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Abstract

The Beale-Kato-Majda theorem contains a single criterion that controls the be-
haviour of solutions of the 3D incompressible Euler equations. Versions of this
theorem are discussed in terms of the regularity issues surrounding the 3D incom-
pressible Euler and Navier-Stokes equations together with a phase-field model for
the statistical mechanics of binary mixtures called the 3D Cahn-Hilliard-Navier-
Stokes (CHNS) equations. A theorem of BKM-type is established for the CHNS
equations for the full parameter range. Moreover, for this latter set, it is shown
that there exists a Reynolds number and a bound on the energy-dissipation rate
that, remarkably, reproduces the Re3/4 upper bound on the inverse Kolmogorov
length normally associated with the Navier-Stokes equations alone. An alter-
native length-scale is introduced and discussed, together with a set of pseudo-
spectral computations on a 1283 grid.
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1. Introduction

1.1. The 3D Euler, Navier-Stokes and Cahn-Hilliard-Navier-Stokes equations

The fine-scale turbulent dynamics, commonly observed in numerical simula-
tions and experiments, has long been thought to be related to the issues concern-
ing the regularity of solutions of both the 3D incompressible Euler and Navier-
Stokes equations, although these issues remain largely unresolved [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12]. Respectively, these equations are

(∂t + u · ∇)u = −∇p , (1)

and
(∂t + u · ∇)u = ν∆u−∇p+ f(x) . (2)

In (1) and (2) u is a divergence-free (divu = 0) velocity field, ν is the viscosity
and f(x) is a divergence-free, mean-zero, L∞-bounded forcing. In this paper the
domain V is taken to be a periodic box of side L and the uniform density ρ is set
to unity.

Another system in which turbulent dynamics occurs is the phase-field model
governed by the 3D Cahn-Hilliard equations. These are fundamental in the study
of the statistical mechanics of binary mixtures [13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]

∂tφ = γ∆µ , (3)

where the chemical potential µ = δF/δφ is related to the free energy

F =

∫

V

[

Λ

2
|∇φ|2 + Λ

4ξ2
(

φ2 − 1
)2
]

dV . (4)

µ is thus given by
µ = Λ

[

−∆φ+ ξ−2
(

φ3 − φ
)]

. (5)

This model can be used to study the mixing of two fluids, which are immiscible
below a critical temperature, via a phase field φ. In equilibrium, φ = −1 for one
phase and φ = 1 for the other. The advantage of such a model is the continuity
of the thin interface, of thickness ξ, between the two fluids. The existence of this
interface removes the necessity of dealing with the complications of tracking a free
boundary. When (3) is coupled to the 3D Navier-Stokes equations (divu = 0)

(∂t + u · ∇)φ = γ∆µ , divu = 0 (6)

(∂t + u · ∇)u = ν∆u− φ∇µ−∇p+ f(x) , (7)

(Anupam Gupta), nairitap2009@gmail.com (Nairita Pal), rahulpandi@gmail.com (Rahul
Pandit)
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the combination of (5), (6) and (7) are known as the Cahn-Hilliard-Navier-Stokes
(CHNS) equations. The parameter γ in (3) is called the mobility (Bray [17]),
and ξ is the interface thickness. The interfacial dynamics are of especial interest,
particularly regarding the immiscible Rayleigh-Taylor instability (RTI), which is
manifest in this thin mixing layer : for references on the ubiquity of the RTI
see [34, 35, 36, 37, 38, 39, 40, 41, 42]. Whether tightly-packed interfacial level
sets remain continuous as time evolves is a question that is closely connected to
the issue of the regularity of solutions, which remains an open problem for all
these three sets of equations in three dimensions (3D). Various results are known
in two dimensions (2D), such as the regularity of not only the 2D Navier-Stokes
equations [6, 7, 10, 11, 12] but also of the stand-alone 2D Cahn-Hilliard equations
(Elliott and Songmu [43]). The regularity problem for the 2D Cahn-Hilliard-
Navier-Stokes (CHNS) equations has been solved in some remarkable papers by
Abels [44, 45] and Gal and Grasselli [46] using different boundary conditions. In
3D, however, the issue remains a formidable open problem. Nevertheless, in the
light of criteria that control their regularity, they do possess certain features in
common with both the Euler and Navier-Stokes equations, and it is these that
are the subject of this paper.

1.2. Statement of a theorem of BKM-type for the CHNS equations

The fundamental theorem that governs the behaviour of solutions of the 3D
Euler equations is called the Beale-Kato-Majda (BKM) theorem [47] : see also
Bardos and Titi [1] and Gibbon [3]. The statement of the theorem is simple. For
n ≥ 0, let us define

Hn =

∫

V
|∇nu|2 dV . (8)

Now consider the vorticity ω = curlu. The notation ‖ · ‖p =
(∫

V | · |pdV
)1/p

means that ‖ω‖∞ is the maximum or sup-norm of the vorticity in the domain V.

Theorem 1. (Beale, Kato and Majda [47]) For initial data of the 3D Euler
equations satisfying u0 ∈ Hn for n ≥ 3, suppose there exists a solution on the
interval [0, T ∗) that loses regularity at the earliest time T ∗, then

∫ T ∗

0
‖ω‖∞ dτ = ∞ . (9)

Conversely, if, for every T > 0,
∫ T
0 ‖ω‖∞ dτ < ∞, then solutions of the 3D Euler

equations remain regular on [0, T ].

