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Abstract

We perform a comprehensive theoretical study of electronic band gaps of semiconducting single-
walled carbon nanotubes (SWNTs) with different sets of chiral indices using semi-empirical tight
binding and density functional (DFT) based ab-initio methods. In particular, self-consistent extended
Huckel (EH-SCF) and self-consistent Slater Koster (SK-SCF) tight binding models are used as semi-
empirical methods, whereas the DFT based LDA-1/2 and Tran-Blaha (TB09) meta-GGA schemes are
used as ab-initio methods. The calculations are performed for 1) (1, m) chiral SWNT's for which
experimental optical gaps have been reported 2) (9, 0), (12, 0) and (15, 0) ‘metallic’ zigzag SWNT's for
which small bad gaps have been reported 3) Pairs of SWNTs having same diameters but different
chiral angles 4) (n, 0) zigzag SWNTs with 10 < n < 30. From the comparison of bands gaps of tubes
with same diameter, the electronic band gaps are found to vary with chiral angles with opposing trend
as compared to that reported for experimental optical band gaps. This result may be expected to have
important implications for self-energy corrections and/or exciton binding energies and their
dependence on chiral angles. The hopping parameter -, obtained from fitting EH-SCF and SK-SCF
bandgap data, is found to be in good agreement with that obtained from fitting experimental data. In
general, the band gap values of SWNTs computed using semi-empirical EH-SCF and SK-SCF
methods are quite close (within ~ 5%) to those computed using DFT-based LDA-1/2 and TB09 meta-
GGA methods. The results suggest that self-consistent semi-empirical methods can be expected to
provide similar accuracy in results as that expected from more computationally challenging ab-intio
DFT based LDA-1/2 and TB09 meta-GGA methods.

1. Introduction

Carbon nanotubes (CNTs) are highly promising materials for technological applications due to their novel
electronic, optical, and mechanical properties [ 1-4]. In particular, CNTs are very attractive for potential
applications in nanoelectronics and energy storage devices in the form of nanoscale electronic components such
as 1D quantum wires, nanotransistors, optical switches etc Usually, the single-walled carbon nanotubes
(SWNTs) exhibit semiconducting or metallic properties which in turn depend on their diameters and chiral
angles[1, 2]. The electronic properties of SWNTs are known to critically depend on chiral indices (1, m) (where

nand m are integers). In general, a SWNT of diameter d;, = ac_c\/ 3(n? + nm + m?) /7 (where a._ is the
nearest neighbor carbon-carbon distance) and chiral angle § = arctan(~/3 m/(2n + m)) can be formed by
rolling up a single graphite sheet along the chiral vector Cy = (ndy + ma,) having chiral indices (1, m). The
simple zone-folding tight-binding model predicts that the SWNTs are metallic when n — m = 3[ (where lisan
integer) due to bands crossing the Fermi level. In case of n — m = 31, the SWNTs are predicted to be
semiconducting with energy gaps of ~0.5 eV [1-3]. Thus, the armchair (1, n) SWNTs are expected to be
metallic. On the other hand, zigzag (1, 0) SWNTs are expected to be semiconducting provided n = 3! (where !
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is an integer). However, in recent years, small finite band gaps (<0.08 eV) have been reported for (9, 0), (12, 0)
and (15, 0) zigzag SWNT's grown on Au(111) substrates [5]. The electronic band gap of a CNT is an important
parameter in that it critically influences its transport properties. Thus for novel CNT based device applications,
the control of the electronic band gap is highly desirable. The experimental measurement of the electronic band
gaps of 1D wires such as CNTs are generally nontrivial and challenging as the observed optical band gap energies
include contributions of exciton binding energies [6, 7]. The exciton binding energies can be significant for the
nanotubes with smaller diameters. Usually theoretical models are required to estimate exciton energies since
direct measurements of these energies are generally difficult [8, 9].

