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Abstract: State estimation is one of the most important functions in an energy control centre. An computationally efficient state
estimator which is free from numerical instability/ill-conditioning is essential for security assessment of electric power grid.
Whereas approaches to successfully overcome the numerical ill-conditioning issues have been proposed, an efficient
algorithm for addressing the convergence issues in the presence of topological errors is yet to be evolved. Trust region (TR)
methods have been successfully employed to overcome the divergence problem to certain extent. In this study, case studies
are presented where the conventional algorithms including the existing TR methods would fail to converge. A linearised
model-based TR method for successfully overcoming the convergence issues is proposed. On the computational front, unlike
the existing TR methods for state estimation which employ quadratic models, the proposed linear model-based estimator is
computationally efficient because the model minimiser can be computed in a single step. The model minimiser at each step is
computed by minimising the linearised model in the presence of TR and measurement mismatch constraints. The infinity
norm is used to define the geometry of the TR. Measurement mismatch constraints are employed to improve the accuracy.
The proposed algorithm is compared with the quadratic model-based TR algorithm with case studies on the IEEE 30-bus
system, 205-bus and 514-bus equivalent systems of part of Indian grid.

1 Introduction

The necessity of having a robust state estimator in the energy
control center was highlighted by the NERC report [1] on the
2003 blackout in USA and Canada. A working and reliable
state estimation (SE) solution is a must before an online
security assessment system can be implemented. The
performance of SE depends mainly on the numerical
techniques employed for the solution and also on the
quality of measurements. Trust region (TR)-based SE
algorithms [2–6] are introduced to enhance the convergence
characteristics in the presence of topological errors/bad data.
The present work proposes a new, computationally efficient
SE algorithm based on a linear model and infinity norm TR
method.
Research in the area of SE has seen the application of

various numerical and optimisation methods [7, 8]. The
Gauss–Newton (GN) approach [9] is one of the traditional
methods employed for solving the least squares state
estimation (LSSE) problem. Application of the GN
approach to the SE problem gives rise to what are popularly
known as normal equations (NE). From the numerical
prospective, it is possible to classify the SE problems as
either well-conditioned or ill-conditioned. Numerical
ill-conditioning arising in NE approach because of large
number of injection measurements, indifferent weighing
factors can be tackled to certain extent using orthogonal
transformation (QR-GN) approach [10–13]. The method of
Peters and Wilkinson [14] is another solution to the least

squares (LS) formulation which has a good trade-off
between speed and stability. Bounded LS formulations [15]
have also been proposed to overcome the problem of
numerical ill-conditioning.

1.1 TR methods

Even QR-GN approach which can successfully overcome
most ill-conditioning issues are found to be inefficient in
providing a converged solution in the presence of
topological errors. TR approach-based SE algorithms [2, 4]
are proposed to overcome this problem. TR-based SE
approaches were first proposed by Pajic and Clements [3, 4]
with the motivation of enhancing the convergence
properties of SE in the presence of topological errors/bad
data. The authors show that, in the presence of topological
errors, the conventional GN-based algorithm may fail to
converge because of the presence of large measurement
residuals. The TR formulation proposed by the authors to
overcome this issue minimises a quadratic model in an l2
norm TR to obtain a globally convergent solution. Costa
et al. [5, 6] show that the basic TR equation can be
interpreted as the solution to the linearised LSSE problem
taking a priori information into account. Very limited
literature [3–6] is available on the application of TR
methods for SE.
Existing TR-based SE algorithms based on quadratic

models need higher computational effort than the
conventional LS estimators. Hence their application is
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limited to cases where convergence difficulties arise such as
presence of topology errors.

