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Bio-inspired designs can provide an answer to engineering problems such as

swimming strategies at the micron or nano-scale. Scientists are now designing

artificial micro-swimmers that can mimic flagella-powered swimming of micro-

organisms. In an application such as lab-on-a-chip in which micro-object

manipulation in small flow geometries could be achieved by micro-swimmers,

control of the swimming direction becomes an important aspect for retrieval and

control of the micro-swimmer. A bio-inspired approach for swimming direction

reversal (a flagellum bearing mastigonemes) can be used to design such a system and

is being explored in the present work. We analyze the system using a computational

framework in which the equations of solid mechanics and fluid dynamics are solved

simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets

approach while the solid mechanics behavior is realized using Euler-Bernoulli beam

elements. The working principle of a flagellum bearing mastigonemes can be broken

up into two parts: (1) the contribution of the base flagellum and (2) the contribution

of mastigonemes, which act like cilia. These contributions are counteractive, and the

net motion (velocity and direction) is a superposition of the two. In the present work,

we also perform a dimensional analysis to understand the underlying physics

associated with the system parameters such as the height of the mastigonemes, the

number of mastigonemes, the flagellar wave length and amplitude, the flagellum

length, and mastigonemes rigidity. Our results provide fundamental physical insight

on the swimming of a flagellum with mastigonemes, and it provides guidelines for

the design of artificial flagellar systems. VC 2011 American Institute of Physics.

[doi:10.1063/1.3608240]

I. INTRODUCTION

The concept of micro-fluidic devices such as lab-on-a-chip is finding many applications in

bio-medical science, especially in bio-chemical diagnosis. The main advantage of such micron-

scale devices is that they require a very small volume of liquid to perform a complicated and

complete diagnosis of biological samples. A typical lab-on-a-chip device has many micro-labs

connected through micro-channels, and the biological samples are transported for detailed bio-

chemical analysis via externally generated fluid flow in the channels. However, the flexibility to

create diverse flow patterns in these devices is limited, which makes micro-object transport at

these length scales difficult to control.

Artificial micro-swimmers could be used for micro-object manipulation in lab-on-a-chip

devices and in targeted drug delivery applications. The primary challenge in the design of such

a micro-swimmer is that the swimming strategies at these length scales are difficult to achieve
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using external triggers.1–6 Bio-inspired design can provide an answer to such engineering prob-

lems. Many micro-organisms swim by the use of hair-like projections known as flagella. Sper-

matozoa use an undulating flagellum for propulsion (see Fig. 1(a)) while Paramecia rely on the

asymmetric motion of cilia. Cilia and flagella are biological systems with a similar micro-

structure and working principle. The undulations in the cilium or flagellum are driven by motor

proteins which causes propulsion of the micro-organism in the fluid. Cilia and flagella play an

important role in micro-organism swimming and are widely explored in the literature.1,2,7 Where

the working principle of flagella is exploited to design artificial micro-swimmers,5,8–10 the cilium

principle is used to design fluid flow and mixing devices at the micron and nano-scale.11–13

Micro-organisms exist that have flagella with vertical appendages over their length,7,14,15

see Fig. 1(b). These appendages are known as mastigonemes and can cause a swimming direc-

tion reversal relative to the wave propagation along the length of the flagellum.7,14–16 Where a

smooth flagellum swims in a direction opposite to the traveling wave, a flagellum bearing mas-

tigonemes would swim in the direction of the traveling wave.7,14–19 Although the working prin-

ciple of micro-organisms swimming by flagellar or ciliary motion is widely explored, the class

of flagellar micro-organisms bearing mastigonemes has not been intensively studied. In a

micro-fluidic application such as lab-on-a-chip in which micro-object manipulation in small

flow geometries is required, control of the swimming direction becomes an important aspect.

Understanding how nature controls the swimming direction at typical micro-fluidic length and

timescales can provide guidelines for bio-inspired design of artificial micro-swimmers. This is

explored in the current paper for flagellated systems that are covered with mastigonemes. We

analyze the relation between the swimming direction and the mastigoneme structure and aim at

understanding the physical origin of thrust reversal.

In the past, efforts have been made to analyze thrust reversal associated to the presence of

the mastigonemes on a smooth flagellum.14–19 To explain the thrust reversal, it has been quali-

tatively proposed (based on laboratory observations and curve fitting) that the presence of the

mastigonemes decreases the ratio of normal to tangential drag coefficients (Cn=Ct) from a value

of 2 (affirmed for a smooth flagellum) to 0.5.14 Later a more detailed hydrodynamic analysis of

a flagellum bearing mastigonemes was presented by Brennen,16 using an analytical approach

(resistive force theory) based on the assumption of hydrodynamically non-interacting mastigo-

nemes and assuming small-amplitude deflections. This limits the applicability of such analytical

solution in situations where the mastigonemes are taller and=or tightly packed and in case of

large-amplitude flagellar waves. Evidence (experimental and computational) exists that the mas-

tigonemes can reverse the direction of swimming,14,15,17,18 but the conditions at which this is

possible are not explicitly quoted in the literature. To overcome these limitations, we propose a

solid-fluid interaction model that fully accounts for hydrodynamic interactions and large ampli-

tude undulations as well as non-linear mastigoneme deformations. We investigate the swimming

problem of a flagellum bearing mastigonemes with an aim to explore the fundamental mecha-

nism responsible for swimming direction reversal and study the swimming velocity as a func-

tion of the system parameters.