The proof in [47] is short and the strategy is by contradiction. After some work,
BKM found a differential inequality for Hn, in terms of ‖ω‖∞ which, when inte-
grated in time up to and including T ∗, proves that Hn is controlled from above
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by
∫ T ∗

0 ‖ω‖∞ dτ . Given that the theorem presupposes that Hn loses regularity

at T ∗, we cannot have Hn(T
∗) = ∞ while

∫ T ∗

0 ‖ω‖∞ dτ remains finite.

Compared to the 3D Navier-Stokes equations, little is known about the be-
haviour1 of solutions of the 3D Euler equations [1]. The value of the BKM
theorem is that it furnishes us with a single, numerically testable criterion based
on the behaviour of the time integral

∫ T
0 ‖ω‖∞ dτ . There is a long history of

numerical experiments that have aimed to test whether a singularity develops
(see the list in [3]) but the latest work suggests that solutions do not blow up
but undergo double exponential growth [51, 52]. The theorem also rules out po-
tential algebraic singularities of a certain type : for instance, if one performs a
numerical simulation and observes a singularity of the type ‖ω‖∞ ∼ (T ∗ − t)−p,

then
∫ T ∗

0 ‖ω‖∞ dτ is finite for 0 < p < 1. The theorem says that no singularity
can occur, whereas the claim is that one has been observed. The ensuing con-
tradiction can only be resolved by realizing that the observed singularity is an
artefact of the numerical scheme employed. True singularities of this type must
have p ≥ 1.

Theorem 1 is specific to the 3D Euler equations and centres around the ‖ω‖∞-
criterion in (9), but it is possible to widen this idea to other model problems
which display similar criteria for loss of regularity. These we will label as being
of “BKM-type”. In fact, two theorems of BKM-type that already been proved.
The first is for the stochastic Euler equations by Crisan, Flandoli and Holm [53].
The second is a theorem similar to Theorem 1 that has already been proved by
the authors in [54] for the 3D-CHNS equations, but with unit parameters only.
One of the aims of this paper, among others, is to extend this proof to the full
parameter range and to discuss its relationship with the versions valid for the
3D Euler and Navier-Stokes equations. Before stating it here, some background
is necessary. The energy of the full CHNS system is given by (see Celani et al.
[29])

E(t) =

∫

V

{

1

2
Λ|∇φ|2 + Λ

4ξ2
(φ2 − 1)2 + 1

2
|u|2

}

dV . (10)

This is comprised of a sum of L2-norms and clearly suggests an L∞-equivalent
denoted as E∞ and defined by

E∞(t) = 1

2
Λ‖∇φ‖2∞ +

Λ

4ξ2
(‖φ‖2∞ − 1)2 + 1

2
‖u‖2∞ . (11)

We also need a similar definition similar to Hn involving φ

Pn =

∫

V
|∇nφ|2 dV . (12)

1The wild solutions of De Lellis and Szekelyhidi [48, 49] lie in a category of their own : see
also Buckmaster and Nicol [50].
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The statement of the theorem for the full parameter range follows here below and
its proof is discussed in §3.4 and Appendix B :

Theorem 2. Consider the 3D CHNS equations on a periodic domain V = [0, L]3.
For initial data u0 ∈ Hn, for n ≥ 2, and φ0 ∈ Pn, for n ≥ 3, suppose there exists
a solution on the interval [0, T ∗), where T ∗ is the earliest time that the solution
loses regularity, then

∫ T ∗

0
E∞(τ) dτ = ∞ . (13)

Conversely, there exists a global solution of the 3D CHNS equation if, for every
T > 0,

∫ T

0
E∞(τ) dτ < ∞ . (14)

Clearly, this theorem is of BKM-type where E∞ replaces ‖ω‖∞ in Theorem 1.
As in the BKM theorem above, it provides us with a precise, single criterion for
numerically monitoring the blow-up of solutions. Some types of blow-up could
potentially be extremely subtle, such as a cusp forming in a tightly packed level
sets in the CHNS-interface ; this could potentially cause a high derivative to
become singular. These are ruled out if

∫ t
0 E∞ dτ < ∞. However, an obvious

question to ask is why the Navier-Stokes part of E∞ is proportional to ‖u‖2∞ and
not ‖ω‖∞? This question is answered in §2 where several well-known 3D Navier-
Stokes regularity criteria are summarized (see Table 1) and where it is shown
that while E∞-theorem is akin to the Euler equations in being of BKM-type, the
‖u‖2∞ term has its origins in the Navier-Stokes equations. This is followed by
a section on the CHNS equations, in which some new results on bounds for the
energy dissipation rate in terms of the Reynolds number are displayed.

In the original proof of the E∞-theorem in [54], the parameters ν, Λ, γ and
ξ were set to unity for convenience. In §3, dimensional analysis is used to create
a new version of the proof with the full parameter range.

Finally, thanks to our state-of-the-art direct numerical simulations (DNSs)
in §3.2, we have been able to monitor the complete time series of the energy
dissipation rate and thus calculate the mean dissipation rate. These DNSs also
help us to estimate a new alternative length scale based on

√
Λ. This helps us

to see if there is (or is not) any ordering of the conventional length scale and the
new alternative scale ; this cannot be predicted analytically.

