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Abstract

Motivated by a recent conjecture of the first author, we prove that every properly
coloured triangle-free graph of chromatic number χ contains a rainbow independent
set of size ⌈12χ⌉. This is sharp up to a factor 2. This result and its short proof have
implications for the related notion of chromatic discrepancy.

Drawing inspiration from both structural and extremal graph theory, we con-
jecture that every triangle-free graph of chromatic number χ contains an induced
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cycle of length Ω(χ logχ) as χ → ∞. Even if one only demands an induced path
of length Ω(χ logχ), the conclusion would be sharp up to a constant multiple. We
prove it for regular girth 5 graphs and for girth 21 graphs.

As a common strengthening of the induced paths form of this conjecture and of
Johansson’s theorem (1996), we posit the existence of some c > 0 such that for every
forest H on D vertices, every triangle-free and induced H-free graph has chromatic
number at most cD/ logD. We prove this assertion with ‘triangle-free’ replaced by
‘regular girth 5’.

Mathematics Subject Classifications: 05C15

1 Introduction

For graphs with bounded clique number ω, the tradeoff between chromatic number χ being
high and there being certain induced subgraphs is a central topic in graph theory. This is
the context of the famous and longstanding conjecture of, independently, Gyárfás [8] and
Sumner [25], cf. [23]. This note is solely concerned with this type of problem.

Our starting point is indeed a more explicit form of this tradeoff, where the commodi-
ties are instead proper colourings and rainbow induced subgraphs (that is, ones in which
all colours assigned to its vertices are distinct). This already has some history in the area:
for instance, Kierstead and Trotter [16] pursued this in attempts towards the Gyárfás–
Sumner Conjecture. It is interesting in its own right and some recent activity [4, 10, 21]
has been motivated by a conjecture of this form due to the first author.

Conjecture 1 (Aravind, cf. [4]). Every properly coloured triangle-free graph of chromatic
number χ contains a rainbow induced path of length χ.

As one cannot have a rainbow subgraph on χ + 1 vertices, the statement if true would
be sharp. By classic results, the statement is true when omitting both ‘triangle-free’ and
‘induced’ [7, 12, 20, 26], or omitting ‘rainbow’ [9]. It is false when omitting both ‘triangle-
free’ and ‘rainbow’, as we discuss below (see Theorem 3). Babu, Basavaraju, Chandran
and Francis [4] proved the statement under the extra assumption that no cycle in G has
length less than χ. Scott and Seymour [21] proved a form of it for any fixed clique number
ω > 2, but with length f(χ) for some specific unbounded and slowly increasing function
f instead of χ.

In the discussion at the end of their note, Scott and Seymour observed that the type
of rainbow induced subgraph it makes sense to hope for in this problem setting is already
rather simple: it is limited to forests of paths. In Section 2, we focus on the simplest
possible structure and show the following.

Theorem 2. For each r > 3 every properly coloured Kr-free graph of chromatic number
χ contains a rainbow independent set of size ⌈1

2
χ1/(r−2)⌉.

When r = 3 this is sharp up to a factor 2, for one cannot have a rainbow independent
set of size χ + 1. In fact, if r = 3 and χ = 2, then the statement is sharp by considering
complete bipartite graphs. The r = 3 case would be a consequence of Conjecture 1 if
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true, by taking every other vertex in the path. In Section 3, we discuss this result’s
implications for the related concept of chromatic discrepancy [3]. There appears to be
room for improvement in Theorem 2 for r > 3, but much of it may come from the gap in
current bounds on off-diagonal Ramsey numbers, as we next discuss.

Consider the smallest independence number α in Kr-free graphs as a function of the
chromatic number χ. The following statement follows from the best-to-date asymptotic
results on off-diagonal Ramsey numbers. For completeness, its brief derivation is included
in the appendix.

Theorem 3 ([1, 5]). For each r > 3 there are c1, c2 > 0 such that the following hold.
There is a Kr-free graph of chromatic number χ that contains no independent set of size
⌈c1χ2/(r−1)(logχ)(r

2−r−4)/((r−2)(r−1))⌉. Every Kr-free graph of chromatic number χ contains
an independent set of size ⌈c2χ1/(r−2) logχ⌉.

This immediately yields the following result complementing Theorem 2.

