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ABSTRACT

The law of the wall, regarded as one of the very few pieces of turbulence hypothesis, predicts the mean-velocity profile (MVP) in a wall-bound
flow. For about nine decades, the underlying physics of the law is deemed to be governed by an ad hoc mixing-length hypothesis. Here, we
seek the origin of the law, for the first time, with the aid of a new hypothesis, which we call the mixing-instability hypothesis. The hypothesis
unveils the previously unknown universal scaling behavior for the amplitude of turbulent ripples or waves (that cause spontaneous stretching
and shrinking of turbulent eddies) within the overlap layer and accurately maps the experimental data of the MVPs for moderate to extremely
large Reynolds numbers. This study offers a new mechanism of the momentum transfer in a turbulent wall-bound flow, calling for a revision
of the conventional mixing-length hypothesis, which has persisted in standard textbooks on turbulence for many decades.
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I. INTRODUCTION

Turbulent flows are omnipresent in most of the natural and
industrial settings. Atmospheric circulation, a swift river, flow
around an airplane, and in a high-pressure pipeline are a few com-
mon examples. The law of the wall, coined by Coles,1 is one of the
major achievements in turbulence research. It is of great importance
in a wall-bound flow because it describes the flow velocity profiles
as being invariant with the streamwise length scale (i.e., self-similar
velocity profiles). In fact, the law accurately predicts the flow veloc-
ity, particularly in the near-wall shear-flow layer that accounts for
a considerable fraction of the aerodynamic (or hydrodynamic) drag
on the wall, e.g., aircraft surfaces or pipe inner-walls.2 Let us take
the most common example of a wall-bound turbulent flow: flow in a
smooth pipe or flow past a flat plate. In a steady fluid flow carrying
a constant flux, the flow velocity at a given wall-normal distance z
can be averaged over a sufficiently long duration to obtain the local
mean-velocity u and subsequently the mean-velocity profile (MVP)
(Fig. 1). Three separate layers exist in a wall-bound turbulent flow
at an infinitely large Reynolds number, Re ≡ UR/ν, where U is the
bulk flow velocity (ratio of fluid flux to flow cross-sectional area),
R is the length scale of the physical domain (e.g., the pipe radius or

boundary layer thickness), and ν is the coefficient of the kinematic
viscosity of fluid. The flow layers are conceptually sketched in the
inset of Fig. 1. The first layer captures the near-wall layer (the vis-
cous sublayer and buffer layer), being characterized by the length
scale ν/u∗ and the velocity scale u∗. Here, u∗ is the shear velocity
[=(τw/ρ)

1/2], τw is the wall shear stress, and ρ is the mass density of
fluid. This layer roughly extends up to z+ = 50, where z+ ≡ zu∗/ν.
The second layer belonging beyond z/R ≈ 0.15–0.2 characterizes a
wake layer, where the mean-velocity is a function of u∗ and the
outer variable z/R. In addition, there exists an overlap layer between
the near-wall and the wake layers. In this layer, the MVP obeys a
logarithmic law as follows:3

u
+ ≙ 1

κ
ln

z+

z+0
, (1)

where u+ ≡ u/u∗, κ is the von Kármán constant, z0 is the zero-
velocity level, and z+0 ≡ z0u∗/ν. Following experimental observa-
tions,4,5 we set κ = 0.41 and z+0 = exp(–5.1κ). TheMVPs in a pipe flow
were first obtained in 1933 by Nikuradse,6 which have recently been
adequately resolved through challenging experiments,4,5,7–12 numer-
ical simulations of wall-bound flow,13–15 and the neural network
model,16 providing corridors for new research directions. However,
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FIG. 1. MVPs on a semi-logarithmic scale, comprising data of experimental obser-
vations and numerical simulations. Each set of experimental observations (pipe
flow data, superpipe data, and boundary layer data) embraces MVPs for dif-
ferent Reynolds numbers Re. The experimental observations include pipe flow

data of early experiments (yellow diamonds),6 superpipe data obtained from the

pitot tube (blue squares),4 superpipe data obtained from the nano-scale thermal

anemometry probe (NSTAP) (red circles),7,8 and flat plate boundary layer data

(gray triangles);9 numerical simulations include direct numerical simulation (DNS)

data (stars).14 The MVP ranges from the wall (defined by z+ = 0) to the pipe cen-
terline or the boundary layer thickness, which corresponds to a specific value of z+

being dependent on Re. Strikingly, all MVPs in the near-wall flow layer appear to
collapse on a single band. Conceptual sketches of the various flow layers in pipe
and boundary layer flows are shown in the inset. Starting from the wall, as one
moves along the abscissa, each MVP comprises the viscous sublayer (where the
MVP curvature is positive), the buffer layer (where the MVP curvature is negative),
the overlap layer (where the MVP curvature vanishes, obeying the logarithmic
law), and the wake layer (where the MVP overshoots the logarithmic law).

a tangible theory appears to have lagged behind experimentations
and simulations.