FIG. 1. (a) Flagellar oscillation of a ram spermatozoon. The cell is moving forward by altering the bend curvature and thus

propagating the wave. The scale bar is 10 lm.20 (b) Ochrophyte with a flagellum bearing mastigonemes.21 (Figures are

reproduced with permission of the copyright owner(s).)
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II. COMPUTATIONAL MODEL AND APPROACH

Swimming of a micro-organism is a fluid-solid interaction (FSI) problem, where the contin-

uum equations for the micro-organism motion=deformation have to be simultaneously solved

with the fluid dynamics equations. The Stokeslet approach can be used in the present context

since the swimming dynamics of the micro-organisms is governed by the Stokes flow equations

in which inertial forces are negligible.22–24 In the present work, an integral formulation for

2D-Stokes flow is implemented using the boundary element method to represent the fluid envi-

ronment while the micro-organism itself is represented by a collection of 2D beam elements.

Coupling of the solid mechanics and the fluid dynamics equations are done in an implicit man-

ner as suggested by Khaderi and Onck,25 and details of the computational approach are given

in the Appendix. Our analysis is similar to the analysis performed by Taylor,1 in which the

swimming of an infinite sheet has been analyzed. The obtained swimming velocity was shown

to have a similar (qualitative) dependence on the amplitude, wavelength and frequency of the

wave; compared to the flagellar swimming velocity obtained by using resistive force theory and

slender-body-theory that are 3D in nature.2,22,26,27

To understand and explore the key principle behind the thrust force=direction reversal with

the presence of mastigonemes over the flagellum length, we prescribe flagellar beating with the

wave propagating in the positive x-direction (i.e., to the right in Fig. 2), according to

yðx; tÞ ¼ A sinðxt� kxÞ; (1)

where x and t are the position and time, respectively, x¼ 2p=tcycle and k¼ 2p=k. The micro-

swimmer (flagellum and mastigonemes) and the characteristic length scales are depicted in Fig. 2.

The elastic properties of the micro-swimmer are defined by Young’s modulus (E) and Poisson’s ra-

tio (�). The viscous drag forces of the fluid are considered via a 2D Stokeslet approach and are

proportional to the viscosity (l) of the fluid. During the simulations, we prescribe the transverse

velocity (Vkp) for the base flagellum only. The equations of motion are then solved using the finite

element method where the drag forces (Td) are evaluated on-the-fly using the Stokeslets approach

(Td ¼ G
�1
Vkp), where the Green’s function (G) relates the micro-swimmer velocity to the traction

forces of the fluid. As an outcome of the traction forces acting on the micro-swimmer’s surfa-

ce=boundary, the micro-swimmer swims in the forward or backward direction with a net propul-

sive velocity, U. Finally, we determine the velocity distribution in the fluid domain, Ufluid due to

the swimming motion of the micro-swimmer using Ufluid¼G1Td, where G1 relates the velocities in

the fluid to the drag forces on the micro-swimmer.

III. DIMENSIONAL ANALYSIS AND SIMULATION RESULTS

A dimensional analysis has been performed to explore the influence of the parameters

involved in the system and specifically under which conditions the mastigonemes reverse the

swimming direction. A flagellum bearing mastigonemes consists of five important length

parameters as illustrated in Fig. 2, which are (1) the amplitude of the wave deformation (A), (2)

the wave length (k), (3) the length of the base flagellum (L), (4) the height of the mastigonemes

(H), and (5) the spacing between the mastigonemes (DS). The rigidity of the mastigonemes is

H

A

λ

ΔS

L

h

x
y

FIG. 2. Illustration of a flagellum bearing mastigonemes. L is the length of the flagellum, A and k are the amplitude and

wave length of wave deformation, H and DS are the height and spacing between the mastigonemes, respectively, and h is

the thickness of the mastigonemes.
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defined by the bending modulus (EI), where E is Young’s modulus and I is the moment of iner-

tia. By performing a dimensional study to explore the influence of each variable on the system

dynamics, we obtain four dimensionless length parameters, A*¼A=k, H*¼H=k, L*¼ L=k,
1=Nm ¼DS=k, and one force parameter Fm¼ 12lkAxH3=Eh3, which defines the ratio of viscous

forces over the elastic forces.11 Note that the parameter Fm can be seen as the ratio of two time

scales: an imposed time scale by the periodic oscillations of the flagella dh=dt / kAxð Þ and a

response time scale of the mastigonemes related to the frictional properties (lH3=Eh3). The
strong dependence of Fm on h (power 3) stems from the moment of inertia I / h3ð Þ and leads

to a profound increase of Fm for floppy mastigonemes. For the present study, we keep x and k

constant and change other parameters to alter the dimensionless variables.