1.2 Aim and contribution of the paper

In this paper, we present case studies on practical Indian
systems where existing TR methods fail to provide a
converged solution in the presence of topological errors.
The aim of this paper is three-fold. First, a new,

computationally efficient SE algorithm based on linearised
model TR method is presented. The second aim is to show
that the convergence issues that occur in the orthogonal
transformation-based GN approach in the presence of large
measurement residuals can effectively overcome using the
proposed approach as in the existing TR-based estimators,
but at lower computational cost. The third aim is to show
that the accuracy of the proposed algorithm is comparable
to that of conventional LS and quadratic model-based TR
estimators.

1.3 Organisation

This paper is organised as follows. Section 2 describes the
basic mathematical formulation of the proposed approach.
Section 3 outlines the proposed SE algorithm and discusses
the implementation issues. Finally, case studies on IEEE
30-bus and practical Indian systems are presented in Section
4 followed by the conclusions in Section 5.

2 Mathematical formulation

In this section, the general framework of the proposed linear
model infinity norm-based TR method is described. Solution
to the SE problem involves solving a set of nonlinear
equations. Let, the nonlinear model relating the states to
measurements be given as

z = f (x)+ e (1)

where

z is the m-dimensional measurement vector,
x is the n-dimensional state vector,
f is the nonlinear function relating measurements to states,
e is the m-dimensional measurement error vector,
R is the m ×m co-variance matrix,
H is the Jacobian (H =∇f ).

Usually, the error is modelled as a Gaussian distribution
with zero mean and a known co-variance. If the errors are
assumed to be independent, then the co-variance matrix
([R]) is a diagonal matrix with diagonal elements set to s2

i

(variance corresponding to measurement i). Under these
conditions, an estimate to state x can be obtained by using
the least-squares criterion. The least-squares criterion for (1)
yields

min
x

J (x) = z − f (x)]T[R]−1[z − f (x)
[ ]

(2)

2.1 TR algorithm

A TR reflects the region where the model approximates the
objective function well. Algorithms based on TR methods
employ a linear or quadratic model of the objective function

and make use of the TR s to enhance convergence. These
algorithms minimise a model mk of the function J(x) within
the TR

‖ Dx ‖k≤ Qk (3)

A TR is usually defined as

b = x [ Rn:‖x− xk‖k ≤ Qk

{ }
(4)

where

m is the model of the objective function,
β is the TR constraint,
Θk is the TR radius,
||.||k is the kth-norm which defines the geometry of the TR and
Δx is the model minimiser or correction step.

The sub-problems in the TR methods are (i) finding a
model minimiser for mk, (ii) evaluating the model
minimiser Δx for acceptance and (iii) updating the TR
radius at each iteration. The TR radius is updated based on
the ratio of change in value of objective function to change
in model value, ρk. If this ratio produced by Δx is large [i.e.
ρk≥ η2, signifying that the model has excellent agreement
with f (x)], the TR radius is increased. If it is small, no
change is made to the radius of TR. In both the cases, the
value of xk + 1 is updated to xk + Δxk. However, if this ratio
is less than a minimum value (close to 0) or negative
(ρk≤ η1), the correction Δx is not accepted (i.e. xk + 1 = xk),
and the TR radius is reduced. A description of the constants
η1, η2 and other details can be found in [2]. The basic TR
algorithm is outlined in Algorithm 1 (see Fig. 1).

2.2 Proposed approach

The proposed algorithm differs from the existing TR-based
SE algorithm in the following aspects:

† Choice of model mk;
† Choice of TR β;
† Addition of measurement mismatch constraints.

Fig. 1 Algorithm 1: Updating solution and TR radius using basic

TR algorithm
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2.2.1 Choice of model mk: The models generally
employed in the TR methods [16] are either quadratic
models (5a) or linear models (5b) given by

mk = J (xk)+ ∇J (xk)
TDx+

1

2
DxT∇2J (x)Dx (5a)

mk = J (xk)+ ∇J (xk)
TDx (5b)

Most of the methods, including that adopted by Pajic and
Clements [4] employ quadratic models. In this paper,
linearised model-based TR algorithms are proposed for the
SE problem. One of the issues with adopting linearised
models is the accuracy of the estimated values. It is
well-known that quadratic models are usually superior to
linear models, but solution to quadratic models in the
presence of the TR constraint involves higher computational
burden. In this paper, measurement mismatches are
employed as additional constraints to improve the accuracy
of the proposed algorithm. The linearised model mk is
solved in the presence of the TR constraint and
measurement mismatch constraints. It is shown that the
accuracy of the proposed approach is comparable with the
quadratic model-based SE algorithms.