Equation (1) stems from the imagery of turbulent eddies that
arise from strong fluid mixing in the flow.17 Recent results have
shown evidence that the turbulent eddies, being originally proposed
in the derivation of the logarithmic law, correspond to the zones of
coherent streamwise momentum, also called the uniform momen-
tum zones.18 The fluid mixing eventually gives rise to the turbulent
shear stress. To quantify the turbulent shear stress, German aero-
dynamicist Ludwig Prandtl drew an analogy between the motion of
turbulent eddies and that of random gas molecules. He hypothesized
that a turbulent eddy preserves its entity only over a given space,
called the mixing length, before transferring the momentum to the
neighboring fluid. When the mixing length is considered to vary
linearly with the wall-normal distance, the hypothesis applied to a
constant stress layer (at a large Reynolds number) readily recovers
the logarithmic law in Eq. (1). It is worth noting that the assump-
tion of a constant stress layer in the derivation of the logarithmic
law is debatable. Although Prandtl’s idea of momentum exchange in
a turbulent flow remains a cornerstone of the primitive turbulence
theories, it has received criticisms for many reasons.19–22 Among the
major flaws of the mixing-length hypothesis, the first is the assump-
tion of isotropic turbulence, wherein the root mean squares of the

streamwise and the wall-normal velocity fluctuations are considered
to be equal. This assumption produces an unexpected scaling of the
turbulent stress in the near-wall flow layer, being incapable to meet
the continuity requirement.21 Moreover, the linear variation of the
mixing length with the wall-normal distance, particularly close to the
wall, is not supported by measurements.23

The law of the wall and its numerous analog have been
predicted by means of the incomplete similarity, perturbation
techniques, and intermediate asymptotics, which were extensively
reviewed elsewhere,24–26 and also via the symmetry approach.27 In
recent years, the spectral theory28,29 and the co-spectral budget the-
ory30,31 have revealed a delicate link between the law of the wall and
the energy spectrum of turbulent eddies (also see Ref. 32). There
remains an ongoing debate as to the applicability of the logarith-
mic law since the MVPs for different Reynolds numbers may not
strictly follow the logarithmic behavior.33 They may however follow
the power-law behavior,34 having the Reynolds number dependent
exponents with respect to a logarithmic envelope.35,36 Despite major
advances and modern refinement of the logarithmic law (see, for
example, Refs. 37 and 38), Prandtl’s classical work and the recent
theories fall short in exploring the precise origin of the law of the
wall. Here, we unveil a new mechanism that underlies the law of
the wall. The new mechanism explores the missing link between the
law of the wall and the mixing instability. Unlike the conventional
mixing-length hypothesis, this study is not founded on the isotropic
assumption. Moreover, the derivation of the logarithmic law of the
wall does not necessitate any constant stress layer assumption.

II. CONCEPTUAL FRAMEWORK OF THE PROBLEM

The concept of mixing instability can be perceived from the
early experiments of Osborne Reynolds, who injected a dye at the
center of a pipe flow and found that the highly unstable dye streak
performs a sinuous motion. Prandtl also identified that an initial
wavy pattern of fluid motion led to the production of turbulence.39

In the line of classic experiments, we envision that the turbulence
manifests as the instability of fluid pathline caused by the random
mixing phenomenon. The instability eventually produces turbulent
ripples or waves that transmit through the fluid fabric. We consider
a large Reynolds number flow so that there remains a distinct signa-
ture of the overlap layer in the flow domain. Here, we try to figure out
how the turbulent shear stress is caused by the transmitting waves in
a smooth pipe of radius R (Fig. 2). We denote a wetted surface Wz

at a wall-normal distance z. The waves at this level are transmitted
at a constant speed equaling the local mean-velocity u(z). When the
waves are visualized through a magnifying glass (an enlarged view
shown in Fig. 2), they appear to be regular sinusoidal patterns. We
focus on two successive instances, t and t + dt, as the waves travel
through the space. At a given time t and position x = x1, let the ver-
tical line x = x1 meet the waves at a characteristic point P (Fig. 2).
After a short interval dt, the point P horizontally shifts to PH , while
on the line x = x1, the characteristic point appears to shift vertically
upward to PV because the point of intersection of the vertical line
x = x1 and the waves traverses along the vertical as the time pro-
gresses. During this period, a turbulent eddy at x = x1 (shown by a
curved arrow in Fig. 2) experiences a wave-induced vertical motion
as the waves push the eddy upward due to the vertical shift of P to
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FIG. 2. Definition sketch of the mixing
instability appearing as ripples or waves
at an arbitrary wall-normal distance z
to cause the stretching and shrinking of
eddies.