Corollary 4. For each r > 4 there are c > 0 and a Kr-free graph of chromatic number
χ such that no matter the proper colouring it contains no rainbow independent set of size
⌈cχ2/(r−1)(logχ)(r

2−r−4)/((r−2)(r−1))⌉.

For r > 4, it remains possible that the bound in Theorem 2 could be increased by a loga-
rithmic factor, so that it would match and indeed qualitatively strengthen Theorem 3. On
the other hand, intuitively (based on the sharpness of Theorem 3 for r = 3), improvement
by more than a logarithmic factor may be for want of a breakthrough in Quantitative
Ramsey Theory.

Theorems 2 and 3 hint at the following generalisation of Conjecture 1.

Conjecture 5. For each r > 3 every properly coloured Kr-free graph of chromatic number
χ contains a rainbow induced path of length ⌈χ1/(r−2)⌉.

The aforementioned result of Scott and Seymour [21, 1.3] already constitutes partial
progress. The statement is true when omitting ‘rainbow’ [9, Thm. 2.4]. It is surprisingly
difficult to bound the maximum rainbow induced path length significantly below both the
maximum induced path length and the chromatic number.

The proof of Theorem 2 has affinity to Gyárfás’s proof for the result just mentioned,
guaranteeing induced paths of length χ1/(r−2) in Kr-free graphs of chromatic number
χ [9, Thm. 2.4]. Returning to the roots concerning ‘non-rainbow’ structure, we have
formulated, based on Theorem 3 and some intuition from the random graph [18], the
following successively stronger conjectures.

Conjecture 6. There is some c > 0 such that every triangle-free graph of chromatic
number χ contains an induced path of length at least cχ logχ.

Conjecture 7. There is some c > 0 such that every triangle-free graph of chromatic
number χ > 2 contains an induced cycle of length at least cχ logχ.
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By Theorem 3, each statement if true is sharp up to the respective choices of c. Either
but instead with ‘induced star/tree of size cχ logχ’ is true due to Johansson’s result on
the chromatic number of triangle-free graphs [15]. Gyárfás himself hinted at Conjec-
ture 6, cf. [9, Prob. 2.6]. Conjecture 7 is a quantitative strengthening of a conjecture of
Gyárfás [9, Conj. 3.6], and slightly stronger than [13, Conj. 7]. Gyárfás’s conjecture was
recently confirmed by Chudnovsky, Scott and Seymour [6], but the induced cycle lengths
guaranteed in [6] are very small compared to χ logχ; see also [22].

Perhaps Conjecture 7 is difficult in general, but on the other hand, we have managed
to obtain some concrete progress under the additional exclusion of one or more cycle
lengths.

Theorem 8.

• There is some c > 0 such that every regular C4-free graph of chromatic number
χ > 2 contains an induced cycle of length at least cχ logχ.

• For each g > 5 every girth g graph of chromatic number χ > 2 contains an induced
cycle of length at least 3 + (χ− 1)(χ− 2)⌊(g−5)/16⌋.

This in particular implies that Conjecture 7 holds for regular girth 5 graphs and for girth
21 graphs. We have not made much effort to optimise the constant 21, for the method we
use seems unlikely to reduce it below 13 or so. Theorem 8 also asserts that each girth 5
graph has an induced cycle of length at least χ + 2, which is is not far from best possible
since the C4-free process [5] yields n-vertex χ-chromatic C4-free graphs with independence
number O((n log n)2/3) = O((χ logχ)2).

Johansson’s [15] and Conjecture 6 together naturally prompt another possibility.

Conjecture 9. There is some c > 0 such that for every forest H, every triangle-free
graph containing no induced H has chromatic number at most c|V (H)|/ log |V (H)|.

If true, Conjecture 9 would constitute a common generalisation of Johansson’s theo-
rem, Conjecture 6 and the fact that χ(G) = O(α(G)/ logα(G)) for every triangle-free
graph G 1, corresponding to the cases where H is a star, a path and an independent
set, respectively. In fact, Conjecture 9 is a significant and concrete strengthening of the
Gyárfás–Sumner Conjecture specific to triangle-free graphs, a special case which remains
a stubborn challenge, cf. [23]. Note that, just as for Gyárfás–Sumner, the conclusion of
Conjecture 9 would fail if some H were allowed to contain a cycle, since for each ℓ > 3
there are Cℓ-free graphs of arbitrarily large chromatic number. Similarly, to prove Con-
jecture 9 it suffices (by adding a single vertex connected to all components if needed) to
prove it for all trees H. As a first step, we have proved a form of Conjecture 9 for regular
girth 5 graphs; see Corollary 18.