In last two decades, the electronic structures and band gaps of select SWNTs have been studied theoretically
using formalisms such as ab-inito density functional theory (DFT) and semi-empirical zone-folding tight-
binding (TB) method [1-3]. However, the band gaps computed within DFT framework and using local density
(LDA) and generalized gradient (GGA) approximations for the exchange-correlation (xc) functional are
generally underestimated significantly. Improved estimates of band gaps of few select SWNTs have also been
reported using GW approximation wherein many-body self-energy operator is expressed as the product
between electronic Green’s function (G) and the screened Coulomb interaction (W) [6, 10-13]. Though GW
scheme usually provides band gap estimates with good accuracy, the method is hugely expensive
computationally. Furthermore, care in calculations is required in order to obtain converged results [14]. The
band gaps of few select SWNT's computed using DFT framework and hybrid xc-functionals have also been
reported. Some of these functionals are BALYP [15], HSE [16], TPSSh [17] etc, wherein a fraction of Hartee-Fock
exact exchange is combined with different flavors of correlation functionals. Like the GW scheme, the hybrid
functional schemes are highly expensive computationally, although they usually provide reasonably accurate
predictions of electronic structures. In addition to DFT-based first-principles approaches, the electronic
structures and band gaps of few select SWNT's have also been computed using semi-empirical tight binding
models wherein only adjustable parameters are required and fitted to first-principles calculations or
experimental results [18, 19]. However, only simple tight binding such as graphite, sp” and sp’s* models have
been considered to best of our knowledge [1, 2, 18, 19]. One of the major drawbacks of these models is that the
charge (potential) distribution in the system remains non-self-consistent.

The semi-empirical methods are mainly advantageous due to their low computational cost. This factor
becomes significantly important when the systems such as CNTs consist very large number of atoms. Further,
semi-empirical methods can provide quite accurate results when used within the domain of their application.
On the other hand, ab-initio methods are more predictive as compared to semi-empirical methods and usually
do not require prior experimental data. However, ab-intio density-functional theory (DFT) based approaches, in
particular those based on GW or hybrid functional schemes, can be extremely demanding in terms of
computational requirements, for systems with very large number of atoms.

In this article, we perform a comprehensive as well as comparative study of electronic band gaps of several
semiconducting SWNTs using semi-empirical as well as ab-inito approaches. Within semi-empirical domain,
we employ self-consistent extended Huckel (EH-SCF) tight binding method [20, 21] and self-consistent Slater-
Koster tight binding method (SK-SCF) [22]. The EH-SCF model can be viewed as an extension of non-
selfconsistent extended Huckel method wherein charge rearrangement and resulting Hartree potential is treated
self-consistently. Likewise, the SK-SCF method can be viewed as extension of standard non-self-consistent
Slater-Koster tight binding method. The SK-SCF method is based on the expansion of the Kohn-Sham total
energy in DFT formalism, to a second order with respect to charge density fluctuations. We also compute band
gaps of SWNT's within ab-initio density functional framework using (1) Tran Blaha meta-GGA xc-functional
[23,24]and (2) LDA-1/2 method [25, 26]. These schemes are significantly less expensive computationally as
compared to GWand/or hybrid functional schemes. Further, excellent agreement between the experimental
band gaps and those computed using these methods have been reported for a wide range of semiconductors. In
the TB09 meta-GGA xc-functional scheme, the exchange potential has the explicit dependence on the electron
kinetic energy. In case of LDA-1/2 (or DFT-1/2) method, the DFT self-interaction error is corrected by defining
an atomic self-energy potential that cancels the electron-hole self-interaction energy. The atomic self-energy
potential is defined as the difference between the potential of the neutral atom and that of a charged ion which
results from the removal of its charge between 0 and 1 electrons. In this article, we perform the study of
electronic band gaps of SWNTs with different sets of chiral indices using aforementioned semi-empirical and
ab-inito methods. In particular, we consider (1) (n.m1) chiral semiconducting SWNT's with reported
experimental optical gaps (2) zigzag (9, 0), (12, 0) and (15, 0) ‘metallic’ SWNT's for which small band gaps have
been reported experimentally (3) pairs of SWNTs with different chiral angles but having same diameters (4)