Assuming that the mastigonemes are rigid (by selecting the values for the parameters such

that Fm¼ 0.001 with k¼ 100 lm and tcycle¼ 10 ms) and L*¼ 1, the influence of all other

dimensionless parameters is shown in Fig. 3. For a given value of A* and H* the net propulsive

velocity (U) is being plotted for various values of Nm, with Nm¼ k=DS the number of mastigo-

nemes per wavelength of the base flagellum. For a smooth flagellum (Nm¼ 0) the swimming ve-

locity is negative, i.e., the flagellum swims to the left. For all the heights of the mastigonemes

(H*), a saturation in the swimming velocity (U) is observed with an increase in the number of

mastigonemes per wave length (Nm). The presence of mastigonemes reduces the swimming ve-

locity, and a further increase in the height of the mastigonemes can even cause a reversal in the

swimming velocity (i.e., positive U in Fig. 3).

To analyze the system further, we choose Nm to be 16 (where a saturation in the swimming

velocity is observed, see Fig. 3). Trends in the swimming velocity (U) with respect to A* are

shown in Fig. 4(a) for various values of H* and for L*¼ 1. As can be seen from Fig. 4(a), the

swimming velocity (U) appears to have a quadratic dependence on A* for all values of H*.

One can normalize the swimming velocity (U) with the swimming velocity of the smooth flag-

ellum (Uf) for a given A*. This normalized swimming velocity (U*¼U=Uf) is linear in H* and

independent of A* as shown in the inset of Fig. 4(a). The role of L* on the swimming velocity

is shown in Fig. 4(b) for various H* and for A*¼ 0.05, Nm¼ 16. The swimming velocity satu-

rates at higher L* values, and the role of L* can be seen as a finite size effect (or end effect)

that disappears for higher values of L*. It can be noted that for the smooth flagellum the swim-

ming velocity converges to the swimming velocity of an infinite sheet as suggested by Taylor.1

The effect of L* on the normalized velocity U* is small however, see the inset of Fig. 4(a).

This suggests that for the rigid mastigonemes the swimming direction reversal is only dictated
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FIG. 3. Influence of the dimensionless variables A*, H* and Nm on the net propulsive velocity for L*¼ 1 and Fm¼ 0.001.

The presence of the mastigonemes reduces the swimming velocity, and a further increase in height H can even cause rever-

sal of the swimming direction.
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by H* and is independent of A* and L* (for L*> 2), see inset of Fig. 4(a). To verify this, a

simple first-order calculation can be performed based on the resistive force theory suggested by

Gray and Hancock.2 Given the motion of the base flagellum Yf¼A sin(xt – kXf), the motion of

the mastigoneme can be written as Xm¼Xf – ssin(h) and Ym¼Yfþ scos(h), where, x¼ 2p=tcycle,
k¼ 2p=k, h¼ arctan(dYf=dX), and s varies from –H to H. By assuming that C

f
t and Cf

n are the

flagellum’s drag coefficients in the tangential and normal direction, respectively, we can write

the x-component of total force on the smooth flagellum as

Ff
x ¼

2A2p2ðCf
n � C

f
t Þ þ C

f
tktcycleU

tcycle
: (2)

Similarly, by assuming that Cm
t and Cm

n are the mastigoneme’s drag coefficients, we can write

the total force on one mastigoneme as

Fm
x ¼ 2H

2A2p2ðCm
t � Cm

n Þ þ Cm
n ktcycleU

ktcycle

� �

: (3)

For both flagellum and mastigonemes the total force consists of a propulsive part due to actua-

tion forces (the first part in Eqs. (2) and (3)) and a retarding part due to the drag forces oppos-

ing the horizontal swimming velocity (the second part in Eqs. (2) and (3)). When the flagellum

with Nm mastigonemes reaches a steady state swimming velocity U, the propulsive and retard-

ing forces are in (dynamic) equilibrium, so that the total force must be zero.

Ff
x þ NmF

m
x ¼ 0; (4)

which leads to

U ¼
�2p2A2

ktcycle

kðCf
n � C

f
t Þ � 2HNmðC

m
n � Cm

t Þ

kC
f
t þ 2HNmCm

n

( )

; (5)

and can be written in the form

U� ¼ U=Uf ¼
ðCf

n=C
f
t � 1Þ � 2ðHNm=kÞfðC

m
n � Cm

t Þ=C
f
t g

1þ 2ðHNm=kÞðCm
n =C

f
t Þ

: (6)
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FIG. 4. (a) Swimming velocity as a function of A* for various values of H* and for L*¼ 1, Nm¼ 16. Inset: normalized

swimming velocity (U*¼U=Uf) as a function of H*, where Uf is the swimming velocity of the smooth flagellum for a

given A*. The normalized swimming velocity is independent of A* and L* (for L*> 2). (b) The role of L* (finite size

effect) on the swimming velocity for various values of H* and for A*¼ 0.05, Nm¼ 16.
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The form of this expression is very similar to what is suggested by Brennen.16 Our simulation

results show a similar quadratic dependence on A (see Fig. 4(a)) and a linear dependence on

frequency (results not shown). Also, the above equation indicates that the normalized velocity

(U*) is independent of A* as shown in the inset of Fig. 4(a). It can be clearly seen from the

above expression that for Cf
n=C

f
t > 1 and Cm

n =C
m
t > 1, the very presence of the mastigonemes

will reduce the resultant velocity and can possibly reverse the direction of swimming. In Eq.