1One way to see this fact, for instance, is to note that Theorem 3 implies that |V (G)| > α(G) =
Ω(

√

|V (G)| log |V (G)|), so that α(G)/ logα(G) = Ω(
√

|V (G)|/ log |V (G)|). By a standard iterative ar-

gument, Theorem 3 also implies that χ(G) = O(
√

|V (G)|/ log |V (G)|), which is O(α(G)/ logα(G)).
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2 Large rainbow independent sets

Proof of Theorem 2. We carry out an induction on r > 3. Let G be a Kr-free graph of
chromatic number χ and let φ : V (G) → Z

+ be a proper colouring. We seek a rainbow
independent set of size ⌈1

2
χ1/(r−2)⌉. Initialise G′ = G and X = ∅, and iterate the following

until G′ is empty (if needed).

1. Take an arbitrary vertex v ∈ V (G′) and add it to X.

2. Let S = φ−1(φ(v)) and delete the vertices of S from G′.

3. Let N = NG′(v) and consider the subgraph G′[N ] of G′ induced by N .

(a) If χ(G′[N ]) > χ(r−3)/(r−2), then stop the procedure by outputting the largest
rainbow independent set in G′[N ].

(b) Otherwise, delete the vertices of N from G′.

Note that if r = 3, then the condition in 3a is vacuous, in which case we are directly
proving the base case. If on the other hand the procedure stops in 3a (and so r > 4), then
since G′[N ] is Kr−1-free it contains a rainbow independent set of size ⌈1

2
χ(G′[N ])1/(r−3)⌉ >

⌈1
2
χ1/(r−2)⌉ by induction, in which case we are done.
If the procedure continues until G′ is empty, then by construction the final set X is

a rainbow independent set, and so it suffices to show that |X| > 1
2
χ1/(r−2). To this end,

let Si and Ni be the vertex subsets S and N respectively in iteration i ∈ {1, . . . , |X|}.
Since χ(G′[Ni]) 6 χ(r−3)/(r−2) for every i, V (G) = ∪i(Si ∪Ni) certifies a proper colouring
of G with at most |X|(1 + χ(r−3)/(r−2)) colours. Thus |X|(1 + χ(r−3)/(r−2)) > χ and so
|X| > χ/(1 + χ(r−3)/(r−2)) > 1

2
χ1/(r−2), as promised.

We remark that the same argument, i.e. performing the algorithm above applied to
the binomial random graph Gn,p (together with standard facts about the model), yields
the following result. It is close to best possible: in the first regime it is sharp up to a
constant factor, in the second up to a log n factor. Recall that a property in Gn,p is said
to hold asymptotically almost surely (a.a.s.) if it holds with probability tending to one as
n → ∞.

Theorem 10. Let p = p(n) satisfy np = ω(1) and p = o(1).

• Given 1/2 < c 6 1, suppose p = o(n−c) as n → ∞. Then a.a.s. for any proper
colouring of Gn,p, there is a rainbow independent set of size Ω(χ(Gn,p)).

• Suppose p = ω(
√

(log n)/n) as n → ∞. Then a.a.s. for any proper colouring of
Gn,p, there is a rainbow independent set of size Ω(1/p).

Proof. In the first regime, let C = 5/(2c−1). We first prove the observation that for every
vertex v in Gn,p, the probability that its neighbourhood induces a graph with maximum
degree at least C is at most 2n−5 as n → ∞. Note that this probability increases as p
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increases, so it is sufficient to prove the statement when p = n−c/2 where 1/2 < c < 1.
By the Chernoff bound we know that for n sufficiently large

P(deg(v) > 2np) < exp(−np/3) = exp(−n1−c/6) < n−5.

The probability that a neighbour u ∈ N(v) has degree at least C is bounded by

(

deg(v) − 1

C

)

pC 6 (p deg(v))C .

So if deg(v) 6 2np = n1−c, then this is bounded by n(1−2c)C = n−5.
This observation implies that with probability at least 1−2n−4 we have χ(G[N(v)]) <

C for every vertex v and hence the algorithm gives a rainbow independent set X of size
at least χ(Gn,p)/(1 + C).