(n, 0) zigzag SWNTSs with diameter more than 1.0 nmand 10 < n < 30. Our results suggest that self-consistent
semiempirical (SK-SCF and EH-SCF) methods can be expected to provide electronic band gap estimates of
CNTs with similar accuracy as that expected from ab-intio DFT based LDA-1/2 and TB09 meta-GGA methods.
In particular, the band gap estimates of SWNT's obtained using semiempirical EH-SCF and SK-SCF methods are
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found to be within ~5% of those obtained using ab-intio DFT-based (LDA-1/2 and TB09 meta-GGA) methods.
The results also suggest that electronic band gaps may vary with chiral angles with reverse trend as compared to
that reported for experimental optical band gaps. Furthermore, as discussed later, the small band gaps of
‘metallic’ (9, 0), (12, 0) and (15, 0) zigzag SWNTs computed semi-empirical (EH-SCF and SK-SCF) methods and
ab-initio (LDA, GGA, LDA-1/2 and TB09 meta-GGA) methods are found to be in good agreement with the
experiments.

The article is organized as follows. In section 2, the computational methodology is presented. The results and
discussions are presented in section 3. Finally, the concluding remarks are given in section 4.

2. Computational methodology

The semi-empirical calculations are performed using self-consistent extended Huckel model (EH-SCF) [20, 21]
and self-consistent Slater-Koster density-functional tight binding model (SK-SCF) [22, 27] as implemented in
Atomistix Toolkit [28]. The Cerda-Hiickel basis set parameters optimized to target values of the band dispersion
of bulk diamond obtained with DFT-GW method [29] are used in EH-SCF model [28]. The matrix elements are
described in terms of overlapping between the Slater orbitals on each site. The Slater-Koster type parameters
from Hotbit consortium are used in SK-SCF model [30] and a numerical function is used to describe the
distance-dependence of the matrix elements. In both semi-empirical models, a two-center approximation is
used to parametrize the non-self-consistent part of the tight-binding Hamiltonian. Thus, the matrix elements
depend on the distance between two atoms and remain independent of other atomic positions.

The ab-intio density functional calculations [31] are performed using scheme based on nonorthogonal
pseudoatomic orbitals (PAOs) [32] basis set as implemented in the Atomistix Toolkit [28]. The Kohn-Sham
wavefunctions are expanded using a basis of double-( PAOs including polarization functions (DZP). The ionic
cores are described using the Troullier-Martins norm-conserving pseudopotentials [33]. In order to obtain
better accuracy in the bang gap estimates of SWNTSs, the Tran-Blaha (TB09) meta-GGA xc-functional [23, 24] is
used. The magnitude of the c-parameter of TB09 scheme is adjusted so that the computed band gap of bulk
diamond is matched to the experimental value. The improved band gaps of SWNTs are also obtained using
LDA-1/2[25,26] scheme and using optimized parameters as provided in Atomistix Toolkit. The SWNTs with
axis along [001] direction are simulated using supercells consisting appropriate number of vacuum layers in
[100] and [010] direction. The 1 x 1 x N Monkhorst—Pack k-point meshes are used for the Brillouin zone
sampling (where N > 12).