2. Regularity properties of the 3D Navier-Stokes equations :

the
∫

t

0
‖u‖2

∞
dτ criterion

The structure of E∞ in Theorem 2 is intriguing and raises the question why
the Navier-Stokes contribution is of the form ‖u‖2∞ and not the conventional
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‖ω‖∞. The first subsection discusses this question while the second summarizes
current knowledge of the boundedness of time-averages, particularly the energy
dissipation rate which is of relevance when this issue is raised for the 3D CHNS
equations in §3.1.

2.1.
∫ t
0 ‖u‖2∞ dτ as a Navier-Stokes regularity criterion

3D Navier-Stokes and Euler regularity are substantially different in that
pointwise control in time over H1 is sufficient for the existence and uniqueness
of solutions of the 3D Navier-Stokes equations whereas this is insufficient for the
3D Euler equations which require the finiteness of ‖ω‖∞. To look further at this,
let us formally differentiate2 H1 with respect to time to obtain :

1

2
Ḣ1 ≤ −νH2 +

∣

∣

∣

∣

∫

V
ω · (ω · ∇u) dV

∣

∣

∣

∣

+ ‖f‖2H1/2
1 . (15)

There are two ways of estimating the central integral term :

∣

∣

∣

∣

∫

V
ω · (ω · ∇u) dV

∣

∣

∣

∣

≤
{

‖ω‖∞H1 ,

‖u‖∞H
1/2
1 H

1/2
2 .

(16)

With the first estimate, (15) becomes

1

2
Ḣ1 ≤ −νH2 + ‖ω‖∞H1 + ‖f‖2H1/2

1 , (17)

and with the second,

1

2
Ḣ1 ≤ − 1

2
νH2 + 1

2
ν−1‖u‖2∞H1 + ‖f‖2H1/2

1 . (18)

Dropping the negative H2-terms in both (17) and (18) it is clear that H1(t) is
bounded from above provided either

∫ t

0
‖ω‖∞ dτ < ∞ or

∫ t

0
‖u‖2∞ dτ < ∞ . (19)

The first is obviously the BKM criterion of Theorem 1, valid for both the 3D
Euler and Navier-Stokes equations, but the second is valid only for 3D Navier-
Stokes because of the role played by the viscous term in deriving (18). It is the
second criterion that appears naturally in E∞, as the proof in Appendix B shows.

The alternative criterion,
∫ t
0 ‖u‖2∞ dτ < ∞, displayed in (19) has a place in

the broader class of regularity criteria due to Serrin (see [8])

u ∈ Lp (0, T ; Lq) , 2/p+ 3/q = 1 . (20)

2See [7, 8] for a more rigorous weak solution approach.
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What is known What is sufficient for regularity

‖u(·, t)‖2 < ∞ ‖u(·, t)‖3 < ∞
∫ t
0 ‖u‖∞ dτ < ∞

∫ t
0 ‖u‖2∞ dτ < ∞

∫ t
0 H1 dτ < ∞

∫ t
0 H

2
1 dτ < ∞

∫ t
0 ‖ω‖1/2∞ dτ < ∞

∫ t
0 ‖ω‖∞ dτ < ∞

Table 1: Table of the results that are known (left column) for the 3D Navier-Stokes equations and
those results that are sufficient for regularity but unproved (right column). The notation is ‖ · ‖p =
(∫

V
| · |p dV

)

1/p
. The results

∫ t
0
‖u‖∞ dτ < ∞ and

∫ t
0
‖ω‖

1/2
∞ dτ < ∞ are both due to Guillopé, Foias,

and Temam [57].

Table 1 displays a set of Navier-Stokes regularity criteria, the first row of which
contains the ‖u(·, t)‖3 < ∞ criterion of Escauriaza, Seregin and Sverak [9] : it is
clear that this criterion lies at one end of (20) with p = ∞ and q = 3, while the
∫ t
0 ‖u‖2∞ dτ < ∞ criterion, which lies in the second row, lies at the other where
p = 2 and q = ∞. Finally we note that there are other Navier-Stokes regularity
criteria that lie outside this class : for instance, those based on the pressure [56].

2.2. Bounded time averages

The Navier-Stokes equations possess a well known energy inequality that goes
back to Leray [5]. It takes the form3

1

2

d

dt

∫

V
|u|2dV ≤ −νH1 + ‖u‖2‖f‖2 . (21)

The u · (u · ∇u) term vanishes under the Divergence Theorem. With a time
average defined by

〈·〉T =
1

T

∫ T

0
· dτ (22)

and with an average velocity U and a box frequency ̟0 defined by

U2 = L−3
〈

‖u‖22
〉

T
, ̟0 = νL−2 , (23)

and with Grashof and Reynolds numbers defined as

Gr =
L3/2‖f‖2

ν2
, Re =

UL

ν
, (24)

3The mathematical statements in this section are purely formal : for a full weak solution
exposition based on Leray’s weak solutions [5], see [6, 7, 8].

7



a time average of (21) gives

〈H1〉T ≤ ̟2
0L

3GrRe+O
(

T−1
)

. (25)

Doering and Foias [55] have shown that, for a forcing function with a single
scale ℓ, for which we take ℓ = L for convenience, then Gr ≤ cRe2, where the
dimensionless constant c is a function of the shape of the forcing. Thus (25)
becomes

〈H1〉T ≤ c̟2
0L

3Re3 +O
(

T−1
)

, (26)

and the energy-dissipation rate E is bounded by

E = νL−3 〈H1〉T , (27)

and so we end up with the classic estimate for the inverse Kolmogorov length
λ−1
k

Lλ−1
k =

(

E/ν3
)1/4 ⇒ Lλ−1

k ≤ cRe3/4 . (28)

This type of Re3/4-estimate is reflected in similar results for the 3D CHNS equa-
tions displayed below.