In the second regime, note that by the Chernoff bound a.a.s. every degree of the graph
is bounded by 2np. Also a.a.s. the independence number is at most 2p−1 log np < np.
Hence a.a.s. we have |Si| + |Ni| < 3np for every i in the algorithm and hence |X| >
1/(3p).

3 Chromatic discrepancy

In related work, the first author together with Kalyanasundaram, Sandeep and Sivadasan
[3] studied the notion of chromatic discrepancy, which we define as follows. Let G be
a graph. Given a proper colouring φ : V (G) → Z

+, let ϕ(G, φ) be the maximum of
|φ(V (H))| − χ(H) taken over all induced subgraphs H of G. The chromatic discrepancy
of G is then the minimum of ϕ(G, φ) taken over all proper colourings φ of G. With this
concept as motivation, we have the following result as a consequence of Theorem 2.

Theorem 11. Every properly coloured triangle-free graph of chromatic number χ contains
a rainbow induced subgraph on χ vertices of chromatic number at most ⌈log2 χ⌉ + 1.

Proof. Let G be a triangle-free graph of chromatic number χ and let φ be a proper
colouring of G. Initialise G0 = G and iterate the following for i = 0, 1, . . . .

1. Let Si be a rainbow independent set of size ⌈χ(Gi)/2⌉ (as guaranteed by Theorem 2).

(a) If
∑i

j=0 |Sj| > χ, then stop the procedure by outputting as S any χ-element

subset of ∪i
j=0Sj.

(b) Otherwise, let Gi+1 be the subgraph of Gi formed by deleting the vertices of
φ−1(φ(Si)).

Since
∑i−1

j=0 |Sj| equals the overall number of colour classes of φ deleted from G by the
beginning of step i of the procedure, and since the number of colour classes of φ is at
least χ by definition, the procedure is guaranteed to terminate. Consider the subset S
output by the procedure. By construction S is a rainbow subset with respect to φ, so it
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only remains to bound the chromatic number of the subgraph H of G induced by S. If
k denotes the index of the termination step, then the chromatic number of H is bounded
by χ(H) 6 k + 1, by considering the proper colouring induced by ∪k

j=0Sj. Observe for
each i = 0, . . . , k − 1 that χ(Gi+1) > χ(Gi) − ⌈χ(Gi)/2⌉ = ⌊χ(Gi)/2⌋, for otherwise
combining the colour classes of φ−1(φ(Si)) with an optimal colouring of Gi+1 would yield
a proper colouring of Gi with fewer than χ(Gi) colours, a contradiction. It follows that
k 6 ⌈log2 χ⌉, as required.

Theorem 11 implies that the chromatic discrepancy of any triangle-free graph of chromatic
number χ is at least χ− ⌈log2 χ⌉ − 1.

For each fixed ω > 2, it has been conjectured [3, Qu. 4] that χ − ω is a lower bound
on the chromatic discrepancy for any graph of chromatic number χ and clique number ω.
Iterating the more general statement of Theorem 2 in the same way as above yields at
least (1−o(1))χ chromatic discrepancy as χ → ∞ in this situation. However, Corollary 4
refutes the conjecture for each ω > 3 and sufficiently large χ. Indeed, let G be a Kr-
free graph as in Corollary 4 and consider a proper coloring of G using χ(G) colors. If
the chromatic discrepancy of G is at least χ(G) − t, then there must be an induced
subgraph H with χ(H) 6 t that sees at least χ(H)+χ(G)− t colors in the given coloring;
this implies the existence of a rainbow independent set of size at least χ(G)/t − 1. But
Corollary 4 rules out the existence of such a set for sufficiently large values of χ(G)
when t = ω(G) and, by the preceding argument, in fact gives an upper bound of χ −
Ω(c1χ

(r−3)/(r−1)/(logχ)(r
2−r−4)/((r−2)(r−1))) on the chromatic discrepancy of G as χ → ∞,

thus refuting the conjecture for r > 4, i.e. ω > 3. It remains an open question for ω = 2
whether the logarithmic term can be reduced to some constant independent of χ.

Iterating Theorem 10 in a similar way as for Theorem 11 yields the following for
chromatic discrepancy of Gn,p, an improvement upon [3, Thm. 4.6].

Theorem 12. Let p = p(n) satisfy np = ω(1) and p = o(1).