(6) direction reversal can be achieved by either increasing H=k or Nm, in accordance with our

simulations (see Fig. 3). However, the collapse of these effects into one single parameter,

HNm=k, is not in accordance with our simulations and is a consequence of the assumptions

made in Eq. (6). Apart from the assumption of small deformations, the critical assumption for

deriving this expression was to ignore any hydrodynamic interaction (either between the masti-

gonemes or with the base flagellum) present in the system. This implies that the above expres-

sion should be interpreted with care. Most importantly, it emphasizes the need for a fully

coupled hydrodynamic analysis to understand the associated physics.

Next, we further explore the hydrodynamic origin of swimming direction reversal by look-

ing at the system from a fluid propulsion point-of-view. Here, we analyze a horizontally-static

flagellum with (and without) mastigonemes by fixing the x-position of the left end of the flagel-

lum but still allowing the transverse displacements and rotations caused by the traveling wave.

The pressure field with the streamlines are shown in Fig. 5 for the smooth flagellum and for the

flagellum bearing mastigonemes. As the base flagellum is propagating a wave (in the positive

x-direction), the surrounding fluid acquires vortices of alternating sign along the length of the

micro-swimmer. The vorticity is positive (i.e., counter clockwise) near the flagellum crests and

is negative (clockwise) near the flagellum valleys. The effective flow velocity (shown by the

curved red arrows) indicates the direction of the fluid propulsion which changes sign in the

presence of the mastigonemes, compare Fig. 5(a) to Fig. 5(c). In the case of a smooth flagellum

the effective flow velocity is to the right (in the direction of the traveling wave), which causes

the smooth flagellum to swim (if released) in the negative x-direction (opposite to the direction

of the traveling wave),6 see Fig. 4(b). However, for the flagellum bearing mastigonemes the

effective flow velocity is to the left (see Fig. 5(c)) and will cause swimming in the positive x-

direction (in the direction of the traveling wave). Note that in the case of mastigonemes of

height H*¼ 1=8, the regimes of high pressure and low pressure are opposite to the smooth flag-

ellum, confirming the reversal of swimming direction. Interestingly, for the flagellum bearing

mastigonemes of height H*¼ 1=16 there is no apparent direction of the fluid flow (only vorti-

ces), which indicates that the swimming velocity is approximately zero as can be seen from

Fig. 4.

Next we will explore the effect of deformable mastigonemes on the swimming direction re-

versal. As the dimensionless variable Fm defines the ratio of viscous forces over the elastic

FIG. 5. Pressure field with streamlines for the smooth flagellum (a) and for the flagellum bearing mastigonemes (b) and

(c), for A*¼ 0.1 and L*¼ 3. The contours represent the pressure value (blue and red colors represent a pressure of �0.5

N=m2 and þ0.5 N=m2, respectively). The micro-swimmer is represented by the thick white line, and the base flagellum is

constrained not to swim, however still propagating a wave in the positive x-direction (by fixing the x-position of the left

end of the flagellum but allowing the transverse displacement and rotation). The effective flow velocity (shown by the

curved red arrows) indicates the direction of the fluid flow, which changes sign in the presence of the mastigonemes. Note

that in the presence of mastigonemes of height H*¼ 1=8 (c), the regimes of high pressure and low pressure are opposite to

the smooth flagellum case (a).
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forces, it can be used to quantify the flexibility of the mastigonemes. In Fig. 6(a) the normal-

ized swimming velocity (U*) is plotted against H* for various values of Fm. The influence of

the mastigoneme flexibility (Fm) on the swimming velocity is shown in the inset for

H*¼ 0.125. As shown in Fig. 6, the rigid mastigonemes (Fm< 0.1) are more effective in reduc-

ing the swimming velocity or swimming direction reversal,16 and floppy mastigonemes Fm> 2

can not reverse the swimming direction due to the mastigonemes deformation, see Fig. 6(b). At

higher Fm values the flexible mastigonemes deform due to the fluid forces and are not able to

effectively respond to the imposed basal angular oscillations, so that the mastigonemes attain a

deformed configuration (see Fig. 6(b)). As a result, the floppy mastigonemes do not displace

the surrounding fluid as effective as the rigid ones (this will be discussed later with reference to

Ref. 28), so that the floppy mastigonemes cannot counteract the flow caused by the base flagel-

lum as effectively as their rigid counter-parts. An animation of the resulting motion by flexible

and rigid mastigonemes subjected to the same basal oscillation is included as supporting infor-

mation (see Ref. 28).

Interestingly, flattening of the curves can be observed for taller mastigonemes (and larger

Fm values) and is due to the fact that the deformed mastigonemes start interacting with each

other (or with the base flagellum). As a result, with increasing Fm and H the deformed shape of

the mastigonemes converges to a specific shape since hydrodynamic (lubrication) interactions

prevent them from coming any closer to each other and to the base flagellum. It should also be

noted that the deformed shape of the flexible mastigonemes in Fig. 6(b) is a direct consequence

of the external flow created by the base flagellum. Subjecting an isolated mastigoneme (i.e., in

the absence of the base flagellum) to similar periodic oscillations of the base displacement and

basal angle results in negligible deformation of the mastigoneme. Clearly, the flow generated

by the base flagellum plays a key role in deforming the flexible mastigonemes, and it is because

of this flow that the floppy mastigonemes generate an opposing flow.