2.2.2 Choice of TR β: The solution to the linearised model
can be obtained using linear programming (LP) techniques,
provided a proper choice is made in choosing the norm for
defining the TR. The commonly employed norms for
defining the TRs are the l1, l2 and l∞ norms. For the
proposed approach, the l∞ norm (box-type constraints) is
employed for defining TRs . The l∞ norm is employed to
define the TR because it can be handled by adding it as a
simple variable bound in the linear programming problem
(LPP). That is ||Δx||∞≤Θk⇒−Θk≤ Δx≤Θk.
Existing TR-based SE approaches use a l2 norm to define

the TR. In such cases, computing the model minimiser at
each iteration requires sub-iterations. However, in the
proposed approach, since l∞ norms are handled directly as
variable bounds, the solution requires no sub-iterations.
Consequently, there is a significant reduction in the
computational effort required. In this paper,−Θk and Δxmin

are used interchangeably. Similarly, Θk and Δxmax are used
interchangeably.

2.2.3 Measurement mismatch constraints: Instead of
merely solving the linearised model in the presence of TR
constraints, measurement mismatch constraints (derived
from the Taylor’s series) are also employed as additional
constraints to enhance the performance of the proposed
approach. The measurement mismatches are derived from
the Taylor’s series expansion.
The truncated Taylor’s series expansion of f (x) around a

nominal value xk is given as

f (x) = f (xk)+ (x− xk)∇f (x)|x=xk
+ · · · (6)

where ∇f (x) is the Jacobian H.
From (6)

[H][Dx]≃f (x)− f (xk) (7)

The correction Dx should be such that [H][Δx] should try to
converge to z− f (xk). That is

[H][Dx] ≤ z − f (xk ) (8)

However, if an element of z − f (xk) < 0, then the inequality
[H][Δx]≤ z − f (xk) will force the corresponding element to
be equally or even more negative, thereby not allowing the
LPP to converge. Consequently, separate equations are
required to handle cases where z − f (xk) < 0 and z − f (xk)
> 0. For cases where z − f (xk) < 0, [H][Δx]≥ z − f (xk) is
employed to force the value of corresponding element close
to zero or a positive value. That is

[H][Dx] ≤ z − f (xk ) if z − f (xk ) ≥ 0

[H][Dx] ≥ z − f (xk ) if z − f (xk ) , 0
(9)

The constraints in (9) are used for determining Δx such that the
value of |z− f(xk)| is reduced or made close to zero. This is
similar to the objective function employed in the weighted
least absolute value (WLAV) approaches [17–19]. However,
here the same is employed as constraints. In the matrix form,
the constraints can be represented as

H̃
[ ]

[Dx] ≤ D̃z
[ ]

(10)

where

H̃
[ ]

=
H1

−1∗H2

[ ]
(11a)

D̃z
[ ]

=
z − f (xk)

−1∗(z − f (xk ))

[ ]
(11b)

where H1 corresponds to the set of equations whose z − f
(xk)≥ 0 and H2 corresponds to the set of equations whose
z − f(xk) < 0.
Although it appears intuitively that, the maximum values

that can be obtained is z (because of the < constraint), it will
be shown that values less than and greater than z can be
obtained (because of ≥ constraint). Hence both positive
errors and negative errors can be smoothed out.