3. The 3D CHNS equations

3.1. New estimates on the energy dissipation rate

Consider the energy of the full CHNS equations as in Celani, et al. [29] stated
earlier in (10)

E(t) =

∫

V

{

1

2
Λ|∇φ|2 + Λ

4ξ2
(φ2 − 1)2 + 1

2
|u|2

}

dV . (29)

Then a formal differentiation gives

dE

dt
=

∫

V
{Λ∇φ · ∇ [−u · ∇φ+ γ∆µ] + (µ+ Λ∆φ) (−u · ∇φ+ γ∆µ)} dV

+

∫

V
{u · (ν∆u− φ∇µ−∇p+ f)} dV . (30)

Integrating by parts on the first term and using the property divu = 0 and the
Divergence Theorem to remove the pressure term, we find

dE

dt
= −Λ

∫

V
∆φ [−u · ∇φ+ γ∆µ] dV

+

∫

V
(µ+ Λ∆φ) (−u · ∇φ+ γ∆µ) dV

−
∫

V
φu · ∇µdV +

∫

V

(

−ν|∇u|2 + u · f
)

dV . (31)
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Parameter Dimension

[ν] L2T−1

[ξ] L

[Λ] L4T−2

[γ] T

[φ] none

[µ] L2T−2

Table 2: Dimensions of the various parameters and the variable µ in (3) – (5).

Terms in the first and second line of (31) cancel. Moreover,
∫

V u · ∇(φµ) dV = 0
because divu = 0, leaving us with

dE

dt
= −

∫

V

(

ν|∇u|2 + γ|∇µ|2
)

dV +

∫

V
u · f dV . (32)

Thus, without any additive forcing, dE/dT < 0, in which case E decays, a result
which is true in every dimension. For the forced case we can do better with time
averages 〈·〉T up to time T defined in (22). Define the full energy-dissipation rate
as

E(ν, γ) = L−3

〈
∫

V

(

ν|∇u|2 + γ|∇µ|2
)

dV

〉

T

, (33)

then a time average of (32) gives

E(ν, γ) ≤ U‖f‖2 +O
(

T−1
)

= ν3L−4GrRe+O
(

T−1
)

, (34)

where the average velocity U is defined in (23). Defining a Kolmogorov-like length
in the conventional way

Lλ−1
ν,γ =

(

E(ν, γ)/ν3
)1/4

, (35)

we can appeal to the modified Doering-Foias relation between Gr and Re proved
in the Appendix and shown earlier in (27). Remarkably, this still stands for the
CHNS system with minor modifications. Thus we have

Lλ−1
ν,γ ≤ cRe3/4 . (36)

3.2. An alternative length scale

Because
√
Λ and ν have the same dimensions it is also possible to define new

variables EΛ, Lλ−1
Λ,γ in which ν has been replaced by

√
Λ. Thus we define

E(Λ, γ) = L−3

〈
∫

V

(√
Λ|∇u|2 + γ|∇µ|2

)

dV

〉

T

, (37)
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with

Lλ−1
Λ,γ =

(

E(Λ, γ)/Λ3/2
)1/4

. (38)

Which is the smallest scale, λν,γ or λΛ,γ? The answer depends on how large, in
relative terms, are the integrals in (33) and (37), and how large, in relative terms,
are ν and

√
Λ?

To investigate these two scales, we turn to direct numerical simulations (DNSs)
of the 3D CHNS equations, using constant energy injection and a constant forc-
ing wave number. We use a pseudospectral method, with N/2 dealiasing because
of the cubic nonlinearity and, for the purpose of illustration, 1283 collocation
points. We use a second-order Adams-Bashforth method for time marching. In
our CHNS description, both components of the fluids have the same viscosity;
and we assume that γ is independent of φ. Other details of such a DNS can be
found in Refs.[30, 54] which we follow here.

In the way λν,γ and λΛ,γ have been defined, their relative value will depend
only on

√
Λ and ν. R1-R8 in Table 3, remarkably show that, for the parameters

we have used,
λν,γ ≤ λΛ,γ . (39)

Only if ν = γ =
√
Λ, do we find λν,γ = λΛ,γ (see Run R7-R8). In Figs. 1-3,

we have shown the time series of γ |∇µ|2 (left panel), |φ|2 (middle panel), and
ν|∇u|2 (right panel) for run R1, R3 and R7 respectively. For runs R3, R4, R7, R8
we have chosen a small value of the mixing-energy density, which leads to high
mixing and is responsible for the vanishingly small values of γ |∇µ|2 shown in
the insets of the left panels of Figs. 2 and 3.