IV. MASTIGONEMES WORK AS METACHRONIC CILIA

It has been suggested that the mastigonemes project rigidly from the flagellar surface and

interact with the surrounding fluid while acting like paddles that are swept laterally as the wave
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FIG. 6. (a) The normalized swimming velocity as a function of H* for various values of Fm and Nm¼ 8, A*¼ 0.1, and

L*¼ 1. Mastigonemes can be treated as rigid when Fm � 0.1. The influence of the mastigoneme flexibility (Fm) on the

swimming velocity is shown in the inset for H*¼ 0.125. (b) Swimming of the flagellum bearing mastigonemes where the

arrow represents the swimming direction. Flexible mastigonemes deform due to the viscous forces and are ineffective

(compared to the rigid mastigonemes) in causing direction reversal.
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propagates along the flagellum.15 In the following we will explore the relation between the

paddling motion of the mastigonemes and the direction reversal mechanism and try to quantify

the observed trends. We will address these issues by linking the mastigoneme motion to the

working principle of cilia. Later, we will use the envelope theory7 to obtain the net propulsive

velocity generated by the envelope formed with the mastigonemes tips on an undulating

flagellum.

We consider a non-propelling flagellum in a fluid by fixing the position of the left end of

the flagellum (but allowing it to rotate and move in the transverse direction). As a result, the

wave propagation during the flagellar beat cycle will push the fluid rather than causing swim-

ming of the flagellum. Fluid propulsion at various time instances of the flagellar beat is shown

in Fig. 7, where the base flagellum is propagating a wave in the positive x-direction. The thick

white line represents the micro-swimmer, and the broken white line indicates the initial position

of the fluid particles. The simulations show that for a smooth flagellum, the fluid particles are

being displaced in the direction of wave propagation while the particles are being displaced in

the opposite direction in the presence of mastigonemes (see Fig. 7). The contours represent the

horizontal velocity of the fluid (blue and red colors represent a velocity of �1.5 mm=s and

þ1.5 mm=s, respectively). Note that for the smooth flagellum the average fluid velocity is posi-

tive (red color) at all time instances, which causes the fluid propulsion to the right (in the

FIG. 7. Fluid propulsion at various time instances (indicated in the middle column) of the flagellum beat. The thick white

line represents the micro-swimmer. The broken white line indicates the initial position of the fluid particles. The contours

represent the horizontal velocity of the fluid (blue and red colors represent a velocity of �1.5 mm=s and þ1.5 mm=s,
respectively). The arrow represents the velocity vector of the tracked particle. Left: smooth flagellum. Right: flagellum

bearing mastigonemes of height H*¼ 1=8. The area swept by the mastigonemes is shown with the solid back line, where

the curved arrows represent the direction of motion. The base flagellum is propagating a wave in the positive x-direction.
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direction of the traveling wave). However, in the presence of mastigonemes of height

H*¼ 1=8, the average fluid velocity is negative (blue color) at all time instances causing the

fluid propulsion to the left (in the direction opposite to the traveling wave).

These results are in correspondence with the results reported in the literature.14–18 When a

wave propagates along a smooth flagellum the region of the flagellum between the wave crests

and valleys exerts substantial forces on the fluid in the wave propagation direction. The wave

crests and valleys, however, do not contribute to propulsion but predominantly experience tan-

gential drag forces due to the steady state swimming velocity of the flagellum (or due to the

external fluid flow in case of a non-propelling flagellum).19 We have seen that for the smooth

flagellum the resultant flow will be in the direction of wave propagation, and this scenario

changes with the presence of external appendages (mastigonemes) over the flagellum length.

These mastigonemes project rigidly from the flagellar surface and interact with the surrounding

fluid while acting like paddles that are swept laterally as the wave propagates along the flagel-

lum. The base flagellum pushes the fluid in the direction of wave propagation while the masti-

gonemes push the fluid in the opposite direction (see Figs. 5 and 7). In fact, each individual

mastigoneme acts as a cilium (effective stroke in the opposite direction of wave travel) and

sweeps an area causing propulsion in the direction opposite to the wave propagation as shown

in Fig. 7 (see the right image). The area swept by the tip of the mastigoneme is shown with the

solid back line where the curved arrow represents the direction of motion. Interestingly, due to

the beating of the base flagellum, the upper and lower mastigonemes are synchronized in such

a fashion that when the upper mastigoneme is in effective stroke, the lower mastigoneme exe-

cutes the recovery stroke. Thus, the mastigonemes work like co-operating cilia whose motion is

driven by the motion of the base flagellum. Due to the wavelike motion of the base flagellum

the collective motion of the mastigonemes resembles the metachronic motion of cilia. Since the

effective stroke of the mastigonemes is in a direction opposite to the traveling wave of the base

flagellum, the mastigonemes feature an antiplectic metachrony.29

Fluid dynamics in the Stokes-regime is dominated by viscosity rather than inertia. An im-

portant consequence is that fluid propulsion can only be achieved when the motion is spatially

asymmetric. This is achieved in nature by cilia going through a series of different shapes as

illustrated in Fig. 8(a), consisting of an effective and a recovery stroke. During the effective

stroke the cilium stands high and pushes the fluid, while during the recovery stroke, it remains

low to limit the back flow, which results into fluid flow in the direction of the effective stroke.

