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An embedded-domain phase-field formalism is used for studying phase transformation pathways in bimetallic

nanoparticles (BNPs). Competition of bulk and surface-directed spinodal decomposition processes and their in-

terplay with capillarity are identified as the main determinants of BNP morphology. The former is characterized

by an effective bulk driving force ∆ f̃ which increases with decreasing temperature, while the latter manifests

itself through a balance of interfacial energies captured by the contact angle θ . The simulated morphologies,

namely, core-shell, Janus and inverse core-shell, cluster into distinct regions of the ∆ f̃ -θ space. Variation of

θ with ∆ f̃ in the Ag-Cu alloy system is computed as a function of temperature using a CALPHAD approach

in which surface energies are estimated from a modified Butler equation. This θ −∆ f̃ trajectory for Ag-Cu,

when superimposed on the morphology map, enables the prediction of different morphological transitions as

a function of temperature. Therefore, the study establishes a unique thermodynamic framework coupled with

phase-field simulations for predicting and tailoring nanoparticle morphology through a variation of processing

temperature.

INTRODUCTION

Properties of bimetallic nanoparticles (BNPs) used in di-

verse fields such as catalysis, photonics, spintronics and

biomedical-sensing [1–3] depend crucially on their morphol-

ogy. Core-shell (CS) and Janus are the most commonly re-

ported morphologies: CS morphology consists of an outer

shell of the lower surface energy component surrounding a

core of the other component, while Janus is characterized by

the two components forming two opposite faces of a particle

with their common interface extending to the surface. An in-

verse core-shell (ICS) morphology, where the higher surface

energy component forms the shell, has also been observed in

a few cases [4, 5].

A fundamental understanding of morphological develop-

ment in BNPs is crucial for tailoring their properties. First

principles [6] and atomistic [7] simulations, as well as classi-

cal thermodynamics [8] have been employed to find the low-

est energy morphology of BNPs. However, these approaches

generally do not address kinetic aspects of morphological de-

velopment. Since many commonly used BNP systems like

Ag-Cu, Ag-Ni, Au-Co, Co-Cu, etc. exhibit solid-state immis-

cibility, spinodal decomposition (SD) presents a likely kinetic

pathway for morphology development in BNPs [9].

Phase-field models have been employed very successfully

for studying microstructure development in bulk immiscible

systems systems using the Fourier spectral method [10]. For

finite systems with complex geometries, embedding the sys-

tem of interest in a larger computational domain has proven to

be an effective strategy for dealing with the non-periodicity of

the domain of interest [11–14]. In addition to Dirichlet, Neu-

mann and Robin boundary conditions, Yu et al. developed a

methodology [13] to impose a contact angle boundary con-

dition for studying phase transformations in contact with an

external surface. However, if one wishes to capture the in situ

development of three-phase contacts (or their absence) on the

surface, a different approach involving a modification of the

system’s free energy can be adopted.

Recently, we presented such an embedded-domain phase-

field model (EPFM) [15] using which correct contact angles

could be naturally recovered without imposing them directly

through boundary conditions. This model was was used to

understand how contact angle and particle size influenced the

morphology development in BNPs. However, the role of tem-

perature, which is an important parameter from a processing

perspective, on BNP morphology was not addressed. Tem-

perature, or equivalently, undercooling below a critical tem-

perature, can exert a strong influence on the phase separation

process by altering the driving force for bulk SD. In addi-

tion, in confined systems such as BNPs, surface directed SD

(SDSD) presents another mode of microstructural evolution

which may also be influenced by temperature through its ef-

fect on surface and interfacial energies. Interplay between

these two alternative mechanisms and their interactions with

capillarity give rise to different BNP morphologies. In this

paper, we use EPFM to systematically investigate this pro-

cess, and by carrying out further thermodynamic computa-

tions, identify the relevant physical parameter groups that can

be used to understand and predict morphology selection in

BNPs as a function of temperature.