3. Results and discussion

We study and compute the electronic band gaps of different types of SWNTs using semiempirical (SK-SCF, ET-
SCF) and ab-initio DFT based (LDA-1,/2, TB09 meta-GGA xc-functional) methods. The tight-binding as well as
DFT based LDA (GGA) approximations provide estimates of single-particle excitation energies. However, in
one-dimensional (1D) systems such as SWNTs, significant difference between many-particle and single-particle
electronic band gaps can arise due to strong many-body electron-electron interactions. Despite this
shortcoming, the tight binding models are capable of capturing the primary features of the electronic structures
of SWNTs. Furthermore, a fraction of many-body effects is usually included in the tight binding models through
their fitted parameters. The many-body effects result in the modification of single-particle energies through self-
energy corrections. In addition, many-body electron-hole interactions lead to bounded excitons which are
revealed in optical transitions [8, 34—37]. However, it has been shown that self-energy corrections and excitonic
effects, which are of the order of ~0.5-1.0 eV, tend to cancel each other. This results in significant reduction in
difference between single-particle electronic and many-body optical band gaps [38—40]. Thus, partially due to
this cancellation effect, the magnitude of band gaps obtained from early scanning tunnelling spectroscopy (STS)
experiments [41, 42] and electronic structure calculations [43, 44] have been found to be quite similar to those
obtained from optical experiments [45]. Further, recent experimental STS study has shown that observed band
gaps of SWNT's on metal substrates are generally the reduced many-body gaps due to screening of many-body
interactions by metal substrate [45]. On the basis of two-photon experiments, it has been suggested that after
accounting for many-body self-energy corrections, the single-quasiparticle gap (E;; in eV)as s function of tube
diameter (d,in nm) may be expressed as [8]:

1.11 0.34

Ey = Ey + AE = + 1
e 011 +d, d, )

where, the Egand AE ~ 0% in equation (1) are approximately single-particle and the many-body self-energy
contributions to the gap respectively. Further, on the basis of optical measurements, it has been suggested that
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L11 0.34 . . - .
Eo~ o5 7 and AE ~ o are the measure of optical gap and lowest exciton binding energy respectively [44].

The excitons with significant electron-hole binding energy in the excited states arising due to many-body
interactions are important in one dimensional systems such as SWNTs [46—48]. Using a simple zone-folding
tight-binding (TB) model, the single-particle electronic band gap (E,}? in V) of SWNTs may be shown to vary
with nanotube diameter (d, in nm)as|[1, 2]:

ElY = 2voa. /d, @)

where 1, is the hopping integral between the first-nearest carbon neighbors, a._. = 1.42 Ais the distance
between neighboring carbon atoms. A magnitude of 2.5 eV t0 2.9 eV for , has been suggested in the various
published reports [3, 41, 49]. For instance, 7, = 2.7 = 0.1 eV has been suggested from the scanning tunnelling
microscopy and spectroscopy measurements on individual SWNT's [41]. Further, a theoretical estimate of

7 = 2.5 eV has been suggested for a single graphene sheet [48]. As can be seen in equation (2), the simple zone-
folding tight-binding model does not predict the dependence of the band gap on chiral angle (8) of the nanotube.
However, it has been shown that the weak dependence of the optical band gap on the chiral angle of the tube with
chiral indices (1, m) may be expressed as [36]:

1163 Aj(z) cos (30)

0.147 + d, d?
Where A} = —0.0880 eV if (n — m)mod 3 = 1 and Ay = +0.0458 eV if (n — m)mod 3 = 2. Aslightly
modified form of equation (3) has been reported in [7]. As discussed in following sections, the dependence of

band gaps on chiral angles in our calculations is captured due to the application of self-consistency in tight
binding models which is not considered in simple zone-folding tight binding model.