〈Reλ〉t ν Λ γ ν
〈

‖∇u‖22
〉

t
γ
〈

‖∇µ‖22
〉

t
λν,γ λΛ,γ

R1 27 1.16× 10−2 0.107703 1.16× 10−2 0.2418 0.1078 1.1462 6.6594

R2 27 1.16× 10−2 0.107703 6.25× 10−3 0.2440 0.1063 1.1456 6.6447

R3 30 1.16× 10−2 0.0016 1.16× 10−2 0.3496 0 1.1462 2.1285

R4 30 1.16× 10−2 0.0016 6.25× 10−3 0.3493 0 1.1458 2.1286

R5 48 5.00× 10−3 0.0707 5.00× 10−3 0.1910 0.1589 0.6096 5.1519

R6 47 5.00× 10−3 0.107703 5.00× 10−3 0.2184 0.1317 0.6095 5.5441

R7 21 2.00× 10−2 4.00× 10−4 2.00× 10−2 0.3500 0 1.7249 1.7249

R8 13 4.00× 10−2 1.60× 10−3 4.00× 10−2 0.3505 0 2.8987 2.8987

Table 3: The entries in the table are values of the parameters Reλ, ν, Λ, γ, ν
〈

‖∇u‖22
〉

t
,

γ
〈

‖∇µ‖22
〉

t
, λν,γ , and λΛ,γ for our DNS runs R1-R8. The number of collocation points

is kept fixed at N = 128 in each direction (so the total number of collocation points is
1283). The forcing wave numbers are fixed at kf = 1&2, ν is the kinematic viscosity, the
Cahn number Ch = ξ/L, where ξ is the interface width, is kept fixed at Ch = 0.01 (with
L = 2π), and Reλ is the Taylor-microscale Reynolds number. In all cases 〈·〉t denotes
the average over time in the statistically steady state.
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Figure 1: Plots versus time t of γ‖∇µ‖22 (left panel), ‖φ‖22 (middle panel), and ν‖∇u‖22 (right
panel) for run R7. The labelling in the figures is | · |2 ≡ ‖ · ‖22.
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Figure 2: Plots versus time t of γ‖∇µ‖22 (left panel), ‖φ‖22 (middle panel), and ν‖∇u‖22 (right
panel) for run R3. The inset in the left panel shows the plot of γ‖∇µ‖22 versus time t ; this shows
that γ‖∇u‖22 is vanishingly small for this run, in the statistically steady state. As in Fig. 1, the
labelling in the figures is | · |2 ≡ ‖ · ‖22.

3.3. Dimensionless forms of the CHNS equations

Let us transform the CHNS equations into dimensionless (primed) coordinates
beginning with a characteristic velocity U and using the layer thickness ξ as the
characteristic length (see Table 2)

t′ = Uξ−1t , x′ = ξ−1x , u′ = U−1u , φ′ = φ . (40)

Moreover, let

µ′ = −∆′φ′ + φ′3 − φ′ , with µ = Λξ−2µ′ , (41)

and let the dimensionless pressure p′ be defined as p′ = (τξ−1)2p. Then, in
dimensionless form, the CHNS equations become (with div′u′ = 0)

(

∂t′ + u′ · ∇′
)

φ′ = S−1
1 ∆′µ′ , (42)

(

∂t′ + u′ · ∇′
)

u′ = S−1
2 ∆′u′ − S−1

3 φ′∇′µ′ −∇′p′ + f ′ , (43)

where S−1
1 , S−1

2 and S−1
3 are dimensionless parameters :

S−1
1 =

Λγ

Uξ3
, S−1

2 =
ν

Uξ
, S−1

3 =
Λ

U2ξ2
. (44)
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Figure 3: Plots versus time t of γ‖∇µ‖22 (left panel), ‖φ‖22 (middle panel), and ν‖∇u‖22 (right
panel) for run R7. The inset in the left panel shows the plot of γ‖∇µ‖22 versus time t ; this shows
that γ‖∇u‖22 is vanishingly small for this run, in the statistically steady state. The labelling in
the figures is | · |2 ≡ ‖ · ‖22.

The cubic domain is [0, Ch−1]3 where Ch = ξ/L is the Cahn number which
represents the interface thickness normalized with the characteristic length scale
(here the characteristic length scale is the box-size L = 2π). In the CHNS
literature, the Péclet number Pe is also used, which is the ratio of the convective
and diffusive time scales. It is also the product of the Reynolds number and
the Schmidt number. For characteristic length and velocity scales L and U ,
Pe = LU/D , where D = γΛ/ξ2 is the diffusivity. If the CHNS equation is
non-dimensionalized by using ξ as the characteristic length scale, then Pe =
Uξ3/Λγ = S1.

We can also write S3 = CaReξ, where Ca = ρνU/σ is the capillary number
and Reξ = Uξ/ν is the Reynolds number at the length scale ξ; and σ = 22Λ/3ξ
⇒ S3 ∼ ρU2ξ2/Λ.