MODEL FORMULATION

In the EPFM formalism [15] illustrated schematically in

Fig. 1, a BNP system consisting of atomic species A and B

is modeled by placing an isolated particle (β ) in an inert ma-

trix (α). A scaled composition field c describes phase sepa-

ration of an initially homogeneous β to a mixture of β1 and

β2 phases with equilibrium compositions ce
β1

and ce
β2

, respec-

tively. We use c=(X−Xe
β1
)/(Xe

β2
−Xe

β1
) for the scaling where

X denotes the mole fraction of B and Xβi
is the equilibrium

composition of phase βi at a given temperature. An auxiliary

non-conserved phase-field variable φ is used to distinguish
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the particle from the matrix; we use a stationary and radially

symmetric tanh profile for φ that varies smoothly across the

particle surface from 0 in the matrix side to 1 inside the par-

ticle [15]. Total free energy of the system is then expressed

as:

F =
1

Vm

∫

Γ

(

f (c,φ)+κφ |∇φ |2 +κc|∇c|2
)

dΓ, (1)

where Vm is the molar volume, f is bulk free energy density,

κc and κφ are gradient energy coefficients associated with c

and φ , respectively, and Γ is the volume of the whole compu-

tational domain.

FIG. 1: Computational domain Γ consisting of an isolated

nanoparticle β (physical domain of interest) in an inert

matrix α . Periodic boundary conditions are imposed on the

domain boundary dΓ.

Defining an interpolating function h(φ) = φ 3(10− 15φ +
6φ 2) that connects α and β (with φ being 0 and 1 inside

α and β , respectively), the bulk free energy density f is

given as f (c,φ) = h(φ) f β +(1−h(φ)) f α +ω(c)g(φ). Here

ω(c)g(φ) = ω0(1− χc)φ 2(1−φ)2 describes the free energy

barrier between α and β , ω0 sets the barrier height and χ con-

trols solute segregation at the particle-matrix interface [15].

We use the following forms of free energy for α and β :

f α = f m
0 (c− ce

α)
2,

f β = f
p
0 (c− ce

β1
)2(c− ce

β2
)2. (2)

The scaled equilibrium compositions ce
α ,c

e
β1
,ce

β2
are chosen to

be 0.5, 0 and 1, respectively, and f
p
0 and f m

0 are temperature-

dependent constants. Evolution of composition field within

the particle is described by the Cahn-Hilliard equation:

∂c

∂ t
= ∇ ·M(φ)∇

δF

δc
. (3)

We constrain the matrix to remain inert with respect to so-

lute diffusion by choosing M(φ) = Mch(φ), with Mc being

the effective atomic mobility of solute in the particle. Eq. (3)

is solved numerically using a semi-implicit Fourier spectral

method [16–18]. We non-dimensionalize all parameters in

the equations using characteristic length Lc, time τc and en-

ergy Ec. Details of the non-dimensionalization procedure are

provided Supplementary Information A; further details of the

model and its numerical implementation can be found else-

where [15].

Energies of α-β1, α-β2 and β1-β2 interfaces, designated as

σ1,σ2 and σ12, are obtained from the equilibrium composition

profiles ce(x) across the respective interfaces:

σ =
1

Vm

∫

[

f (ce(x),φ(x))+κφ |∇φ |2 +κc|∇ce(x)|2

−
{

(1− ce(x))µe
A + ce(x)µe

B

}]

dx, (4)

where µe
i (i = A, B) denotes the equilibrium chemical poten-

tial of component i in any one the coexisting phases across the

interface.

The surface and interfacial energies define the contact angle

θ at the triple junction between the phases as:

cosθ =
σ1 −σ2

σ12
. (5)

Phase transformations within the particle need not always

yield triple junctions at the surface. Cahn, in his classic paper

on “Critical Point Wetting”, described a condition that pre-

cluded the formation of a triple junction. He defined this spon-

taneous wetting condition to be σ1 −σ2 ≥ σ12; the equality

condition corresponds to θ = 0°, while θ become undefined

for the inequality condition. In the latter case, the phase with

the low surface energy develops a continuous layer on the sur-

face.