op
Ell

3

3.1. (n, m) Chiral nanotubes

We first consider a set of 34 chiral nanotubes for which experimental band gaps have been reported. Figure 1
shows the atomic structure of chiral SWNTs with indices (15, 4)and (10, 9). The magnitude of chiral vector
(diameter) for (15, 4)and (10, 9) SWNTsare 7.39 nm (1.36 nm) and 7.02 nm (1.29 nm) respectively. The
number of atoms in one unit cell are 1204 and 1084 for (15, 4)and (10, 9) tubes respectively. The electronic
band gaps of SWNT's computed using semi-empirical EH-SCF and SK-SCF as well as reported experimental
optical band gaps are listed in table 1. As mentioned earlier, the computed single-particle electronic gaps are
expected to be smaller than the experimental optical gaps since many-body interactions are not fully accounted
in tight-binding based semi-empirical models. As can be seen in table 1, the band gap estimates computed using
EH-SCF and SK-SCF models are smaller by ~0.2—0.3 eV and are in qualitative agreement with average
magnitude of lowest exciton binding energy (~0.3—0.4 eV) reported for SWNTs [36, 45]. By fitting data (see
table 1) for tubes having diameters greater than 1.0 nm with analytical expression for band gap in equation (2),
the computed value of hopping parameter ~, comes out to be 2.77 eV and 2.57 eV for EH-SCF and SK-SCF
models respectively. These values are in good agreement with reported value , = 2.7 £ 0.1 eV whichis
obtained from fitting experimental band gap data [41].

Next we study the dependence of SWNTs band gaps on chiral angles. The computed difference in electronic
band gaps (6E) of seven pairs of SWNTs with same diameter but different chiral angles are shown in table 2. The
band gaps are calculated using semi-empirical (EH-SCF and SK-SCF) and DFT based ab-initio (TB09 meta-
GGA and LDA-1/2) methods. Table 2 also shows reported experimental optical band gaps as well as estimates
obtained using equation (3). It may be noted from results presented in table 2 that the computed absolute values
of band gap differences(SE) are in reasonable agreement with experimental values. However, the computed 6E
values are positive whereas experimental values are negative. These results suggest that constants A;(4;) in
equation (3) have plus (minus) signs respectively in case of electronic band gaps as compared to minus (plus)
signs as in case optical band gaps. Thus the dependence of electronic band gap on chiral angles may exhibit
opposite trend as compared to that in case of optical band gaps.

3.2. ‘Metallic’ (3 m, 0) Zigzag SWNT (m = 3,4,5,6,7)

Next we study the band gaps of zigzag SWNT's with chirality indices (31, 0) (where m is a integer). Figure 1(c)
shows the (21, 0)zigzag SWNT with diameter 1.64 nm and chiral vector 0.43 nm. As discussed earlier, the
simple (sp”) or zone-folding tight-binding model predicts that zigzag (31, 0) SWNTs should be metallic with
high electrical conductivity [43, 44, 50]. However, small energy gap may still result in these zigzag (3, 0) and
some other chiral SWNTs due to finite curvature which in turn modifies the overlap of 7-orbitals. Recently, on
the basis of low-temperature atomically resolved scanning tunneling microscopy, it has been reported that
‘metallic’ zigzag SWNTs with indices (9, 0), (12, 0) and (15, 0) are small-gap semiconductors with energy band
gaps 0.080 eV, 0.042 eV and 0.029 eV respectively [5]. We have computed the electronic gaps of these SWNT's
using semi-empirical and ab-initio methods. As shown in table 3 the band gaps of (9, 0), (12, 0) and (15, 0) zigzag
SWNTSs computed using semi-empirical EH-SCF (SK-SCF) models are 0.11 eV (0.11 eV), 0.07 €V (0.06 eV) and
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Figure 1. Single walled carbon nanotubes (SWNTs) with chiral indices (a) (15, 4) (b) (10,9) (c) (21, 0) (d) (29, 0). The length shown is
equaltol x Cj for(15,4)and (10,9) SWNTsand 7 x C for (21, 0) and (29, 0) SWNTs respectively (where Cj, is the chiral vector).
The number of carbon atoms in single unit cell of (15, 4), (10, 9), (21, 0) and (29, 0) SWNTs are 1204, 1084, 84 and 116 respectively.