• Given 1/2 < c < 1, suppose p = o(n−c) as n → ∞. Then a.a.s. for any proper
colouring of Gn,p, there is a rainbow induced subgraph on χ(Gn,p) vertices of chro-
matic number at most O(logχ(Gn,p)).

• Given 0 6 c < 1, suppose p = ω(n−c) as n → ∞. Then a.a.s. for any proper colour-
ing of Gn,p, there is a rainbow induced subgraph on χ(Gn,p) vertices of chromatic
number at most

O(− log p · max
{

p,
√

(log n)/(np)
}

χ(Gn,p)).

Proof. We will essentially iterate the algorithm in Theorem 2.
Let φ : [n] → Z

+ be a proper colouring of Gn,p. Initialise G′′ = Gn,p and Y = ∅, and
iterate the following until Y contains at least χ(Gn,p) vertices.

1. Initialise G′ = G′′ and X = ∅, and iterate the following until G′ is empty.
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(a) Take an arbitrary vertex v ∈ V (G′) and add it to X.

(b) Let S = φ−1(φ(v)) and delete the vertices of S from G′.

(c) Delete the vertices of NG′(v) from G′.

2. Delete the vertices in φ−1(φ(X)) from G′′.

3. Add the vertices from X to Y .

In the first regime, we have seen in the proof of Theorem 10 that a.a.s. in every step
in the algorithm the chromatic number of Ni is at most C = 5/(2c − 1). So in every
iteration, we have selected at least 1

C+1
χ(G′′) vertices. This implies that we need to

perform at most logχ(Gn,p)/ log(1 + 1
C

) iterations to create a rainbow induced subgraph
on χ(Gn,p) vertices.

In the second regime, a.a.s. every vertex has degree at most 2np and the chromatic
number of every neighbourhood is bounded by

f(n, p) := E(χ(G2np,p)) +
√

8np log n,

due to a result of Shamir and Spencer [24]. Also χ(Gn,p) ∼ np
2 lognp

a.a.s. So in every

iteration of the algorithm, we have selected at least 1
f(n,p)+1

χ(G′′) vertices. So it takes

O (− log p · (f(n, p) + 1))

iterations to select at least χ(Gn,p) − pχ(Gn,p) vertices. If E(χ(G2np,p)) >
√

8np log n,

we have E(χ(G2np,p)) ∼ 2np2

2 lognp2
= O(pχ(Gn,p)). In the other case, we have f(n, p) =

O(
√

(log n)/(np)χ(Gn,p)).
After that, at most pχ(Gn,p) additional distinctly-coloured vertices are needed to form

a rainbow induced subgraph on χ(Gn,p) vertices, the resulting graph having chromatic
number O(− log p · pχ(Gn,p)).

4 Long induced paths and cycles

This section is devoted to establishing Theorem 8 and related results.

Lemma 13. For each t, d > 2, every K2,t-free graph of minimum degree d contains induced
cycles of ⌈d−1

t−1
⌉ distinct lengths, and, in particular, some induced cycle of length at least

2 + ⌈d−1
t−1

⌉.

Proof. Let P = p1, p2, . . . be an induced path in G of maximal length. Its first vertex p1
has at least d − 1 neighbours in V (G)\V (P ); let us call them the pending vertices. By
maximality of P , each pending vertex has at least one neighbour in V (P )\ {p1}. For a
pending vertex v, we say pj ∈ V (P )\ {p1} is the first neighbour of v if vpj ∈ E(G) and
vpi /∈ E(G) for every 2 6 i < j. Note that in that case v, p1, . . . , pj−1, pj is an induced
cycle of length j + 1. At most t− 1 pending vertices can have a common first neighbour
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in P\ {p1}, since otherwise K2,t would be a subgraph of G. It follows that at least d−1
t−1

distinct vertices in V (P )\ {p1} are the first neighbour of some pending vertex. Thus G
has induced cycles of at least d−1

t−1
distinct lengths.

The following corollary (with t = 2) implies the first part of Theorem 8.

Corollary 14. For each t > 2 there is some c > 0 such that every regular K2,t-free non-
forest graph of chromatic number χ contains an induced cycle of length at least cχ logχ.