Non-zero χ leads to preferential solute segregation to one

of the surfaces by creating imbalance between the ‘surface’

energies σ1 and σ2 – its key role on BNP morphology has

already been explored in detail [15]. Here, we keep χ and

particle size fixed, and investigate the competition of bulk SD

and SDSD in deciding the BNP morphology (CS, ICS and

Janus) by varying f
p
0 , ω0 and κc. Note that these variable

also control θ . Since each of these parameter combinations

gives rise to one of these three morphologies, we performed

simulations over a large set of parameters and classified the

results in terms of driving force and contact angle.

RESULTS AND DISCUSSION

A. Simulation of BNP morphologies

All simulations begin with an initially homogeneous, ax-

isymmetric β particle with composition c = 0.5 quenched in-

side the miscibility gap. A small initial noise (±1%) mim-

icking thermal fluctuations is applied to trigger bulk SD.

Figs. 2 and 3 present time snapshots of evolution of stable

and metastable morphologies corresponding to representative

parameter sets listed in Table I. In these figures, green color

represents the solute-poor β1 phase, blue the solute-rich β2

phase, and grey the undecomposed β with c = 0.5.

In all cases, SDSD precedes bulk-SD and forms alternate

solute-rich and solute-lean rings which grow inward. When

bulk SD starts in the interior of the particle, it creates inter-

twined compositionally modulated domains that interact with
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TABLE I: Variation of surface and interfacial energies and

contact angle θ with model parameters. Figure numbers refer

to snapshots of morphological evolution for the

corresponding set of parameters.

Set f
p
0 κc ω0 σ1 σ2 σ12 θ Figure no.

1 8 1 12 4.19 3.09 0.94 wetting 2a-2e

2 6 2 3.75 1.77 1.44 1.15 74° 2f-2j

3 4 1 6 2.21 1.76 0.67 48° 3a-3e

4 2 8 6 2.24 1.86 1.33 73.5° 3f-3j

5 4 2 5 1.98 1.60 0.94 66° 3k-3o

the rings growing from the surface to the center. Depending on

the chosen parameter set, domain coarsening proceeds along

different pathways to produce the final BNP configuration. A

Janus structure is formed when coarsening disrupts the con-

tinuity of ring-like structures at the surface, and CS or ICS

results otherwise.

Figs. 2(a-e) is an example of a typical evolution pattern

leading to a stable CS morphology (set 1 of Table 1). It oc-

curs irrespective of the driving force if the spontaneous wet-

ting condition is satisfied (i.e., σ1 −σ2 ≥ σ12). For large θ , if

bulk driving force is sufficiently high to break the outermost

layer, we obtain stable Janus morphology. A typical sequence

of its formation is presented in Figs. 2(f-j) which corresponds

to parameter set 2 of Table I.

(a) t = 0.2 (b) t = 1 (c) t = 20 (d) t = 600
(e)

t = 3500

(f) t = 0.4 (g) t = 4 (h) t = 200 (i) t = 2000
(j)

t =3.9E4

FIG. 2: Time snapshots of morphological evolution of stable

CS (top row) and Janus (bottom row) configurations.

Non-dimensional times are indicated below each snapshot.

Parameter sets 3-5 of Table 1 correspond to intermediate

values of driving force (which scales with f
p
0 ) and θ which

result in metastable configurations shown in Figure 3. For ex-

ample, Figs. 3(a-e) shows how a CS morphology can develop

for small non-zero θ ’s if the driving force for bulk spinodal is

also small. Thus, the spontaneous wetting condition is only a

sufficient condition – stable CS forms when it is satisfied, but

a metastable CS can develop even when it is not.