2.3 Computing the model minimiser Δxk

As mentioned earlier, the model minimiser at each step has to
be computed and checked for acceptance (using the basic TR
algorithm). The solution to the generic model given by (12)
gives the model minimiser Δxk at each step. This generic
form can be solved using any of the LP techniques. The
solution Δxk thus obtained satisfies both the measurement
mismatch and TR constraints. The solution is obtained in an
non-iterative approach, thereby reducing the computational
time. The generic model is

minmk xk + Dxk
( )

= J (xk)+ [c]TDx

s.t H̃ Dxk
[ ]

≤ D̃z
[ ]

‖ Dxk ‖1≤ Qk

(12)

where [c]T = ∇J (x)T =
∂J (x)

∂x1

∂J (x)

∂x2
· · ·

∂J (x)

∂xn

[ ]
(13)

In essence, the gradient of J(x) is minimised (minimising the
gradient corresponds to maximising the direction of descent).
That is the movement is in a direction that has maximum
directional descent. The resulting direction Δx gives the
maximum reduction in J(x).
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It is well known that as per the first order necessary
condition (FONC), the value of ∇J(x) = 0 when x � x̂. The
expression for ∇J(x)T is given as

∇J (x)T = (− 2)[z − f (x)]T[H] (14)

In order to evaluate an acceptable Δxk, the predicted reduction
in mk is required. Using the Taylor’s series, this can be
obtained as

mk − mk+1 = −∇J (xk)
[ ]T

[Dxk ] (15)

The (12) employed for determining the model minimiser is a
bounded LPP. The infinity norm constraint here implies that
the solution Δx is bounded between −Θk and Θk. Hence
the solution Δx is allowed to take both positive and
negative values. The LPP given by (12) is solved by an
improved variant of the simplex method given in [20].
A simple implementation is to convert the bounded LP
into the standard LP form [21], but this would require a
two-phase simplex procedure. The improved variant of
simplex method in [20] solves (12) in a single phase,
thereby reducing the computational time.

2.4 On convergence, initial parameters

The algorithm is assumed to have converged if the gradient of
the objective function is less than a specified tolerance (i.e.
∇(J(x)) < ε). In most cases, the maximum number of

iterations is also specified. Theoretically, for any TR
algorithm, the choice of initial point x0 and Θ0 has little
effect on final solution since TR methods give a globally
convergent solution.
The other parameters of the basic TR algorithm which need

to be set are (a) η1, η2 for checking the acceptance of solution
and (b) the values of scaling employed whereas updating the
TR radius. The typical values employed are mentioned in [2].
Since the TR algorithms are globally convergent, the effect of
the choice of these parameters is minimal.

3 Proposed SE algorithm

3.1 Algorithm

Algorithm 2 summarises various steps involved in the
proposed approach (see Fig. 2).

3.2 Initialisation of the estimator

In this paper, two possibilities for choosing the nominal point
are explored:

1. The procedure adopted usually is to choose a flat start (that
is 1∠0) as the initial point.
2. In real-time operation, results of the SE is stored, This
stored information (which represents the state of the system)
can be used as an initial condition.

Fig. 2 Algorithm 2 proposed linear model-based TR algorithm for SE
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3.3 Computational, numerical and implementation
issues

The implementation of the proposed estimator, the orthogonal
transformation-based NE approach and the quadratic
model-based TR approach presented in [4] is developed in
‘C’ programming language. Sparsity features of the
matrices are exploited for efficient implementation. The
developed code also employs ‘OpenMP" to execute
the program in parallel.
For solving the LPP, simplex method with presolving [22]

is employed. Presolving is a set of techniques applied on a
LPP before the simplex method solves it. This set of
techniques aim at reducing the size of the LPP by
eliminating redundant constraints and variables. For the LP
implementation carried out, only simple presolving
techniques presented in [23] are employed. However, with
advanced presolving techniques, the size of the problem can
be further reduced, thereby reducing the computation time
per iteration.
As the TR radius becomes smaller, the LPP would be

completely solved in the presolving stage itself, thereby
reducing the computational effort. Moreover, with present
day efficient LP solvers such as CPLEX, the computation
time to solve the proposed formulation is comparable to
that of the other least squares solution.

