Header menu link for other important links
X
Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase
P. Acharya, , R. Sankaranarayanan, N.M. Rao
Published in Academic Press
2004
PMID: 15321721
Volume: 341
   
Issue: 5
Pages: 1271 - 1281
Abstract
Variation in gene sequences generated by directed evolution approaches often does not assure a minimalist design for obtaining a desired property in proteins. While screening for enhanced thermostability, structural information was utilized in selecting mutations that are generated by error-prone PCR. By this approach we have increased the half-life of denaturation by 300-fold compared to the wild-type Bacillus subtilis lipase through three point mutations generated by only two cycles of error-prone PCR. At lower temperatures the activity parameters of the thermostable mutants are unaltered. High-resolution crystal structures of the mutants show subtle changes, which include stacking of tyrosine residues, peptide plane flipping and a better anchoring of the terminus, that challenge rational design and explain the structural basis for enhanced thermostability. The approach may offer an efficient and minimalist solution for the enhancement of a desired property of a protein. © 2004 Elsevier Ltd. All rights reserved.
About the journal
JournalJournal of Molecular Biology
PublisherAcademic Press
ISSN00222836