On the other hand, one obtains a metastable ICS mor-

(a) t = 0.4 (b) t = 4 (c) t = 200
(d)

t = 2000

(e)

t = 6000

(f) t = 2 (g) t = 12 (h) t = 80 (i) t = 600
(j)

t = 19000

(k) t = 1 (l) t = 10 (m) t = 200
(n)

t = 2000

(o)

t = 55000

FIG. 3: Time snapshots of metastable CS (top row) and ICS

(middle and bottom rows) evolution. Non-dimensional times

are indicated below for each snapshot.

phology when the driving force is small but θ is large, as

demonstrated by the typical evolution patterns in Figs. 3(f-

j) and Figs. 3(k-o). When surface effects dominate over the

bulk, an onion-like ring structure develops initially (Figs. 3a-

3b), which coarsens subsequently (Figs. 3(a-e)) to form a

metastable ICS morphology. It is also possible that we get

metastable ICS/CS even in the presence of bulk spinodal. As

shown in Figs. 3(f-o), the bulk driving force in this case is

not sufficiently high enough to achieve a stable Janus config-

uration, and domain coarsening leads to an ICS configuration.

Between the two evolutionary paths to ICS, the latter is ob-

served when the driving force is higher.

As shown in Fig. 4, however, the CS at non-zero θ and

ICS configurations are metastable, as they relax to more sta-

ble structures when subjected to a sustained white noise [19].

Here the initial configurations for the simulations are the final

metastable ones shown in Fig. 3. With increasing time, the

concentric structures break down and evolve to form Janus.

The time taken for the metastable-to-stable morphological

transition is very large because the difference of the ener-

gies between the metastable (CS/ICS) and stable (Janus) con-

figuration is very small, resulting in very sluggish diffusion.

Therefore, these can be termed as kinetically trapped config-

urations [15, 20, 21].

To understand the formation of different morphologies as a

function of the model parameter sets, one needs to relate the

competing processes of bulk SD and SDSD. For bulk SD, f
p
0
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(a)

t = 6000

(b)

t = 6300

(c)

t = 7000

(d)

t = 10000

(e)

t = 20000

(f)

t = 19000

(g)

t = 20600

(h)

t = 25000

(i)

t = 40000

(j)

t = 111600

(k)

t = 55000

(l)

t = 57000

(m)

t = 70000

(n)

t = 82000

(o)

t = 127000

FIG. 4: Time snapshots of transition from metastable CS/ICS

to stable CS configurations brought about by sustained noise.

Non-dimensional times are indicated below for each

snapshot.

sets the driving force ∆ f , defined as the difference between

the free energy of non-equilibrium initial β state and that of

the final state made up of equal parts of equilibrium β1 and β2

phases:

∆ f = f β (c = 0.5)−
1

2

[

f β (c = ce
β1
)+ f β (c = ce

β2
)
]

= f
p
0 /16 (using Eq. (2)). (6)

∆ f , together with κc, also determines the interfacial energy

σ12 of the system as [22]:

σ12 =
1

3Vm

[

ce
β2
(T )− ce

β1
(T )

]3√

κc∆ f (T ). (7)

Both ∆ f and σ12 increase with decreasing T (or increasing

undercooling ∆T ).

The surface energies σ1 and σ2, and their difference ∆σ , on

the other hand, scale with the height of the free energy barrier

ω0. While ∆ f controls bulk SD within the particle, ω0 influ-

ences SDSD by defining ∆σ – the larger the ∆σ , the easier it

is to initiate SDSD. We now define a normalized driving force

for bulk phase separation, ∆ f̃ , by taking the ratio of ∆ f to ∆σ .

Fig. 5 presents the essence of all simulations by assigning

the location of BNP configuration in the space of model pa-

rameters ∆ f̃ and θ . The map clearly demarcates three distinct

regions in this space: high ∆ f̃ -high θ for Janus, low ∆ f̃ -high θ

for ICS, and the intervening region for CS. The region of high

∆ f̃ -low θ is physically inaccessible since high ∆ f̃ implies ei-

ther high ∆ f or low ω0, which increases σ12 or decreases ∆σ ,

respectively, and thereby lead to high θ .

(a)

FIG. 5: Simulated stable and metastable BNP configurations

in the ∆ f̃ –θ space. Dashed lines are drawn to delineate

regions of where Janus, CS and ICS morphologies are

observed.

When the spontaneous wetting condition is satisfied (θ = 0°

or undefined), CS is the final configuration irrespective of ∆ f̃ .