0.05 eV (0.04 eV) respectively. As can be seen, these band gap values computed using semi-empirical self-
consistent tight-binding models are in good agreement with experiments. Further, as listed in table 3, the band
gaps computed using LDA (PBE-GGA) xc-functionals are 0.084 eV (0.093 eV), 0.052 eV (0.058 eV) and

0.035 eV (0.039) eV. The computed LDA and GGA values are also in good agreement with experimental values.
It may be noted that the band gap values computed using LDA and GGA for (9, 0), (12, 0) and (15, 0) zigzag
SWNTs are in much better agreement with experiments than those reported in earlier ab-inito studies. Previous
LDA (PBE-GGA) based studies have reported band gaps 0.024 eV (0.030 V) for (9, 0),0.002 eV (0.010 eV) for
(12, 0),and 0.00 eV (0.00 eV) for (15,0) SWNT's [51-53]. Using DFT based B3LYP hybrid functional studies, the
computed band gaps for (9, 0), (12, 0) and (15, 0) SWNTs were found to be 0.079 eV, 0.041 eV and 0.036 eV
respectively [53], in good agreement with experiments. However, as mentioned earlier, the hybrid functional
studies are usually very expensive computationally, in particular for systems having large number of atoms.
Table 3 also shows the band gap results computed using DFT based LDA-1/2 and TB09 meta-GGA xc-
functional methods. As stated earlier, the TB09 meta-GGA and LDA-1/2 methods are much less expensive
computationally as compared to GW or hybrid functional methods. The computed band gaps are slightly higher
than the experimental values (see table 3). Nevertheless, both methods show that (9, 0), (12, 0) and (15, 0)
SWNTs are semiconducting with low band gaps. Further, the semi-empirical EH-SCF and SK-SCF methods
provide band gap estimates of SWNT's with similar accuracy as compared to band gaps computed with ab-initio
TB09 meta-GGA and LDA-1/2 methods. The band gaps of (3m, 0) zigzag SWNTs listed in table 3 vary with
diameter (d,)as ~1/d;? in accordance to the model suggested by Ouyang et al, [5]. According to this model the
small energy gaps of ‘metallic’ zigzag tubes should scale as ~A, /d; with Ay = 37,a’ . /4 where VY is tight
binding transfer matrix element and a._. = 0.142 nmis the distance between nearest neighbor carbon atoms. It
has been suggested that finite curvature of the nanotube reduces the overlap between nearest-neighbor 7-
orbitals resulting in a shift of Fermi wave vector (EF) from the first Brillouin zone corner (K-point) of a 2D
graphene sheet. In case of ‘metallic’ zigzag (3m, 0) SWNTs, the Fermi wave vector moves away from the K-point
along the circumferential direction in a way that the allowed one-dimensional sub-band k no longer passes
through Fermi wave vector which results in a small band gap opening [5].
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Table 1. Electronic band gaps (in eV) of chiral (n, m) SWNTs
computed using semiempirical self-consistent SK-SCF and
EH-SCF methods. d; (in nm) is the diameter.

(n, m) d, (nm) SK-SCF EH-SCF Exp.*
(5,4) 0.612 1.218 1.289 1.488
(6,4) 0.683 1.051 1.141 1.42
(6,5) 0.747 0.999 1.067 1.272
9,1 0.747 0.891 0.992 1.359
8,3) 0.772 0.896 0.986 1.300
9,2) 0.795 0.943 1.003 1.088
(7,5) 0.818 0.886 0.960 1.212
(8,4) 0.829 0.910 0.974 1.114
(7,6) 0.883 0.844 0.910 1.105
9,4) 0.903 0.780 0.854 1.126
(11,1) 0.903 0.832 0.894 0.982
(10, 3) 0.924 0.817 0.879 0.992
(8,6) 0.953 0.765 0.832 1.058
9,5) 0.963 0.782 0.844 0.997
(12,1) 0.982 0.696 0.765 1.059
(11,3) 1.000 0.695 0.761 1.036
8,7) 1.018 0.731 0.792 0.979
(12,2) 1.027 0.735 0.794 0.901
(10,5) 1.036 0.689 0.752 0.992
(11,4) 1.054 0.717 0.776 0.904
9,7) 1.088 0.672 0.732 0.937
(10,6) 1.097 0.685 0.742 0.898
(13,2) 1.105 0.627 0.687 0.949
(12,4) 1.130 0.624 0.682 0.924
9,8) 1.154 0.644 0.700 0.877
(13,3) 1.154 0.655 0.711 0.828
(11,6) 1.170 0.615 0.670 0.887
(12,5) 1.185 0.636 0.692 0.829
(15,1) 1.216 0.571 0.623 0.87
(10, 8) 1.224 0.599 0.652 0.828
(13,5) 1.261 0.564 0.616 0.837
(10,9) 1.290 0.575 0.626 0.797
2 Ref. [36]