Proof. Given a K2,t-free graph with maximum degree ∆ and an arbitrary vertex v, each
neighbour of v has at most t−1 neighbours in N(v). Therefore the number of edges in the
induced subgraph on the set of all neighbours of any vertex does not exceed t−1

2
∆. This

together with the result of Alon, Krivelevich and Sudakov [2] implies that every K2,t-free
graph with maximum degree ∆ has chromatic number χ = O(∆/ log ∆) as ∆ → ∞, and
hence ∆ = Ω(χ logχ) as χ → ∞. Now combine this with the consequence of Lemma 13
that every ∆-regular K2,t-free non-forest graph has an induced cycle of length Ω(∆).

It moreover turns out that there exist induced cycles of length exponential in the girth.

Theorem 15. For each k > 0, every graph of girth at least 16k + 5 and minimum degree
d > 2 contains an induced cycle of length at least 3 + d(d− 1)k. In particular, if k > 1, it
contains an induced cycle of length Ω(d2).

Nota bene: the first part of this proof closely follows that of [17, Prop. 6].

Proof. Let G be a graph with minimum degree d and girth g. For a nonnegative integer r
and a vertex v in G, we let Br(v) := {x ∈ V (G) | dG(x, v) 6 r} denote the ball of radius
r centred at x. Let X be a maximal set of vertices that are pairwise at distance at least
2k+1. Observe that the balls of radius k centred at the vertices of X are pairwise disjoint.
Moreover, each vertex is at distance at most 2k from X. We extend the collection of balls
(Bk(x))x∈X to a partition of V (G) as follows. First add each vertex at distance k+1 from
X to one of the balls to which it is adjacent. Then add each vertex at distance k + 2
from X to one of the parts constructed in the previous step. Continue in this way until
all vertices of G are covered. For each x ∈ X, denote by T (x) the graph induced by the
part obtained from Bk(x) in this way. Because G has girth at least 4k + 2, each T (x) is
an induced subtree of G. Each non-leaf of the subtree induced by Bk(x) has degree at
least d, so T (x) has at least d(d − 1)k−1 leaves, and thus T (x) sends at least d(d − 1)k

edges to other trees. Moreover, the fact that g > 1 + 2 · (4k + 1) implies that T (x1) and
T (x2) are joined by at most one edge, for any two distinct x1, x2 ∈ X. Therefore the
minor G′ obtained by contracting the trees has minimum degree at least d(d− 1)k. Since
g > 1 + 4 · (4k + 1), G′ must have girth at least 5. This allows us to apply Lemma 13
(with t = 2), together with the girth 5 condition, yielding an induced cycle of length at
least 3+d(d−1)k in G′. Note that for any two vertices x, y ∈ V (G′), x and y are adjacent
if and only if their pre-images in G are joined by precisely one edge. We conclude that G
has an induced cycle of length at least 3 + d(d− 1)k.
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We remark that Theorem 15 for k = 0 is sharp when d = 2 and d = 3, by C5 and the
Petersen graph, respectively. On the other hand, it is conceivable for k = 0 that one could
guarantee an induced cycle of length Ω(d3/2) as d → ∞, which would be best possible for
infinitely many values of d, due to the Erdős-Renyi orthogonal polarity graph, cf. e.g. [19].

Every graph with chromatic number χ has an induced subgraph with minimum degree
at least χ− 1. The second part of Theorem 8 thus follows immediately from Theorem 15.

Lemma 13 in particular shows that girth 5 graphs contain induced paths of linear
length. In fact they contain many such paths. We hope that this might become useful
towards further progress in Conjectures 1 and 6.

Lemma 16. In any graph of girth at least 5 and minimum degree d > 2, there are d!
distinct induced paths of order d + 2 starting at any vertex.

Proof. We apply induction on d > 2. Let G be a graph of girth at least 5 and minimum
degree d and let v ∈ V (G). If d = 2, then there must be a cycle of G containing v. We
may assume that this cycle is an induced cycle of length at least 5, and therefore v is an
endvertex of two distinct induced paths of order at least 4 = d + 2. So we may assume
that d > 3. For any neighbour w of v, let Gw denote the connected component containing
w in the graph obtained by deleting v and N(v)\ {w}. No vertex of Gw can have more
than one neighbour in {v} ∪ N(v)\ {w}, for otherwise G would contain a triangle or a
4-cycle. It follows that the minimum degree of Gw is at least d − 1. Hence induction
yields that for each w ∈ N(v), there are at least (d − 1)! induced paths in Gw of order
d + 1, starting in w. By appending v to these paths, we obtain (d− 1)! distinct induced
paths of order d + 2 that start in v. Since there are at least d choices for w, the lemma
follows.