3.4 Graphical interpretation of the proposed
approach

The geometrical interpretation of the proposed approach is
presented in this section. In order to make the interpretation
simpler, an estimation problem with two variables is
considered. ||m(x)|| = c represent the level sets of the
linearised objective function. Since this is a linearised
objective function, the level sets correspond to
n-dimensional planes. In a two-dimensional case, the level
sets correspond to a straight line as shown in Fig. 3. The
solution of the proposed formulation lies at the boundary of
the intersection of the l∞ norm TR (||Δx||∞≤Θk) constraint
(denoted by Ct) and the linearised measurement mismatch
(H̃[Dx] ≤ D̃z) constraints (denoted by Cm). This feasible
region is given by the shaded polygon PQRST. For the l∞
norm, the geometry of the TR is a ‘box’ [2], whose each
boundary is given by a plane parallel to each of its axis and

is located at distance Θk on the either side. For the
two-dimensional case represented in Fig. 3, the TR has a
square geometry, with the four sides at a distance Θk from
the point xk. The solution x

k + 1 is the level set ||m(xk + 1)||
= c which has the least value and lies on the boundary of
the feasible region.

3.5 Comparative evaluation

This section details a comparative evaluation of the proposed
linear model-based TR approach with the quadratic
model-based TR approach presented in [4]. Effective
implementation of quadratic model TR method is detailed
in [24]. In this paper, comparative evaluation of the
proposed approach is carried out with the quadratic model
algorithms that have been applied for SE in literature. The
generalised formulation for the quadratic model TR
approach presented is detailed in [25]. Existing TR methods
for SE in power systems uses a quadratic model with a
linear approximation to ∇

2J(x). The model minimiser is
computed by solving

minmk = J (xk )+ ∇J (xk )
TDx+

1

2
DxT∇2J (x)Dx

s.t. ‖ Dx ‖2≤ Qk

(16)

Applying the method of Lagrangian multipliers with the
Gauss–Newton approximation for ∇2J(x), (16) will have the
form

(HT
R
−1
H + mI )Dx(m) = H

T
R
−1(z − f (x))

s.t. ‖Dx(m)‖2 = Q
(17)

For this formulation given by (17), there is a practical
difficulty in obtaining the solution Δx because of the l2
norm constraint imposed. However, a reasonably accurate
solution is obtained by using the ‘hook step’ method which
is an approximate solution. The solution Δx(μ) is given as

U
T
kU kDx(m) = U

T
Qrw

mk+1 = mk +
‖ Dx(m) ‖2

Qk

f(mk)

f′(mk )

(18)

where

f(mk ) =‖ Dx(mk) ‖2 −Qk

f′(mk) =
Dx(mk)

T
H

T
R
−1
H + mkI

( )−1
Dx(mk )

‖ Dx(m) ‖2

(19)

It can be observed that, for computing the Δx(μk), additional
computations such as factorisation/inverse of (HTR− 1H
+ μcI) are required. The enhanced solution comes with extra
computational cost, because of the addition of the TR
constraint.
In the proposed formulation, the choice of l∞ norm fits the

LPP as variable bounds and are taken care of while obtaining
the solution. Hence no extra computations/approximations are
needed. Moreover, as mentioned in Section 3.3, solving the
proposed formulation is trivial with efficient presolving
techniques.Fig. 3 Graphical interpretation of the proposed approach
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4 Case studies

In this section, test results for IEEE 30-bus system [26],
205-bus and 514-bus [20] equivalent systems which are a
part of Indian grid are presented to validate the proposed
approach. The 205-bus equivalent of Indian southern grid
consists of 205 buses, 47 transformers, 235 transmission
lines (includes 400 and 220 kV lines). The 514-bus
equivalent of part of Indian grid consists of 514 buses, 296
transformers and 303 transmission lines (includes 400, 220,
132 and 33 kV lines).
The objective of the results presented in this section is to

highlight the following two issues:

† In cases when numerical ill-conditioning and topological
errors co-exist, the existing TR methods for SE fails to
provide a converged solution. Results presented indicate
how such cases can be handled using the proposed linear
model TR approach.
† Even in case when only topological errors exist, the
proposed approach is an computationally efficient
alternative to existing TR methods for SE.