3.4. Proof of Theorem 2 for the full set of parameters

The number of parameters S−1
i (i = 1, 2, 3) in (42) significantly lengthens

and complicates the proof of Theorem 2 so in [54] this was performed for unit
parameters : this is repeated in Appendix B for completeness. In this section we
show that there is a way of adapting the unit-parameter proof to the full set of
parameter values. Let us return to the energy

E(t) =

∫

V

{

1

2
Λ|∇φ|2 + Λ

4ξ2
(φ2 − 1)2 + 1

2
|u|2

}

dV

= ξΛ

∫

V

{

1

2
|∇′φ′|2 + 1

4
(φ′2 − 1)2 + 1

2
S3|u′|2

}

dV ′

≡ ξΛE′(t) , (45)

where, based on the definition of E′(t) in (45), we define its L∞-equivalent

E′
∞ = 1

2
‖∇′φ′‖2∞ + 1

4
(‖φ′‖2∞ − 1)2 + 1

2
S3‖u′‖2∞ . (46)
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and thus E′
∞ = Λ−1ξ2E∞ with E∞ defined in (11). Indeed, the calculation

leading to (32) can be repeated using the dimensionless form E′ above. In the
following we develop a strategy based upon E′

∞ defined in (46). In [54] a BKM-
type theorem was proved with the various parameters set to unity for convenience,
which makes S1 = S2 = S3. This proof in [54] can be used to prove the theorem
for the full parameter set by using a device. Firstly, it is easy to prove that

min
{

1, S−1
3

}

E′
∞ ≤ E′

unit ≤ max
{

1, S−1
3

}

E′
∞ . (47)

where, with unit variables,

E′
unit =

1

2
‖∇′φ′‖2∞ + 1

4
(‖φ′‖2∞ − 1)2 + 1

2
‖u′‖2∞ . (48)

The direction of the inequalities in the proof allow us to prove the theorem in the
primed variables with unit parameter values (i.e. E′

unit), and then, using (47),
replace E′

unit with E′
∞, which translates back to E∞ in dimensional variables.

Thus we have proved the theorem for all positive values of the parameters in E∞.

4. Conclusion

The regularity problem for the 3D CHNS equations is a hard problem : it
compounds the formidable difficulties found when addressing the same issue in
its two constituent parts, namely the 3D Navier-Stokes and 3D CHNS equations
respectively. While there are also clear parallels with the Navier-Stokes problem,
which suggests a Leray-type approach to weak solutions might be fruitful, various
difficulties stand in the way. For instance, in (32) the usual bound on the time
average of ν

∫

V |∇u|2 dV in the energy dissipation rate is the root of all the results
for the Navier-Stokes part, but we also have the Cahn-Hilliard contribution of
γ
∫

V |∇µ|2 dV on the right hand side. Finding estimates in terms of this is a
difficult task and one that currently lies out of reach.

For the present we have to be content with a Beale-Kato-Majda-type of result
as displayed in Theorem 2. We could now call this a class of theorems as there
are now three of its type : (i) the original for the 3D Euler equations ; (ii) our
Theorem 2 for the CHNS equations, and (iii) a theorem for the stochastic 3D
Euler equations of Crisan, Flandoli and Holm [53]. The 1283 simulations dis-
play no evidence of singular behaviour although, computationally, this is a very
demanding problem and requires further investigation.

The structure of the energy dissipation in (32) has allowed us to introduce
an Re3 energy bound and thus a Re3/4 upper bound on (Lλν,γ)

−1, this inverse
length scale being defined in (35). One further interesting result arising in the
simulations is the fact that for both ν >

√
Λ and ν <

√
Λ we see an ordering

in these two length scales such that λν,γ < λΛ,γ , a result for which we see no
evidence analytically. This, again, requires further investigation.
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Appendix A. The Doering-Foias relation between Gr and Re

Doering and Foias [55] split the forcing function f(x) into its magnitude F
and its “shape” φ such that

f(x) = Fφ(ℓ−1x), (A.1)

where ℓ is the longest length scale in the force but here it is taken to be ℓ = L
for convenience. On the unit torus Id, φ is a mean-zero, divergence-free vector
field with the chosen normalization property

∫

Id

∣

∣∇−1
y φ

∣

∣

2
ddy = 1 . (A.2)

L2-norms of f on I
d are

‖∇Nf‖22 = CNℓ−2NLdF 2, (A.3)

where the coefficients CN refer to the shape of the force but not its magnitude

CM =
∑

n

|2πn|2N |φ̂n|2 . (A.4)

Doering and Foias [55] showed that various bounds exist such as (among others)

‖∇∆−Mf‖∞ = DMFℓ2M−1 . (A.5)

The energy-dissipation rate ǫ is

ǫ =

〈

νL−d

∫

Id

|∇u|2 dV
〉

= νL−d 〈H1〉 . (A.6)

In terms of F the Grashof number in (24) becomes

Gr = Fℓ3/ν2 (A.7)

and the Taylor micro-scale λT is related to U via λT =
√

νU2/ǫ , which is con-
sistent with the definition λ−2

T = 〈H1〉 / 〈H0〉.
14



Following the procedure in [10] (page 296 equation (2.9)) we multiply the Navier-
Stokes equations by (−∆−M )f to obtain

d

dt

∫

Id

u · [(−∆−M )f ] dV = ν

∫

Id

∆u · [(−∆−M )f ]

−
∫

Id

∇−Mf · ∇−Mf dV

−
∫

Id

u · ∇u · [(−∆−M )f ] dV

+

∫

V
φ(∆−Mf) · ∇µdV , (A.8)

where the pressure term vanishes in the usual way. Now integrate all the terms
by parts, and take the time average

〈
∫

Id

∇−Mf · ∇−Mf dV

〉

T

≤ ν

〈
∫

Id

u · [(−∆−M+1)f ] dV

〉

T

−
〈
∫

Id

u · [∇[(−∆−M )]f ] · u dV

〉

T

+

〈
∫

Id

φ∆−Mf · ∇µ

〉

T

. (A.9)