Also, for a given θ , a metastable CS configuration is preferred

over ICS at larger ∆ f̃ . At lower ∆ f̃ , SDSD creates alternate

concentric rings extending towards the center, with segrega-

tion giving rise to an outermost β1 ring [15]. Subsequently,

ring-coarsening leads to the ICS structure. In contrast, bulk

SD dominates at higher ∆ f̃ , resulting in interactions between

inner interconnected domains and the outermost β1 ring dur-

ing coarsening. Subsequently, the latter is replaced by β2,

leading to metastable CS. Note that these interactions do not

yield the stable Janus configuration, because, in this case, ∆σ
remains sufficiently large to cause β2 to preferentially spread

along the surface and β1 to recede.

B. Computation of chemical and capillary forces for Ag-Cu

Fig. 5 demonstrated how different morphologies clustered

around in distinct regions of the driving force – contact an-

gle space. This space essentially represents the interplay of

chemical and capillary forces, and temperature is one of the

key physical parameters that directly or indirectly controls

them. The chemical driving force for phase separation, ∆ f ,

for a given system can be obtained as a function of temper-

ature in a relatively straightforward way from its CALPAHD

data. Capillarity, on the other hand, is manifested through the

contact angle θ , which itself is defined in terms of interfacial

and surface energies (σ1,σ2,σ12). Reliable values of the lat-

ter as a function of temperature are often difficult to measure
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experimentally. Nevertheless, here we attempt to arrive at fair

estimates of these energies using the available data and ther-

modynamic correlations. We consider the Ag-Cu system as an

example and proceed to compute the temperature dependence

of these quantities.

1. Driving force for phase separation

The molar bulk free energy Fm of the Cu-Ag solid solution

can be expressed through a Redlich-Kister polynomial as:

Fm =
[

XAgF0
Ag +XCuF0

Cu

]

+RT
[

XCu lnXCu +XAg lnXAg

]

+XCuXAg

[

L0 +L1(XAg −XCu)
]

(8)

where Xi’s (i = Cu, Ag) are the mole fractions component i

in the solution. The first bracketed group in the right hand

side is the mixture free energy contribution with F0
i ’s being

the standard free energies of the pure components which can

be found in the SGTE database [23]. The second group is

the contribution from the ideal solution part of free energy

(F
id,bulk
m ) and the last term represents the excess contribution

(F
ex,bulk
m ). The temperature-dependent interaction parameters

for the Cu-Ag solid solution are given as L0 = 34532−9.178T

and L1 =−5996+1.725T [24].

Equilibrium solute mole fractions Xe
i in Cu-rich and Ag-

rich solid solutions below the critical temperature Tc are com-

puted using the conditions for chemical equilibrium:

µCuss
Ag = µ

Agss

Ag , µCuss
Cu = µ

Agss

Cu , (9)

where the chemical potentials µi (i = Cu,Ag) evaluated at

equilibrium bulk compositions Xe
i are given by

µCu = Fm −XAg
∂Fm

∂XAg
; µAg = Fm +(1−XAg)

∂Fm

∂XAg
. (10)

The free energy of mixing for an alloy composition XAg is

expressed as

∆Fmix = Fm − (XCuµe
Cu +XAgµe

Ag). (11)

The driving force for bulk spinodal, ∆ f , is the maximum value

of ∆Fmix over the entire composition range (i.e., maximum of

the ∆Fmix −X curve). It is evaluated and plotted in Fig. 6a for

the temperature range of 400-800 K. The plot shows that ∆ f

decreases monotonically with increasing temperature. Using

the same thermodynamic data, we also compute the equilib-

rium mole fractions Xe
i (i = Cu,Ag) in both Cu- and Ag-rich

solutions which are required for estimating the interfacial en-

ergy.

