̂4

15
+
k̂2Ma2

48
, for the linear flow. (28b)

To enable long-wave instability, i.e., s2r > 0 given by Eq. (28)

along with s0r = 0, around k̃ ≙ 0, Ma2 needs to be positive; then,
k = 0 is the critical wavenumber and Ma0 + ϵ2Ma2 is the critical
Marangoni number Mac up to O(ϵ4). Therefore, along the neutral
curve, s2r = 0 and

Ma2 ≙
6912η̂2

5
, for the return flow, (29a)

Ma2 ≙
3456η̂2

5
, for the linear flow. (29b)

To facilitate a comparison with the GLSA, we unscale Eq. (29)
to obtain the critical Marangoni number for the long-wave mode

FIG. 10. Variation of Mac with the relative strength of the horizontal temperature gradient η for Bi = 0, Pr = 7, and ζ = 0 in the case of the streamwise long-wave mode. In
both panels, the results of the asymptotic analysis are for Ca = 0, Bo = 0, whereas the numerical ones are for (a) the return flow with Ca = 0.0001, Bo = 0.1 and (b) the linear
flow with Ca = 0, Bo = 0. In both panels, the asymptotic and numerical results are in excellent agreement for at least η < 0.06. Both analyses reveal a strong stabilizing effect
of the HTG on the streamwise long-wave mode.
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with Bi = 0 in the form

Mac ≙ 48 +
6912η2

5
, for the return flow (30a)

Mac ≙ 48 +
3456η2

5
, for the linear flow. (30b)

It follows from Eq. (30) that with an increase in η, the critical
Marangoni number increases, and thus, the presence of a HTG has
a stabilizing effect.

The results obtained here based on the asymptotic analysis for
the long-wave mode are now compared with those obtained using
the pseudo-spectral method for both the return and linear flows
in Fig. 10. Interestingly, for the return flow, the asymptotic results
are in excellent agreement with the numerical ones obtained for the
deformable interface with Ca = 0.0001 and Bo = 0.1. Thus, as fol-
lows from Fig. 10(a), the present asymptotic analysis can be valid for
the case of the deformable interface for η < 0.06. The same excel-
lent agreement is observed in panel (b) for the linear flow, and
in the case presented there, it extends up to η = 0.09. The agree-
ment between the results arising from the numerical and asymp-
totic analyses can be further improved by considering higher-order
corrections to the growth rate, and so for the value of the critical
Marangoni number.

VI. SUMMARY

The present paper investigates the stability of a horizontal liq-
uid layer deposited on the substrate with a possible slippage and
subjected to an oblique temperature gradient (OTG) with a pre-
scribed constant normal temperature gradient at the substrate. The
major differences between the present study and the study of Patne
et al.26 are highlighted in Table I. For the return flow, the spanwise
mode remains the dominant mode of instability for arbitrary varia-
tions in the problem parameters except those in the Bond number
Bo. The streamwise long-wave mode is stabilized by the imposed
HTG at low Ca, whereas at high Ca, the HTG fails to stabilize the
streamwise mode.

In the case of the return flow, the basal slip has a stabilizing
effect on the streamwise mode, while the spanwise mode is desta-
bilized in the presence of the HTG. In the absence of the HTG,
η = 0, an increase in the basal slip leads to a slight stabilization of

both modes. Thus, the presence of the HTG also influences the effect
of the basal slip on the stability. It is notable that in the case of the
return flow with an imposed purely HTG, spanwise or streamwise
long-wave instability modes are absent.10 The present analysis shows
that as a result of an interaction between the imposed VTG and
HTG components, the return flow exhibits both types of instability
modes, but these modes dominate the instability onset, even when
the HTG is much stronger than the VTG, i.e., in the case of higher
values of η. This implies that the presence of a VTG, however small,
in a liquid layer may cause the presence of the long-wave modes,
thereby imparting a drastic change in the stability features of the
liquid layer.

In the case of the linear flow, similar to the return flow, the
emergence of the streamwise mode at high η strongly depends on
the deformability of the free surface. The streamwise mode deter-
mines the stability onset when the VTG is dominant, whereas the
spanwise mode determines the stability onset when the HTG is
dominant. At low Ca, the linear flow loses stability to finite-wave
streamwise and spanwise modes. The basal slip leads to the desta-
bilization of both streamwise and spanwise modes for a nonzero
HTG, which may feature a change in the dominant instability mode.
In the absence of the HTG, the basal slip leads to the stabiliza-
tion of both the streamwise and spanwise modes. The asymptotic
analysis carried out in the case of the streamwise mode and the
nondeformable interface in the limiting case of small η shows an
excellent agreement with the results of numerical computations
for η < 0.06.

The present analysis demonstrates that in practical applica-
tions such as additive manufacturing, liquid layers subjected to an
OTG with a significant basal slip may exhibit qualitatively differ-
ent types of instabilities compared to those developing when either
a purely HTG or a purely VTG is acting on the system. From the
point of view of applications, it would be of paramount impor-
tance to reveal whether a liquid layer subjected to an OTG pre-
serves its contiguity or ruptures, and, in the latter case, whether
this rupture can be prevented or controlled. Therefore, weakly non-
linear and fully nonlinear analyses of the system dynamics would
be the next step in the study of the present problem. The present
paper could also be extended to the case of self-rewetting liquids
whose surface tension is represented by a nonlinear function of
the temperature.

TABLE I. Summary of the differences between the system in the study of Patne et al.26 and in the present paper. As indicated
by the first row of the table, the difference in the stability properties between the two systems arises primarily due to the
thermal boundary condition at the substrate. The present paper is relevant to the case of a poorly conducting substrate as

compared to the liquid, whereas the results in the study of Patne et al.26 are applicable to a highly conductive substrate as
compared to the liquid. Here, LW stands for long-wave and the interaction mode refers to the thermocapillary instability mode

arising due to the interaction26 between the imposed HTG and VTG.

System features This paper Patne et al.26

Temperature BC at the substrate ∂y∗T
∗ ≙ −β∗ T∗ ≙ T∗0 − η∗x∗

Velocity BC at the substrate With and with no slip No slip
Induced VTG by the HTG Absent Present
Types of flows Linear and return flows Linear flow
Dominant mode at high η Spanwise LWmode Interaction mode
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