Table 2. Electronic band gap differences (in eV) of (1, m) SWNTs having same diameters but different chiral angles computed using semi-
empirical, self-consistent (SK-SCF and EH-SCF) methods; DFT-based (LDA, PBE-GGA, LDA-1/2 and TB09 meta-GGA) methods.

SK-SCF EH-SCF LDA GGA LDA-1/2 TB09- m-GGA Exp.” equation (3)
Ee,5 — Eq,1 +0.108 +0.075 +0.094 +0.090 +0.091 +0.108 —0.087 —0.104
Eqi,1) — Ewg,e +0.051 +0.041 +0.073 +0.061 +0.053 +0.068 —0.144 —0.139
Eqs,0) — E@s,7) +0.009 +0.008 — —0.075
Eqo,6) — Eq4,0 +0.058 +0.054 — —0.031
Eqs3) — Ew,s) +0.011 +0.011 +0.018 +0.016 +0.013 +0.016 —0.049 —0.050
Eq1,7) — Eqe3) -+0.040 +0.041 — —0.048
Eq1,9) — Eas,a +0.019 +0.020 — —0.016

* [36].

3.3. Semiconducting (n, 0) Zigzag SWNTs (n = 3m)

Next, we compute the band gaps of semiconducting (1, 0) zigzag SWNT's (where n = 3m is a integer).

Figure 1(d) shows the (29, 0) zigzag SWNT with diameter 2.27 nm and chiral vector 0.43 nm. The computed
electronic band gaps of (1, 0) nanotubes with 10 < n < 30 arelisted in table 4. The estimated band gap values
using EH-SCF method are slightly higher by ~0.03-0.05 eV than those estimated using SK-SCF method. Further
the band gap values computed using ab-initio LDA-1/2 method are lower by ~0.02—0.08 eV than those obtained
using semi-empirical SK-SCF and EH-SCF methods. On the other hand, the band gap values computed using
ab-initio TB09 meta-GGA method are slightly higher by 0.02—0.08 eV than those obtained using EH-SCF and
SK-SCF methods. It may be noted that bandgap values computed using ab-initio LDA-1/2 and TB09 meta-GGA
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Table 3. Electronic band gaps (in eV) of zigzag ‘metallic’ (3m, 0) SWNTs computed using semiempirical, self-
consistent (SK-SCF and EH-SCF methods); DFT-based (LDA, PBE-GGA, LDA-1/2 and TB09 meta-GGA)

methods.

(3m, 0) SK-SCF EH-SCF LDA GGA LDA-1/2 TB09-m-GGA Exp.”
(6,0) 0.18 0.00 0.00 0.00 0.00 0.00 —
9,0) 0.110 0.117 0.084 0.093 0.118 0.141 0.080
(12,0) 0.066 0.078 0.053 0.058 0.076 0.078 0.042
(15,0) 0.043 0.056 0.036 0.039 0.051 0.056 0.029
(18,0) 0.031 0.032 — — — — —
(21,0) 0.016 0.018 — — — — —
@ Ref. [5].

Table 4. Electronic band gaps (in eV) of zigzag semiconducting (n, 0)
SWNTs (where n = 3m) computed using semiempirical, self-consistent
(SK-SCF and EH-SCF) methods; DFT-based (LDA, PBE-GGA, LDA-1/2
and TB09 meta-GGA) methods.