2. Interfacial energy

The temperature dependence of the interfacial energy be-

tween the Cu- and Ag-rich solid solutions (σCu−Ag) can

be computed using Eq. (7). To be able to do so, how-

ever, one requires the value of κc. We utilize the value

of σCu−Ag = 0.197 Jm−2 at 800 K obtained from molecu-

lar dynamics simulations [7], along with the values of ∆ f

and Xe
i at this temperature calculated in the previous step,

and a constant molar volume of 10−5 m3mol−1, to compute

κc = 1.94× 10−14 Jm2mol−1. Since κc is generally consid-

ered to be temperature-independent for a given system, we

use this constant value in Eq. (7) to compute σCu−Ag in the

temperature range of 400-1200 K.

(a)

(b)

FIG. 6: (a) Variation of ∆ f with temperature for the Ag-Cu

system computed using its CALPHAD data. (b)

Temperature-dependence of interfacial and surface energies

of Cu-poor and Cu-rich solid solution phases. Temperature

of transition (Ttr) from stable CS to Janus morphology is

indicated.

3. Surface energies

We calculate surface energies σi,ss of the Cu-rich and Ag-

rich solid solutions as a function of temperature T using a
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modified Butler model [25]:

σ(T ) =σ0
i +

RT

Ai

log

[

X surf
i

Xe
i

]

+
1

Ai

[Fex,surf
i (T,X surf

i )−F
ex,bulk
i (T,Xe

i )]. (12)

Here, i = A, B denote the components Cu and Ag, respec-

tively, σ0
i are the surface energies of the pure components, Ai

are the molar surface areas, X surf
i are the surface compositions

at T , F
ex,surf
i and F

ex,bulk
i are the excess partial molar free en-

ergies of i associated with surface and bulk, respectively.

Surface energies of the pure components Eq. (12) are ob-

tained from the correlation

σ0
i = 1.25σ

liq
i +

dσ

dT
(T −T i

m) (13)

where σ
liq
i is the surface tension of liquid component at its

melting point T i
m and the temperature coefficient of surface en-

ergy is taken as −10−4 Jm−2K. The partial molar excess free

energies for bulk, F
ex,bulk
i , can be expressed in terms of Xe

i

using Eq. (10), with excess free energy Fex,bulk replacing the

total molar free energy Fm. Following Tanaka and Hara [25],

we take F
ex,surf
i = βmixF

ex,bulk
i . The parameter βmix is the ratio

of coordination number in the surface to that in the bulk; it is

taken as 0.75 for face centered cubic solid solutions. Molar

surface areas Ai of the pure components are obtained using

the relation Ai = 1.091N
1/3

0 V
2/3
m where N0 is the Avogadro’s

number. Eq. (12) constitutes a set of two simultaneous non-

linear algebraic equations which can now be solved numeri-

cally to obtain the unknown surface composition X surf
i for both

the terminal phases. Plugging its values in Eq. (10), one can

compute the surface energies of the Cu- and Ag-rich solution

phases.

Fig. 6b plots the difference of the surface energies, ∆σ =
σCuss −σAgss , and the interfacial energy, σCu−Ag, with temper-

ature. It shows that although the surface energies themselves

vary with temperature, their difference is relatively insensi-

tive to it, changing only slightly at higher temperatures. The

interfacial energy, on the other hand, depends strongly with

temperature, decreasing steeply at higher temperatures. This

is expected, as it must vanish at the critical temperature for the

miscibility gap. In terms of the spontaneous wetting criterion

(Eq. (5)), temperature of intersection of surface and interfacial

energy lines, Ttr (∼ 910 K) marks the transition from stable

CS to Janus morphologies.