PV . Such an action causes the eddy to shrink vertically and to stretch
horizontally, which is perfectly amatter of geometry. Similar stretch-
ing and shrinking of eddies prevail at any other location, say x = x2
(Fig. 2), where the point of intersection of the line x = x2 and the
waves at time t shifts vertically downward on the line x = x2 after a
short interval dt. As a consequence, the waves pull the eddy down-
ward, making the eddy to stretch vertically and shrink horizontally.
Such spontaneous stretching and shrinking of eddies give rise to the
turbulent shear stress.

From the above-mentioned conceptual flow physics, the
mixing-instability hypothesis states:

“At a large Reynolds number, the turbulent mixing at a location

in a wall-bound flow produces disturbances that transmit in the

form of waves, causing continuous stretching and shrinking of

turbulent eddies to produce the turbulent stress.”

We now seek to quantify the turbulent shear stress caused by
the mixing instability. When a fluid parcel carried by an eddy of
characteristic volume l3 [∼ a3, a(x, t) is the local amplitude of waves]
is pushed upward (e.g., the eddy at the position x = x1 shown in
Fig. 2), the eddy is shrunk vertically by an amount dl ∼ PPV (= da)
(or dl = cda), where the proportionality constant c is of the order of
unity. The rate of vertical shrinking is thus (dl/dt)|V = cda/dt. This
suggests that the eddy takes a time dt/c (slightly longer than dt) to
shrink vertically by an amount da. As the eddy is also stretched hor-
izontally (proportional to PPH = dx), after a time dt/c, the rate of
horizontal stretching becomes (dl/dt)|H = dx/(dt/c) = cu. Therefore,
the turbulent stress τt follows

τt ≙ −ρ dl

dt
∣
V

dl

dt
∣
H

≙ −ρc2uda
dt

. (2)

The local amplitude a(x, t) may be set as a(x, t) = a0sin(kx −ωt),
where a0 is the peak amplitude, k is the wavenumber,ω is the angular
frequency (= 2π/T), and T is the time period. Therefore, τt becomes
τt = c2ρa0uω cos(kx − ωt). We consider that the waves are constantly

generated with a frequency T−1 ∼ u′, where u′ is the local velocity
gradient at the wetted surfaceWz , i.e., u

′ ≡ du/dz. Therefore, at any
x and t, τt at the wetted surface Wz (i.e., at the axis of symmetry)
becomes

τt ≙ ρa0uu′, (3)

where the proportionality constant is taken as unity since its value is
immaterial.

The total shear stress τ at a wall-normal distance z can be
obtained from the momentum balance as τ = τw(1 − z/R). τ com-
prises the viscous shear and the turbulent shear stresses. Therefore,
we can write ρνu′ + ρa0uu

′ = τw(1 – z/R). Introducing the fric-
tion factor f = τw/(ρU

2), a+0 ≡ a0u∗/ν, and the Kármán number
R+ ≡ Ru∗/ν, the above-mentioned equation takes the form

u
+′ + a

+
0u

+
u
+′ ≙ 1 − z+

R+ . (4)

For a given Re, if z+ → 0, then a+0 → 0 (i.e., turbulent waves
are unable to sustain). Equation (4) thus tends to produce u+′ = 1,
which upon integration with the boundary condition u+(0) = 0 yields
u+ = z+. This is recognized as the linear law of the wall within the
viscous sublayer.