Natural cilia use an internal forcing system based on motor proteins to achieve the shape

changes. However, the asymmetric motion achieved by the mastigonemes is only due to the ba-

sal oscillation and is shown in Fig. 7. The stiffer the mastigoneme, the larger the asymmetric

motion (see Fig. 8(b)), resulting in a larger swept area and thus a larger fluid flow.11,30 Clearly,
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FIG. 8. Working principle of the mastigonemes (cilium). (a) Cilium beat cycle and the area swept during the effective and

the recovery strokes. The resultant fluid flow is in the direction of the effective stroke. (b) Trajectory of the tip of the masti-

goneme and its dependence on H* (left) and A* (middle). The tip’s trajectory resembles an ellipse, where A and

Hsinfarctan (2pA=k)g are the major and minor axis of the ellipse shown by the vertical and horizontal arrows, respectively.

At higher Fm values the area swept reduces due to the deformation of the mastigonemes (see Fig. 6(b)). An animation of

the swept-area by flexible and rigid mastigonemes is included as supplementary material (Ref. 28).
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a larger deformation in case of internally driven cilia increases flow, while a larger deformation

in case of base-driven mastigonemes reduces flow.

In the numerical study performed by Khaderi and coworkers,11,30 it was shown that during

(planar) asymmetric beating of a cilium, a non-zero area is swept by the cilia tip that can be

used to quantify the net fluid displaced (a linear relation was found between the swept area and

fluid flow). For example, if a cilium traces the same path during the effective and recovery

stroke, the area swept by the tip will be zero, resulting in a similar amount of fluid displaced

during the effective and recovery stroke. When the cilium follows a path that is different during

the recovery stroke, symmetry is broken, leading to a non-zero swept area and a net fluid flow

due to the difference in forward and backward flow. The dependence of the area swept by the

mastigonemes on the amplitude of the flagellar motion (A) and the height of the mastigonemes

(H) is shown in Fig. 8(b). The tip’s trajectory of the mastigoneme resembles an ellipse, whose

area is pAHsinfarctan(2pA=k)g. For small values of A=k, this reduces to the simple expression

2p2HA2=k, clearly explaining the linear dependence on H and the quadratic dependence on A

of the net propulsive velocity (see Fig. 4(a)). The number of the mastigonemes per wave length

of the base flagellum (Nm) can be seen as the density of the cilia (DS being the inter-cilia spac-

ing), and it has been shown that the fluid flow increases with the cilia density,12 which explains

the role of Nm and the trends observed in Fig. 3. Also, for the case of flexible mastigonemes

the net area swept reduces due to the deformation of the mastigonemes (see Figs. 6(b) and

8(b)), which indicates that the flexible mastigonemes will not be effective in reversing the

swimming direction (see Fig. 6(a)). An animation of the swept-area by flexible and rigid masti-

gonemes is included as supplementary material.28

A fully populated flagellum with mastigonemes (high Nm values) will appear as a smooth

but thick flagellum. Flagellum thickness is generally ignored in the swimming analysis of flag-

ellar propulsion. However, the thickness of a flagellum plays an important role because a point

on the surface of a thick flagellum moves in a similar fashion as the tips of the mastigonemes.

This surface motion of a thick flagellum is a function of H (or the thickness of the flagellum)

and is absent in the case of a smooth flagellum. The thickness effect of a flagellum can be stud-

ied by using the envelope theory.7 In the envelope theory a general motion of a point on the

flagellar surface (or ciliary surface) is considered, and the full Navier-Stokes equation is solved

to predict the propulsive velocity of the micro-organism. The envelope theory only considers

the presence of fluid on one side of the micro-organism and is generally used to predict the

fluid flow due to the general motion of an array of cilia. However, Taylor1 has suggested that

considering the presence of the fluid only one side of the micro-organism is sufficient to deter-

mine the swimming velocity; the other side of the micro-organism will only double the energy

expenditure. This way we can use the envelope theory to study the swimming of a thick flagel-

lum by only changing the frame of reference (fluid’s velocity relative to the swimming velocity

of a micro-swimmer). We will use a velocity relation given by Brennen and Winet7 for the

case when a cilium is moving counter-clockwise and sweeping a non-zero area representing the

motion of the mastigonemes (see the right column of Fig. 7),

U ¼
1

2
kxðA2

t þ A2
nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q

þ b

� �

; (7)

where At and An are the amplitude of tangential and normal motion, respectively. b is given by

the ratio A2
t � A2

n

� �

A2
t þ A2

n

� �

, which for a smooth flagellum (At¼ 0) reduces to b¼�1. We

can normalize the swimming velocity by the swimming velocity of the thin smooth flagellum

for a given An,

U� ¼ U=Uf ¼ � ðAt=AnÞ
2 þ 1

n o

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q

þ bÞ; (8)

where Uf ¼ � 1
2
kxA2

n. Now, for a thick flagellum we can approximate At¼ 2pAnH* (the minor

axis of the ellipse or area swept by a mastigoneme of height H, see Fig. 8(b)) and the normal-

ized velocity can be given as
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U� ¼ �4p2ðH�Þ2 � 4pðH�Þ þ 1: (9)

It can be noted that the normalized swimming velocity for the thick flagellum is independent of

An and quadratic in H*. The above expression also suggests that for direction reversal to hap-

pen, H* value should be greater than 0.07. For these values of H* the quadratic term is small

compared to the linear term, as also observed in the inset of Fig. 4(a). The agreement of the

above equation with the main trends of the numerical simulations supports the observation that

mastigonemes act as antiplectic metachronic cilia.