C. Connecting phase-field results with thermodynamic

computations

We proceed further to obtain a correlation between the ef-

fective driving force ∆ f̃ and θ , noting that the latter is defined

only for T ≤ Ttr. First, the bulk driving force ∆ f (in J/mol)

for phase separation in Ag-Cu is normalized by the product

of surface energy difference ∆σ (in J/m2) and molar surface

area (in m2/mol). Fig. 7a shows the temperature dependence

of ∆ f̃ estimated this way, it is very similar to the variation of

∆ f with T shown in Fig. 6a. Next, the interfacial and surface

energies computed earlier are used to determine how contact

angle varies as a function of temperature. This is presented in

Fig. 7b, which shows that at high temperatures, θ decreases

steeply with decrease in temperature, but the rate of this de-

crease reduces at lower temperatures. Finally, these variations

are combined into a single ∆ f̃ -θ plot in Fig. 7c. It shows a

monotonic increase of θ with ∆ f̃ ; however, the slope of the

curve is steeper at low-∆ f̃ , gradually becoming gentler with

increase in ∆ f̃ (i.e., decrease in T ). This line is the trajectory

that the system follows in the ∆ f̃ -θ space as temperature is

reduced, and therefore captures its response to a change in the

state variable T . This trajectory is now superimposed on the

morphology map which is redrawn in Fig. 7d. It predicts the

morphological transitions in Ag-Cu for T < Ttr: both ∆ f̃ and

θ increase with decreasing temperature, and the system moves

from a metastable CS to metastable ICS configuration, before

finally transitioning into the Janus regime. Thus, depending

on the processing conditions, all the three configurations can

form in Ag-Cu BNPs, as confirmed by the experimentally ob-

served configurations [5, 26].

Since the temperature dependence of bulk chemical and

capillary forces are system specific, it should be noted that

the trajectory may not always pass through the metastable

ICS region of the map for all alloy systems. However, the

insights gained from the study remains valid and provide cru-

cial guidelines and understanding for conducting further ex-

periments aimed at tailoring the BNP morphology.

I. CONCLUSIONS

Results of the present study show how different BNP mor-

phologies can emerge from a competition between two al-

ternative and concomitant mechanisms, namely, bulk and

surface-directed spinodal decomposition. Their interplay with

capillarity sets up the eventual coarsening pathway toward a

steady-state configuration. When we express the results in

terms of three physical parameters, namely, driving force, dif-

ference in surface energies and contact angle, different mor-

phologies automatically cluster into three distinct regions in

the ∆ f̃ − θ space. This identification of relevant physical

parameters appears remarkable, as the computed thermody-

namic trajectory for Ag-Cu involving the same variables tra-

verses all the three distinct regions revealing the morpho-

logical transitions. We note that morphological transitions

for a particular alloy system are sensitive to the nature of

temperature-dependence of the relevant variables. Therefore,

the exact transition points for different alloys systems will be

different.

The following specific conclusions can be drawn from the

study:

1. Irrespective of the driving force for bulk spinodal, stable

CS forms when the spontaneous wetting condition is

satisfied (θ = 0°). This happens at T ≥ Ttr.

2. A combination of low driving force and high contact
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(a) (b)

(c) (d)

FIG. 7: (a) Temperature-dependence of ∆ f̃ . (b) Variation of θ with temperature for the Ag-Cu system computed using its

CALPHAD data. (c) Correlation of θ with ∆ f̃ . (d) The θ −∆ f̃ trajectory for Ag-Cu is superimposed on the morphology map

obtained from simulations. CS→ICS and ICS→Janus transitions are indicated by the crosses, and vertical dashed lines are

drawn on (a) and (b) to indicate the temperatures for these transitions (the former takes place at the higher T ).

angle gives rise to metastable ICS, while metastable CS

forms at moderate driving force and lower non-zero θ .

Thus, the spontaneous wetting condition given by Cahn

is found to be a sufficient, but not a necessary condition

for the formation of CS.

3. Janus forms when both bulk driving force and contact

angle are large.

4. Trajectory of Ag-Cu in the driving force-contact angle

space shows transitions involving CS, ICS and Janus

morphologies as a function of temperature.
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APPENDIX: NON-DIMENSIONALIZATION PROCEDURE

We make the governing equations (Eqs. (1) and (3)) dimen-

sionless by using dividing the length, energy and time vari-

ables by their characteristic values (Lc, Ec, and τc, respec-

tively):

x = x′/Lc, f = f ′/Ec, t = t ′/τc, (14)

where the primed quantities represent the dimensional val-

ues of the variables. Now we write the dimensional form of

Eq. (1) and use the above relations to make it non-dimensional

(noting that the dimensional gradient operator ∇
′ has the di-

mension of inverse of length):