Lemma 16 on induced paths can be extended to rooted induced forests as follows.
Roughly speaking, the following says that in any girth 5 graph with large minimum degree,
every large forest occurs many times as an induced subgraph. It is worth remarking that
the following argument is reminiscent of a much older one [11, Thm. 2].

Lemma 17. Let G be a graph of girth at least 5 and minimum degree d. Let T be a forest
on d vertices, with t components T1, . . . , Tt. For each 1 6 i 6 t, let ui be any vertex of Ti.
Let S := {v1, . . . , vt} be any size t independent set of G. Then there exists an injective
graph homomorphism f : V (T ) → V (G) such that

• f(ui) = vi for all 1 6 i 6 t, and

• f(V (T )) induces a copy of T in G.

Proof. We apply induction on n := |V (G)|. There is nothing to prove for n = 1, so
suppose n > 1 and assume the result is true for all graphs on fewer than n vertices.
Let u(1), . . . , u(k) denote the neighbours of u1 in T1, and let T ′ be the forest obtained
from T by deleting u1. Furthermore, denote by T (1), . . . T (k) the components of the
subforest T1\ {u1}. Because G has no triangles or 4-cycles, any two vertices in N(v1)
have no common neighbour other than v1. Therefore v1 has at least |N(v1)| − (t − 1) >
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d− (t− 1) > |V (T1)| > k neighbours that are not incident to any vertex of S other than
v1. Thus there exists a set N ′ := {v(1), . . . , v(k)} of k distinct neighbours of v1, such
that S ′ = S ∪ N ′\ {v1} is an independent set of G. Let G′ denote the graph obtained
from G by deleting v1 and N(v1)\N ′. Because G has girth at least five, the minimum
degree of G′ is at least d− 1. Moreover, T ′ is a forest on d− 1 vertices, with components
T (1), . . . , T (k), T2, . . . , Tt. Recall furthermore that S ′ is an independent set of G, and
hence of G′. Thus, by induction, we know that there is a mapping f ′ : V (T ′) → V (G′)
such that f ′(ui) = vi for all 2 6 i 6 t, f(u(j)) = v(j) for all 1 6 j 6 k, and f ′(V (T ′))
induces a copy of T ′ in G′. Now we can extend f ′ to the desired mapping f by defining
f(x) = f ′(x) for all x ∈ V (T ′), and f(u1) = v1.

Corollary 18. There is some c > 0 such that for every forest H, every regular girth 5
graph containing no induced H has chromatic number at most c|V (H)|/ log |V (H)|.
Proof. Let G be a ∆-regular girth 5 graph. Let H be a forest that does not occur as an
induced subgraph of G. Then by Lemma 17, H must have more than ∆ vertices. Combin-
ing this with Johansson’s theorem [15] yields χ(G) 6 c′∆/ log ∆ 6 c′|V (H)|/ log |V (H)|,
for some c′ > 0 and all sufficiently large |V (H)|. From this the corollary easily follows.
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A Large independent sets

Proof of Theorem 3. Let Gn be a sequence of instantiations of the final output of the Kr-

free process on n vertices such that α(Gn) = O(n2/(r+1)(log n)1−1/((r

2
)−1)) as n → ∞ [5].

Thus χ(Gn) > n/α(Gn) = Ω(n1−2/(r+1)/(log n)1−1/((r

2
)−1)), from which it follows that

n = O(χ(Gn)(r+1)/(r−1)(logχ(Gn))(r
2−r−4)/((r−2)(r−1))) as χ(Gn) → ∞. From this α(Gn) =

O(χ(Gn)2/(r−1)(logχ(Gn))(r
2−r−4)/((r−2)(r−1))).

Let G be a Kr-free graph of chromatic number χ with n vertices. By a classic
result of Ajtai, Komlós and Szemerédi [1], the independence number α of G satisfies
α = Ω(n1/(r−1)(log n)1−1/(r−1)) as n → ∞. Moreover, from a sequence of iterations of
this result (cf. e.g. [14, pp.124–5]) it follows that the chromatic number of G satisfies
χ = O(( n

logn
)1−1/(r−1)), implying n = Ω(χ(r−1)/(r−2) logχ) as χ → ∞. From this it follows

that α = Ω(χ1/(r−2) logχ).
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