V. SUMMARYAND CONCLUSIONS

In lab-on-a-chip applications in which micro-object manipulation in small flow geometries

could be achieved by a micro-swimmer, control of the swimming direction is an important aspect.

Nature can provide inspiration, and in this context we study the swimming direction reversal of a

flagellum covered by mastigonemes. We use a computational approach that implicitly couples the

fluid dynamics and solid mechanics equations. The results indicate that the swimming of flagella

covered by mastigonemes consists of a flagellar contribution (base smooth flagellum) and a ciliary

contribution imposed by the mastigonemes. The mastigonemes sweep an area in synchrony with

the beating cycle of the flagellum and push the fluid in the swimming direction of the base flagel-

lum, causing a reduction in velocity and eventually a reversal in swimming direction. Moreover,

due to the beating of the base flagellum the upper and lower mastigonemes are synchronized in

such a fashion that when the upper mastigoneme is in the effective stroke, the lower mastigoneme

executes the recovery stroke. Neighboring mastigonemes beat out-of-phase caused by the travel-

ing wave of the base flagellum. Since the effective stroke is in a direction opposite to the flagellar

wave, the mastigonemes are in antiplectic metachrony.

It is being observed that the swimming velocity has a quadratic dependence on the am-

plitude of flagellar deformation (A) and a linear dependence on the height of the mastigo-

nemes (H). By performing a dimensional analysis, we found that the swimming direction is

mainly governed by the ratio H=k, where k is the wave length of the flagellar beat. For

direction reversal to occur, H=k should be greater than 0.07, which is independent of the val-

ues of A=k and L=k. For practical applications, we have also shown the influence of the dis-

creteness of the system in terms of L=k and Nm, where Nm is the number of mastigonemes

per wavelength of the base flagellum. A saturation in the swimming velocity is observed at

higher values of L=k and Nm. We substantiate our results by linking the ciliary motion of the

mastigonemes to the envelope theory generally used for cilia driven flow. A good agreement

is being observed in the swimming velocity of a flagellum bearing rigid mastigonemes and

the envelope theory representing metachronic ciliary motion of the mastigonemes. Finally, it

was found that flexible mastigonemes deform due to the viscous forces and are ineffective

(compared to rigid mastigonemes) in causing a direction reversal. The present study can be

used as a guideline for designing micro-swimmers for various bio-medical applications such

as micro-object manipulation in lab-on-a-chip devices, and for targeted drug delivery. It also

opens the exciting possibility of reversing the swimming direction of an artificial micro-

swimmer by an externally controlled switching of the surface structure.
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APPENDIX: A COMPUTATIONAL FRAMEWORK FOR FLAGELLAR PROPULSION

To solve the coupled fluid-structure interaction (FSI) problem, we utilize the principle of virtual
work containing all the relevant energies and adopt an updated Lagrangian framework to arrive at
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the final set of equations. By implicitly coupling the solid mechanics and fluid dynamics equa-
tions, we incorporate the equivalent drag matrix due to the fluid into the stiffness matrix while
solving the equations of motion for the FSI problem.25

1. Finite element formulation of the solid dynamics equations

The principle of virtual work for the system under consideration can be written on the unde-
formed configuration as

ð

V0

rdedV �

ð

S0

ðduÞTTddS ¼ 0; (A1)

where r is the stress at point (x, y) and Td¼fTu,Tvg
T is the traction vector due to viscous forces of

the fluid (see Fig. 9). The deformation of a 2D beam structure can be described in terms of the
axial and transverse displacements of its axis, u¼fu,vgT. The characteristic strains, given by the
axial strain �e and the curvature j, contribute to the Lagrange strain e as

e ¼
du

dx
þ
1

2

dv

dx

� �2

�y
d2v

dx2
¼ �e� yj: (A2)

For a beam of uniform cross-section with thickness h and out-of-plane thickness of unity, we can
write

ð

x

Pd�eþMdjð Þdx�

ð

x

ðduÞTTddx ¼ 0; (A3)

where P ¼
Ð

y
rdy andM ¼ �

Ð

y
rydy.31 The virtual work equation at time tþDt can be written as

ð

x

PtþDtd�etþDt þMtþDtdjtþDt
� �

dx�

ð

x

ðdutþDtÞTTtþDt
d dx ¼ 0; (A4)

which can be expanded linearly in time by assuming QtþDt¼QtþDQ and can be simplified by
neglecting the higher-order terms, leading to

ð

x

Ptd�et þMtdjt þ DPd�et þ DMdjt þ Pt
Dd�eð Þdx�

ð

x

ðdutþDtÞTTtþDt
d dx ¼ 0: (A5)