(1,0) SK-SCF SCF-ETH LDA-1/2 TB09 m-GGA
(10,0) 0.95 1.04 0.93 1.07
(11,0) 0.86 0.94 0.84 0.96
(13,0) 0.740 0.800 0.721 0.825
(14,0) 0.628 0.689 0.607 0.692
(16,0) 0.603 0.657 0.590 0.675
(17,0) 0.524 0.572 0.507 0.582
(19,0) 0.508 0.556 0.497 0.573
(20,0) 0.450 0.490 — —
(22,0 0.438 0.480 — —
(23,0) 0.394 0.429 — —
(25,0) 0.385 0.421 — —
(26,0) 0.350 0.382 — —
(28,0) 0.343 0.376 — —
(29,0) 0.315 0.344 — —

methods are quite close and are within ~0.02 eV to those obtained using semi-empirical (SK-SCF and EH-SCF)
methods. In order to extrapolate band gap of tubes with larger diameter, we fit the data shown in tables 1 and 4
for tubes with diameter greater than 1.0 nm, with simple relation E;; = a/d,. The computed value of parameter
ais found tobe 0.795 and 0.729 eV-nm using EH-SCF and SK-SCF respectively. The computed value of a is
smaller than that suggested from fitting experimental optical bandgap data (~1 eV).

4, Conclusion

Electronic band gaps of semiconducting single-walled carbon nanotubes (SWNTs) with different sets of chiral
indices are investigated using semi-empirical tight binding and density functional (DFT) based ab-initio
methods. The self-consistent extended Huckel (EH-SCF) and self-consistent Slater-Koster (SK-SCF) tight
binding schemes are used as semi-empirical methods, whereas DFT based LDA-1/2 and Tran Blaha (TB09)
meta-GGA schemes are used as ab-initio methods. The electronic bad gaps are calculated for four different sets
of SWNTsviz. (1) (n, m) chiral nanotubes for which experimental optical gap data is available 2) (3m, 0)
‘metallic’ zigzag nanotubes (1 = 3, 4, 5) for which small band gaps have been reported (3) nanotubes with same
diameter but different chiral angles 4) (n = 3m, 0) zigzag semiconducting nanotubes with diameter greater
than 1 nmand 10 < n < 30. The results suggest that the electronic band gaps of SWNTs vary with chiral angles
with opposing trend as compared to that reported for experimental optical band gaps. This in turn suggest
interesting implications for exciton binding energy dependence on chiral angles. By fitting data obtained using
EH-SCF and SK-SCF methods and to the equation (zone-folding tight binding model) E["® = 2v,a,_/d,, the
hopping parameter -y, is computed to be 2.77 eV and 2.57 eV respectively. These computed values of +, are in
good agreement with that obtained from fitting experimental data (2.7 £ 0.1 eV). The electronic band gaps
obtained using semi-empirical ET-SCF and SK-SCF methods are found to be smaller by ~0.2-0.3 eV than
reported experimental optical gaps. The low band gaps of ‘metallic’ (9, 0), (12, 0) and (15, 0) zigzag nanotubes
computed using semi-empirical (EH-SCF, SK-SCF) and ab-initio (LDA-1/2, TB09 meta-GGA) schemes are
found to be in good agreement with the experimental values. Moreover, the band gaps of these ‘metallic’ zigzag
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SWNTs computed using ab-intio LDA and GGA-PBE xc-functional methods are found to be in excellent
agreement with experiments and may be partially attributed to cancellation of errors in both LDA and GGA.
Opverall, the electronic band gaps computed using semiempirical EH-SCF and SK-SCF methods are found to be
within ~5% to those computed using DFT-based LDA-1/2 and TB09 meta-GGA methods. The results suggest
that self-consistent semi-empirical methods can be expected to provide accuracy comparable to that expected
from more computationally expensive ab-intio DFT based LDA-1/2 and TB09 meta-GGA schemes.
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