Potential advantages of the proposed approach in terms of
the computational effort is discussed. The results obtained
using the proposed approach are compared with those
obtained by the quadratic model-based TR approach
presented in [4].
The inputs to the SE are obtained from load flow studies.

To simulate meter inaccuracies, errors are injected into all
measurements. The errors in the measurements are
modelled as Gaussian random variables with a known
standard deviation. The error is presumed to be spread
over a standard deviation of ± 3% of its full scale. The
algorithm is presumed to have converged when the value
of ||∇J(x)||≤ 10− 4. Zero injection measurements can be
either handled as equality constraints or can be
incorporated as two inequality constraints. In this paper,
zero injection measurements are handled as two inequality
constraints.
The results presented in the paper are for three categories.

1. In the first category, results are presented for two cases
with data sets having only topological errors. The
objective is to illustrate the convergence behaviour and
computational cost of the algorithms. Most of the case
studies presented in this paper belong to this category
because of two reasons. First, TR methods are specifically
employed in cases when there are convergence issues in
conventional approaches. Secondly, the proposed approach
is a computationally efficient variant of the TR method
and is intended to provide a converged solution at less
computational cost in the presence of large measurement
residuals.
2. In the second category, results are presented with data sets
where topological errors and ill-conditioning co-exist. The
objective is to indicate that the proposed approach provides
a converged solution even in such scenarios where as
existing quadratic model approaches for SE fail to do so.
3. The case studies presented in the third category are
intended to show that the proposed approach is reasonably
accurate as compared to those of the conventional LS
estimators (LS techniques provide the optimal solution).
The effect of initial TR radius and initial point on the
convergence characteristics of the proposed algorithm is
also presented.

4.1 Performance of the linear model estimator in
the presence of topological errors

The presence of bad data or topological errors can cause
the conventional LS approaches to diverge as shown by
the Pajic and Clements [4]. A converged solution (although
not exact) in such scenarios is required before any bad
data or topological error detection technique can be
applied. Application of TR methods can give enhanced
convergence in such scenarios following which bad
data/topological errors detection techniques can be applied.
Case studies on the IEEE 30-bus system and 205-bus
system of Indian grid are presented to compare the
convergence characteristics and computational cost of the
proposed approach with the quadratic model-based TR
approach.
The first scenario considered in this set of results compares

the convergence characteristics of various approaches in the
presence of topology error for IEEE 30-bus system. The
single line diagram of the IEEE 30-bus system and the
measurement set is presented in Fig. 4.
The measurement set contains 72 measurements (15

injection (P,Q), 20 flow (P,Q) and two voltage magnitude
measurements). Topological errors of exclusion type
(erroneous exclusion of a branch) are created on three lines
connecting the buses 12–14, 18–19 and 23–24. Fig. 5
shows the convergence characteristics of various approaches
in the presence of topological errors. It can be observed that
the orthogonal transformation-based GN approach fails to
converge. This is due to the presence of extremely large
residuals which are shown in Table 1.
The application of TR approaches in such scenarios

results in good convergence. Fig. 5 indicates two
mathematical aspects of the proposed linear model-based
TR algorithm. First, it can be observed that during the
initial stages, the value of log||∇J(x)|| falls rapidly for the
proposed approach than the quadratic model approach.
This is because, for a given TR radius, the solution space
(decided by the TR constraint) when defined using l

1

norm is larger than when defined using the l2 norm. In
order to further explain this, the convergence
characteristics of both approaches for the first few
iterations of this case is presented in Table 1.
The initial TR radius Θ0 for this case is 0.5. In the first

iteration, the Δx
max obtained using the proposed approach

is 0.5000 and that obtained using the quadratic model
approach is 0.2000. This is a direct consequence of the
norm employed for defining the TR. With l2 norm TR, the
solution obtained should be such that ||Δx||≤ 0.5, whereas
with the l∞ norm TR, the solution Δx obtained would be
such that − 0.5≤ Δxi≤ 0.5.