We use the finite element formulation to discretize the system in terms of the nodal displacements
and rotations de of the Euler-Bernoulli beam elements with de¼fu1, v1, u1lr, u2, v2, u2lrg

T, where
ui, vi, ui, i¼ 1,2, denote the nodal displacements and rotation of the element in nodes 1 and 2,
respectively (see Fig. 9), and lr is a reference length chosen to be the total length of the micro-
swimmer (L) in the present analysis. The axial displacements are linearly interpolated while the

FIG. 9. A representative finite element with the corresponding nodal degrees of freedom (u, v, u) subjected to the external

traction forces (Tu, Tv) due to the surrounding fluid.
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transverse displacements are cubically interpolated,

u ¼ Nude; v ¼ Nvde; (A6)

where Nu and Nv being the standard interpolation matrices.32 Now, using the standard finite ele-
ment notations du=dx ¼ Bude, dv=dx ¼ Bvde, d2u=dx2 ¼ Cvde, and constitutive relations
DP ¼ EhD�e, DM¼EIDj with E being the elastic modulus and I being the second moment of iner-
tia given as I¼ h3=12, the discretized virtual work equation can be written as

Kt
eDde þ f tint � f tþDt

ext ¼ 0; (A7)

where Ke is the elemental stiffness matrix, fint is the internal nodal force vector, and fext is the
external nodal force vector due to the drag forces of the fluid, which can be written as

Kt
e ¼

ð

x

EhBT
uBu þ EICT

v
Cv þ PtBT

v
Bv

� �

dx;

f tint ¼

ð

x

PtBT
u þMtCT

v

� �

dx and f tþDt
ext ¼

ð

x

NTTtþDt
d dx;

in which N consists of the shape functions Nu and Nv and the domain of integration was chosen to
be the deformed configuration (updated Lagrangian framework, de¼ 0). Finally, the equations of
motion can be written after the finite element assembly as

Kt
Dd þ Ft

int � FtþDt
ext ¼ 0: (A8)

The external forces Fext consist of tractions imposed by the fluid and are calculated using a 2D
Stokeslet approach as described in the following sections.

2. Boundary element formulation of the fluid dynamics equations

For the fluid we make use of the Stokeslet approach in which the force exerted on the fluid at the
surface of the solid structure is approximated by the distribution of Stokeslets along the length of
the structure. The velocity and force fields are related by a Green’s function that has a singularity
proportional to 1=r in three dimensions and ln(r) in two dimensions.23 The expression of Green’s
function (G) for the Stokeslets relates the velocity at location r, _u, to the forces at location r0, f,
through

_u ¼ Gf and Gij ¼
1

4pl

�

� lnðRÞdij þ
RiRj

R2

�

ði; j ¼ 1; 2Þ; (A9)

where R ¼ r - r0, R¼ jRj is the distance between the two locations r and r0 and dij is the Kronecker
delta. By assuming the point force f to be represented by the traction f ¼ TdS over the solid sur-
face, the boundary-integral equation can be written as

_u ¼

ð

boundary

GTdS ¼
X

nelm

ð

Le

GTdS ¼
X

nelm

ð

Le

GNdSt; (10)

where T are the tractions imposed on the fluid and T¼�Td. In Eq. (A10), the boundary-integral
equation has been discretized using boundary elements of length Le, and the tractions are linearly
interpolated using T ¼ Nt with t being the tractions at the nodes. When Eq. (A10) is used to evalu-
ate the velocity in all nodes of the flagellum, we obtain a system of equations _U ¼ Gf t that relates
the traction t exerted by the flagellum on the fluid to its velocity _U. The integration procedure is
adopted from the literature.23 Once the velocity of the solid surface is known, this relation can be
inverted to obtain the nodal tractions: t ¼ G�1

f
_U.
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3. Fluid-solid interaction and implicit coupling

Coupling of the solid mechanics and fluid dynamics equations will be done in an implicit manner
by incorporating the equivalent drag matrix due to the fluid into the stiffness matrix.25 The exter-
nal nodal force vector due to the fluid’s drag forces (see Eq. (A7)) can be given as

f tþDt
ext ¼

ð

x

NTTtþDt
d dx ¼ �

ð

x

NTNdxttþDt ¼ �Met
tþDt; (A11)

where Me ¼
Ð

x
NTNdx in which we only consider the linear shape functions for N. Note that the

minus sign appears due to the change of reference (from fluid to the structure, Td¼ –T). After per-
forming the standard finite element assembly procedure we get

FtþDt
ext ¼ �MttþDt ¼ �MG�1

f
_UtþDt; (A12)

where the matrix Gf relates the velocity of the solid structure to the traction, see Section 2 of the
Appendix. Now, using the no-slip boundary condition _U ¼ ADd=Dt it follows that

FtþDt
ext ¼ �MG�1

f ADd=Dt ¼ �Kt
DDd; (A13)

where KD ¼ MG�1
f A=Dt is an equivalent drag matrix and is the stiffness contribution due to the

presence of the fluid. A is a matrix that eliminates the rotational degrees of freedom from the
global displacement vector Dd. After incorporating the appropriate boundary conditions, we will
be solving the following equation of motion for the FSI problem to obtain the incremental dis-
placements (Dd):

fKt þ Kt
DgDd ¼ �Ft

int: (A14)
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