An extra term
∫

V φ∆−Mf ·∇µdV derives from the −φ∇µ-term in (3). However,
all its contributions are zero except one, given the definition of µ. (A.9) becomes

c0F
2ℓ2M ≤ c1νFℓ2M−2U + c2ℓ

2M−1FU2 + c3Λ
−1ℓ2M−1F 〈E〉T , (A.10)

where the U2-term contains the contributions from both nonlinear terms and the
constants (not explicitly given) contain the shape of the body forcing. Using
(A.7), as Gr → ∞, (A.10) becomes

Gr ≤ c4
(

Re+Re2
)

+O (〈E〉T ) . (A.11)

Appendix B. Proof of Theorem 2 with unit parameters

In the following the parameters in the dimensionless system Sn are set to
unity and primes have been removed4. The domain is now the cube [0, Ch−1]3.
Then, we recall the definitions of Hn in equation (8) and Pn in equation (12) and
proceed in 3 steps.

Step 1 : We begin with the time evolution of Pn (the dot above Pn denotes a
time derivative),:

1

2
Ṗn = −Pn+2 + Pn+1 +

∫

V
(∇nφ)∇n∆(φ3) dV −

∫

V
(∇nφ)∇n(u · ∇φ) dV ; (B.1)

4This proof has been published in [54] but is included here for completeness.
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and then we estimate the third term on the right as

∣

∣

∣

∣

∫

V
(∇nφ)∇n∆(φ3) dV

∣

∣

∣

∣

≤ ‖∇nφ‖2
n+2
∑

i,j=0

Cn+2
i,j ‖∇iφ‖p|∇jφ‖q‖∇n+2−i−jφ‖r,

(B.2)
where 1/p + 1/q + 1/r = 1/2. Now we use a sequence of Gagliardo-Nirenberg
inequalities

‖∇iφ‖p ≤ cn,i‖∇n+2φ‖a12 ‖φ‖1−a1
∞ ,

‖∇jφ‖q ≤ cn,j‖∇n+2φ‖a22 ‖φ‖1−a2
∞ , (B.3)

‖∇nφ‖r ≤ cn,i,j‖∇n+2−i−jφ‖a32 ‖φ‖1−a3
∞ ,

where, in d dimensions,

1

p
=

i

d
+ a1

(

1

2
− n+ 2

d

)

,

1

q
=

j

d
+ a2

(

1

2
− n+ 2

d

)

, (B.4)

1

r
=

n+ 2− i− j

d
+ a3

(

1

2
− n+ 2

d

)

.

By summing these and using 1/p+1/q+1/r = 1/2, it is seen that a1+a2+a3 = 1.
Thus, we have

∣

∣

∣

∣

∫

V
(∇nφ)∇n+2(φ3) dV

∣

∣

∣

∣

≤ cn‖∇nφ‖2‖∇n+2φ‖2‖φ‖2∞ ≤ 1

2
Pn+2 + cnPn‖φ‖4∞ ,

(B.5)
and so Eq. (B.1) becomes (here and henceforth coefficients such as cn are multi-
plicative constants),

1

2
Ṗn = − 1

2
Pn+2 + Pn+1 + cn‖φ‖4∞Pn +

∣

∣

∣

∣

∫

V
(∇nφ)∇n(u · ∇φ) dV

∣

∣

∣

∣

. (B.6)

Estimating the last term in Eq. (B.6) we have
∣

∣

∣

∣

∫

V
(∇nφ)∇n(u · ∇φ) dV

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

V
(∇n+1φ)∇n−1(u · ∇φ) dV

∣

∣

∣

∣

(B.7)

≤ ‖∇n+1φ‖2
n−1
∑

i=0

Cn
i ‖∇iu‖p‖∇n−1−i(∇φ)‖q ,

where 1/p + 1/q = 1/2. Now we use two Gagliardo-Nirenberg inequalities in d
dimensions to obtain

‖∇iu‖p ≤ c ‖∇n−1u‖a2‖u‖1−a
∞ , (B.8)

‖∇n−1−i(∇φ)‖q ≤ c ‖∇n−1(∇φ)‖b2‖∇φ‖1−b
∞ . (B.9)
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Equations (B.8) and (B.9) follow from

1

p
=

i

d
+ a

(

1

2
− n− 1

d

)

, (B.10)

1

q
=

n− 1− i

d
+ b

(

1

2
− n− 1

d

)

. (B.11)

Because 1/p+1/q = 1/2 then a+b = 1. Thus the second term in Eq. (B.1) turns
into5

∣

∣

∣

∣

∫

V
(∇nφ)∇n(u · ∇φ) dV

∣

∣

∣

∣

≤ cnP
1/2
n+1H

a/2
n−1P

b/2
n ‖u‖1−a

∞ ‖∇φ‖1−b
∞ (B.12)

≤ P
1/2
n+1

[

cnHn−1‖∇φ‖2∞
]a/2 [

Pn‖u‖2∞
]b/2

≤ 1

2
Pn+1 + 1

2
acnHn−1‖∇φ‖2∞ + 1

2
bPn‖u‖2∞ ,

and Eq. (B.6) becomes

1

2
Ṗn = − 1

2
Pn+2 + 3

2
Pn+1 + cn,1

(

1

2
‖φ‖4∞ + ‖u‖2∞

)

Pn + cn,2Hn−1‖∇φ‖2∞ . (B.13)