Table 1 also indicates other aspects of both the algorithms.
First, the directional derivative ∇J(x)TΔx at each iteration is
presented. It is well known that for an converging
algorithm, ∇J(x)TΔx < 0. The directional derivative for the
TR algorithms is negative during all the iterations whereas
the descent direction criterion is not satisfied for the
orthogonal transformation-based GN approach (during the
second iteration the value of ∇J(x)TΔx is 3170.3). It is seen
in column 5 of Table 1 that in the first two iterations, the
directional derivative of the proposed approach is more in
magnitude than that of the quadratic model approach and it
is because of this reason that the convergence of the linear
model approach is faster in initial iterations. Our
observation is that this holds true for most of the cases. The
number of internal iterations required to compute the model
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minimiser for both the algorithms is shown in the last column
of Table 1.
Another aspect of the algorithm is concerning the

convergence in the final iterations. Since the linear model
algorithm considers only the gradient information, situations
could arise where the convergence closer to the solution
could become slower, which is typical of any
gradient-based algorithm. The consequence of which may
result in the proposed approach requiring one or two
additional iterations to converge than the quadratic model
approach. Our observation is that during the final iterations,
solution is obtained during the presolving stage itself.
Hence even if the approach requires additional iterations the
computational time is still less.
Whereas the first case compares both the TR-based

algorithms, the next case is considered to study the
performance of the proposed approach for large systems. In
this case, a 205-bus equivalent system of Indian southern
grid [20] is considered. Topological errors of exclusion
type are created on the lines connecting the buses 179–91,
143–103, 106–171 and 107–144. The measurement
redundancy employed for this case is 2.72 and the initial

Fig. 5 Comparison of convergence characteristics in the presence

of topology error on IEEE 30-bus system

Fig. 4 Single line diagram of IEEE 30-bus system with measurement sets and topology error considered

Table 1 Performance of linear and quadratic model approaches for IEEE 30-bus system with topology error

Iter. no. Δx
max J(x) ∇J(x)TΔx Sub-iter.

linear model approach 0 0.0000 1.482 × 105 0.00 0
1 0.5000 1.45 × 103 − 2.94 × 104 0
2 0.0535 1.94 × 101 − 2.90 × 103 0
3 0.0010 1.49 × 101 − 1.14 × 101 0

quadratic model approach 0 0.0000 1.48 × 105 0.00 0
1 0.1997 2.062 × 103 − 2.16 × 104 5
2 0.1524 4.65 × 102 − 2.45 × 103 3
3 0.1432 7.44 × 101 − 5.86 × 102 4

For the orthogonal transformation-based GN approach, the direction of descent (∇J(x)TΔx) for the first two iterations are − 8108.4 and
3170.3.
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TR radius is 1.00. Fig. 6 indicates the convergence
characteristics of the proposed approach. Analysis of Fig. 6
leads to conclusions similar to that of previous case.

4.2 Performance in the presence of topological
errors and numerical ill-conditioning

In the previous test cases, it is shown that the conventional
Newton’s algorithm may fail to converge in the presence of
topology errors. In such case the failure of the algorithm is
not because of the ill-conditioning and can be effectively
tackled using the existing TR approaches. However, in
certain cases the numerical ill-conditioning can occur in the
presence of topological errors and such cases are difficult to
handle even with existing TR methods. In order to illustrate
the above observations, a case study on practical Indian
systems is presented.
In this case, test results on 205 bus equivalent system of

Indian southern grid is presented. The purpose of this case
is to indicate that the TR method would fail to provide a
converged solution in the presence of topological errors if
the associated gain matrix is ill-conditioned. The

measurement set considered for this set have injection
measurement at all the buses, flow measurement at one end
of the line and the voltage magnitude measurement.
Topological error of erroneous exclusion is created on line
194–58. Even though the measurement redundancy
considered is quite high, it was observed that neither the
QR-GN approach nor the TR approach could provide a
converged solution. The condition number of the gain
matrix H

T
WH for the QR-GN approach is 3.1924 × 1018.