Within the overlap layer (z+ ≪ Ref 1/2 or z ≪ R), if we let
Re→∞, then the viscous stress disappears, and Eq. (4) reduces to

a
+
0u

+
u
+′ ≙ 1. (5)

In Eq. (5), the amplitude a+0 of turbulent waves still remains
unknown. To seek an expression for a+0 , we consider that the waves
preserve a similarity within the overlap layer. We consider a generic
functional form a+0 ≡ F(u+, u+′, u+′′, u+′′′, . . .), wherein the ampli-
tude of waves at a given wall-normal distance is dependent on the
local mean-velocity and its derivatives. A first approximation con-
sidering the first even-order derivative implies a+0 ≡ F(u+, u+′, u+′′),
which upon dimensional arguments produces a+0 ∝ u+′/u+′′. This
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form is, however, inconsistent with the form of a+0 within the over-
lap layer [see Eq. (5)] as the dimensional analysis eliminates the term
u+. However, when the odd-order derivatives are accounted for, the
function a+0 ≡ F(u+, u+′, u+′′′) readily yields a+0 ∝ (u+′)2/(u+u+′′′),
which appears to be more consistent. Moreover, the notion of odd-
order derivatives is relevant here because u+′ and u+′′′ are linked
with the shear stress and its curvature, respectively. Therefore, in
order to obtain a desired scaling, we express a+0 = cs(u

+′)2/(u+u+′′′),
where cs is a proportionality constant. This form of a+0 is indirectly
evidenced by the experimental data ofMVPs within the overlap layer
(Fig. 1) as this unique dependency is found to recover the classi-
cal logarithmic law. When this form is substituted into Eq. (5), we
obtain the following third-order ordinary differential equation:

u
+′′′ ≙ cs(u+′)3. (6)

Equation (6) represents the governing differential equation of
the MVP within the overlap layer. The solution of Eq. (6) surpris-
ingly obeys u+ = c1 ln z

+ + c2 with c1 and c2 as constants. Setting the
boundary condition u+(z+0 ) = 0, the MVP follows

u
+ ≙ ( 2

cs
)1/2 ln z+

z+0
. (7)

Equation (7) resembles the classical logarithmic law when
cs = 2κ2 is set [compare Eqs. (1) and (7)]. With κ = 0.41, the cs turns
out to be 0.34. When this form of u+ is substituted into Eq. (5), we
obtain

a
+
0 ≙ κ2 z+

ln( z+
z+0
) . (8)

The above-mentioned form can be regarded as the universal
law of turbulent waves within the overlap layer. Note that the above-
mentioned form no longer applies within the buffer and the wake
layers. Within the buffer layer, the amplitude of waves is more likely
to dampen due to the viscous action. An appropriate choice within
the buffer layer is to consider an exponential damping by an amount
of exp(–z+/cd), where cd is the damping constant. Here, we set
cd ≈ 26 to obtain a good congruence with the experimental data of
the MVP. On the other hand, within the wake layer, the amplitude
of waves tends to vanish as z+ → Ref 1/2 (or z → R). Therefore, a
generic expression for the amplitude of waves, in order to stretch
Eq. (8) within the buffer and the wake layers, can be intuitively
set as

a
+
0 ≙ κ2 z+

ln( z+
z+0
)ΓbΓw, Γb ≙ 1 − exp(− z+

cd
),

Γw ≙ ∥1 − z+/(Ref 1/2)∥1/2
1 − cw∥z+/(Ref 1/2)∥∥1 − z+/(Ref 1/2)∥1/2

,

(9)

where cw is the wake constant being of the order of unity.
Equation (9) satisfies all the plausible boundary conditions, viz.,
a+0 (z

+ → 0) = 0 (very close to the wall), a+0 (Ref
1/2 ≫ z+ > 0) = κ2[1

− exp(–z+/cd)]z+/ln(z+/z+0 ) (within the buffer layer), a+0 (Ref
1/2 ≫ z+

≫ 0) = κ2z+/ln(z+/z+0 ) (within the overlap layer), and a
+
0 (z

+→ Ref 1/2)
= 0 (at the edge of the wake layer).

Equation (9) is plotted in Fig. 3. To calculate the fric-
tion factor f, we consider the following implicit equation: 1/f 1/2

= 2.359 ln(5.66Ref 1/2) − 7.679/(Ref 1/2)0.55 − 1.344.40 This form is

FIG. 3. Law of turbulent waves [solid line, given by Eq. (8)] and the theoretical
predictions for Re = 106 and different values of cw [dotted lines, given by Eq. (9)].

valid for moderate to extremely large Reynolds numbers so far
achieved in laboratory settings. Within the overlap layer, the ampli-
tudes of waves for different values of cw approach the solid line,
given by Eq. (8). However, within the wake layer (i.e., beyond the
overlap layer), the amplitude of waves, for a given cw, increases with
an increase in z/R, attaining a peak, and afterward, it reduces with
z/R. Moreover, for a given z/R, the amplitude of waves increases with
an increase in cw. Note that the peak amplitude for a given cw appears
to increase as cw increases.