Step 2 : Now we look at Hn defined in Eq. (8) using Eq. (2) with f = −ẑφ. The
easiest way is to use the 3D NS equation in the vorticity form as in Doering and
Gibbon [10] where gradient terms have been absorbed into the pressure term,
which disappears under the curl-operation

(∂t + u · ∇)ω = ∆ω + ω · ∇u+∇φ×∇∆φ−∇⊥φ . (B.14)

Therefore, following the methods used in [10], we find

1

2
Ḣn ≤ − 1

2
Hn+1 + cn‖u‖2∞Hn +

∣

∣

∣

∣

∫

V
(∇n−1ω)

[

∇n−1 (∇φ×∆∇φ)
]

dV

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

V
(∇n−1ω)

[

∇n−1∇⊥φ
]

dV

∣

∣

∣

∣

. (B.15)

Beginning with the third term on the right-hand side of Eq. (B.15), we obtain

∣

∣

∣

∣

∫

V
(∇n−1ω)∇n−1 (∇φ×∆∇φ) dV

∣

∣

∣

∣

≤ ‖∇n−1ω‖2
n−1
∑

i=0

Cn
i ‖∇i(∇φ)‖r‖∇n+1−i(∇φ)‖s .

(B.16)
Then, by using a Gagliardo-Nirenberg inequality,

‖∇i(∇φ)‖r ≤ c ‖∇n+1(∇φ)‖a2‖∇φ‖1−a
∞ , (B.17)

‖∇n+1−i(∇φ)‖s ≤ c ‖∇n+1(∇φ)‖b2‖∇φ‖1−b
∞ , (B.18)

5Inequalities (B.8) and (B.12) are the origin of the ‖u‖2∞-term in E∞.
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where 1/r + 1/s = 1/2 and where

1

r
=

i

d
+ a

(

1

2
− n+ 1

d

)

(B.19)

1

s
=

n+ 1− i

d
+ b

(

1

2
− n+ 1

d

)

, (B.20)

we find that a+ b = 1. This yields
∣

∣

∣

∣

∫

V
(∇n−1ω)∇n−1 (∇φ×∆∇φ) dV

∣

∣

∣

∣

≤ cnH
1/2
n P

1/2
n+2‖∇φ‖∞

≤ Pn+2 + 1

4
cnHn‖∇φ‖2∞ . (B.21)

The last term on the right-hand side of Eq. (B.15) is easily handled. Altogether
we find

1

2
Ḣn ≤ − 1

2
Hn+1 + Pn+2 + cn,3

(

‖u‖2∞ + ‖∇φ‖2∞
)

Hn + 1

2
Hn + 1

2
Pn .(B.22)

Step 3 : Finally, by noting thatXn = Pn+1+Hn, we use Eq. (B.5) with n → n+1
to obtain

1

2
Ẋn ≤ − 1

2
Pn+3 + 3

2
Pn+2 + cn,1

(

1

2
‖φ‖4∞ + ‖u‖2∞

)

Pn+1 + cn,2Hn‖∇φ‖2∞
− 1

2
Hn+1 + Pn+2 + cn,3

(

‖u‖2∞ + ‖∇φ‖2∞
)

Hn + 1

2
Hn + 1

2
Pn

≤ − 1

2
Pn+3 − 1

2
Hn+1 + 5

2
Pn+2 + cn,4

(

1

2
‖φ‖4∞ + ‖u‖2∞ + ‖∇φ‖2∞

)

Xn

+ 1

2
Hn + 1

2
Pn . (B.23)

By using Pn+2 ≤ P
1/2
n+3P

1/2
n+1 ≤ (ε/2)Pn+3 + (1/2ε)Pn+1, with ε chosen as ε = 1

5
,

we have (with Pn ≤ Ch−2Pn+1)

1

2
Ẋn ≤ − 1

4
Pn+3− 1

2
Hn+1+cn,4max(1, Ch−2)

(

‖∇φ‖2∞ + 1

2
‖φ‖4∞ + ‖u‖2∞ + 1

2

)

Xn .
(B.24)

We note that φ is a mean-zero function on our periodic domain [0 , Ch−1]3, so
‖φ‖∞ ≤ Ch−1‖∇φ‖∞. Then we can write

cn,5
(

‖∇φ‖2∞ + 1

2
‖φ‖4∞ + ‖u‖2∞ + 1

2

)

=

cn,5

(

‖∇φ‖2∞ + 1

2

(

‖φ‖2∞ − 1
)2

+ ‖u‖2∞ + ‖φ‖2∞
)

≤ 2cn,5

(

‖∇φ‖2∞ + 1

2

(

‖φ‖2∞ − 1
)2

+ ‖u‖2∞
)

. (B.25)

By dropping the negative terms, Eq. (B.24) turns into

1

4
Ẋn ≤ cn,5E

′
unitXn , (B.26)
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where E′
unit is defined in Eq. (47) which has unit parameters. This can then be

replaced by E′
∞ using the same inequality. By integrating over [0, T ∗], we obtain

Xn(T
∗) ≤ cn,6Xn(0) exp

∫ T ∗

0
E′

∞(τ) dτ . (B.27)

Clearly, having
∫ T ∗

0 E′
∞ < ∞ contradicts the statement in the Theorem that

solutions first lose regularity at T ∗. Translating back to dimensional variables we
have the result. �
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