F
′ =

1

V ′
m

∫

Γ

[

f ′(c,φ)+κ ′
φ |∇

′φ |2 +κ ′
c|∇c|2

]

dΓ
′

⇒ EcF =
1

L3
cVm

∫

Γ

[

Ec f (c,φ)+(1/L2
c)κ

′
φ |∇φ |2

+(1/L2
c)κ

′
c|∇c|2

]

L3
cdΓ,

⇒ F =
1

Vm

∫

Γ

[

f (c,φ)+
κ ′

φ

EcL2
c

|∇φ |2 +
κ ′

c

EcL2
c

|∇c|2
]

dΓ

(15)

Thus we see that we get back the original form of Eq. (1) in

terms of non- dimensional variables when κ ′
c and κ ′

φ are scaled

by choosing a reference value of κ = EcL2
c .

The Cahn-Hilliard equation (Eq. 3) in dimensional form is

converted to its non-dimensional form as follows:
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∂c

∂ t ′
= ∇

′ ·M′
∇
′
(δF ′

δc

)

⇒
1

τc

∂c

∂ t
=

1

Lc

∇ ·
1

Lc

M′
∇

[δ (EcF )

δc

]

⇒
∂c

∂ t
= ∇ ·

Ecτc

L2
c

M′
∇

(δF

δc

)

(16)

Thus we get back the non-dimensional Eq. (3) by scaling the

dimensional mobility M′ with its characteristic value L2
c/Ecτc.

Using these conversion expressions and choosing appropriate

values for the reference variables Lc, Ec and τc, the dimen-

sionless model parameters used in the simulations can now be

connected to their dimensional counterparts [15].

Choosing Lc = (Vm/N0)
1/3 where N0 is the Avogadro’s

number gives a reference length of ∼ 0.25 nm. If reference

energy is taken as kBTc, it yields a value of Ec = 1.863 ×
10−20 J = 0.116eV for Tc =1350 K. Finally, a reference time

can be obtained, for example, by using a typical mobility

value [27] of M′ ≈
1.8×10−18

kBT
m2/Js, which for T = 800 K

yields τc = L2
c/EcM′ ≈ 21 ms. Dimensional values of rel-

evant model parameters, along with their conversion factors,

are listed in Table II, while the corresponding values of surface

and interfacial energies resulting from different parameter sets

are provided in Table III.
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TABLE II: Simulation parameters (all energies are in per atom basis). Conversion factors from non-dimensional to dimensional form are

based on characteristic length Lc = 0.25nm, characteristic energy Ec = 0.116eV and characteristic time τc = 21ms.

Parameter name Symbol
Value

Conversion factor

Non-dimensional Dimensional

Grid size ∆x 0.5 0.125nm Lc

Time step ∆t 0.001 21µs L2
c/EcM′

Particle diameter d 140 35nm Lc

Matrix free energy coefficient f m
0 2 0.232 eV Ec

Particle free energy coefficient f
p
0 2, 4, 6, 8 0.23, 0.46, 0.69, 0.93 eV Ec

Barrier height ω0 3.75, 5, 6, 12 0.43, 0.58, 0.67, 1.39 eV Ec

Gradient energy coefficient κc 1, 2, 8 0.007, 0.014, 0.06 eVnm2 EcL2
c

κφ 1 0.007 eVnm2 EcL2
c

TABLE III: Non-dimensional (first sub-row in a row) and dimensional (second sub-row in a row) values of surface and

interfacial energies. Unit for the dimensional values is mJm−2.

( f
p
0 , κc, ω0) σ1 σ2 σ12

(8,1,12) 4.19 3.09 0.94

1248 921 280

(6,2,3.75) 1.77 1.44 1.15

527 429 343

(4,1,6) 2.21 1.76 0.67

658 524 200

(2,8,6) 2.24 1.86 1.33

667 554 396

(4,2,5) 1.98 1.6 0.94

590 477 280
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