III. COMPUTATIONAL RESULTS

With Eq. (9), the MVP can be readily obtained. The edge of the
viscous sublayer is set to z+ = 5. It turns out that for z+ < 5, the MVP
obeys a linear law, given by u+ = z+, whereas beyond z+ = 5, theMVP
is to be determined by solving Eq. (5) subject to the boundary con-
dition u+(5) = 5. The computed results are shown in Fig. 4. For a
given wake constant cw [Fig. 4(a)], the MVPs for different Reynolds
numbers Re clearly distinguish three flow layers—near-wall (the vis-
cous sublayer and buffer layer), overlap, and wake layers. The MVPs
for different Re form a logarithmic envelope. As Re increases, the
extent of the overlap layer also enhances (i.e., the logarithmic law
is preserved over a prolonged range of the wall-normal distance).
The theoretical curves also predict the departure of the MVPs from
the logarithmic law, particularly within the wake layer. However, as
the wake constant cw changes [Fig. 4(b)], the MVPs for different Re
are affected only within the wake layer. For a higher value of cw, the
MVPs within the wake layer overshoot the logarithmic law, while
for a lower value of cw, the MVPs underestimate the logarithmic
law.

To test the theoretical predictions of the MVPs for different
Reynolds numbers Re, we collate the experimental measurements
conducted in a superpipe facility.4,7,8 The experiments were carried
out using a high-pressure air facility, covering a broad range of Re.
Two different instruments were used to measure the local mean-
velocity, such as the pitot tube4 and the NSTAP.7,8 The detailed
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FIG. 4. (a) MVPs for different Reynolds
numbers Re using cw = 0.8 (red lines).
The linear law (blue line) and the loga-
rithmic law (dashed line) are also shown.
(b) The same as in (a) but using cw = 1
(solid lines) and 0.5 (dotted lines).

experimental conditions used for the validation are given in Table I.
Figures 5(a) and 5(b) show the comparison of the theoretical MVPs
with the experimental data. Here, the wake constant is set to cw
= 0.9, in order to obtain a good matching between the theoretical

predictions and the experimental observations over a wide spec-
trum of the Reynolds number. the cw = 0.9 can therefore be set
as the recommended value for predicting the MVPs in a pipe
flow.

TABLE I. Experimental conditions used for the validation of MVPs.

Superpipe data U (m s−1) u∗ (m s−1) Re R+

Pitot probe 3.876 0.209 1.58× 104 8.52× 102
17.53 0.799 7.29× 104 3.32× 103
13.11 0.558 1.55× 105 6.6× 103
8.439 0.324 5.12× 105 1.97× 104
19.478 0.7 1.17× 106 4.2× 104
6.928 0.233 3.04× 106 1.02× 105
11.504 0.366 6.8× 106 2.16× 105
29.306 0.879 1.76× 107 5.28× 105

NSTAP 9.48 0.463 4.07× 104 1.99× 103
8.4 0.369 1.23× 105 5.4× 103
9.37 0.383 2.56× 105 1.05× 104
10.53 0.404 5.28× 105 2.03× 104
10.5 0.380 1.04× 106 3.76× 104
10.57 0.348 2.98× 106 9.81× 104

FIG. 5. Comparison of the theoreti-
cal MVPs with the experimental data
obtained in a superpipe facility using (a)
the pitot probe and (b) the NSTAP.
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IV. CONCLUSION

We report an unprecedented link between the law of the wall
and the mixing instability, hypothesizing that the turbulent mixing
produces disturbances that transmit in the form of waves, causing a
continuous stretching and shrinking of turbulent eddies. This mech-
anism sheds new light on the momentum transfer that gives rise
to the turbulent shear stress. The newly coined mixing-instability
hypothesis recovers the classical logarithmic law within the over-
lap layer in a completely independent way by means of a similarity
consideration at infinitely large Reynolds numbers. Particularly, the
amplitude of waves within the overlap layer reveals a unique scal-
ing law with the wall-normal distance. Within the near-wall and the
wake layers, the amplitude of waves encompasses damping and wake
constants, respectively, which govern the damping effects within the
buffer layer and the augmentation of peak amplitude prior to its
attenuation toward the edge of the wake layer. More broadly, our
hypothesis explains the law of the wall within the near-wall layer
(characterized by the linear law within the viscous sublayer and the
velocity slowdown within the buffer layer), the overlap layer (char-
acterized by the logarithmic law), and the wake layer (characterized
by the MVP overshooting the logarithmic law). Rigorous testing of
the theoreticalMVPs with the experimental observations over a wide
range of the Reynolds number underpins the novel hypothesis.
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