The reason for the TR method failing to provide a
converged solution is also related with the ill-conditioning
of the gain matrix. In the TR method, each iteration will
have sub-iterations to determine the Lagrange multiplier μ
such that the TR constraint is satisfied. The Lagrange
multiplier μ is usually computed in an iterative way using
(18) and (19). Observing (19), it can be observed that for
computing φ′(μk), the factorisation/inverse of HTWH + μI is
required. With such a high-condition number and with the
initial value of μ0 being 0, finding the factorisation/inverse
becomes difficult.
The proposed linear model algorithm however is

successful in providing a converged solution. The reason
being that in the linear model approach, the solution is
always determined by the basis which is always a full rank
and well conditioned. The basis vector consists of few
rows of Jacobin H. The convergence characteristics of the
proposed linear model approach for this case is presented
in Fig. 7a.
As mentioned earlier, in order to test for successful

convergence, it is better to look for the directional
derivative and check that it always satisfies the descent
criterion. Fig. 7b gives the directional derivative produced
during each step of the linear model approach. It can be
observed that the descent criterion is satisfied and the
directional derivative smoothly reduces as it reaches closer
to the solution.

4.3 Computation time

The ratio of the computation time per iteration of the linear
model (tlm) and quadratic model (tqm)-based TR approaches
is presented in Table 2.

Fig. 7 Results for 205 bus system with linear model approach when both topology error and ill-conditioning co-exist

a Convergence characteristics of the linear model approach
b Directional derivative produced at each iteration of the linear model trust approach

Fig. 6 Comparison of convergence characteristics in the presence

of topology error for 205-bus system
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It can be observed that the computational effort involved
in the proposed approach is less than that of quadratic
model approach and the reduction is significant in the
cases when the measurement redundancy is high.
Significant computational burden in the quadratic model
approach lies in the computing of model minimiser.
Quadratic model approach requires sub-iterations to

compute the model minimiser at each step. The number
of sub-iterations for computing the model minimiser in
the first three iterations for the quadratic model approach
is also indicated in Table 2.
Observation of Table 2 also indicates that for smaller initial

TR radius Θ0 and higher measurement redundancy the
quadratic model TR approach requires more number of
sub-iterations to compute the model minimiser. In the case
of the linear model approach, the model minimiser can be
computed in one step irrespective of the initial TR radius.
As a consequence, it can be observed that in such cases the
proposed approach gives a significant reduction in
computation burden.
The additional computational advantage in the proposed

approach is with the employment of presolving techniques
for solving the LPP. In cases with higher measurement
redundancy, presolving helps in reducing the size of the
problem. One more advantage of employing presolving is
that during the final iterations, when the TR radius becomes

Table 2 Computational time

System Redundancy Θ0 tlm/tqm
(per iter.)

Sub-
iterations

1 2 3

30-bus 2.00 0.75 0.6098 6 4 3
1.20 0.8577 5 3 4

205-bus 2.10 1.00 0.4093 6 5 5
1.50 0.6302 6 4 4

Fig. 8 Error in estimated values (linear model and quadratic model approaches) for IEEE 30-bus system

a Error in estimated voltage magnitudes
b Error in estimated voltage angles

Fig. 9 Error in estimated values (linear model and quadratic model approaches) for 514-bus system

a Proposed linear model trust region approach
b Quadratic model TR approach]
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low the solution is obtained in the presolving stage which
involves very little computational effort.

4.4 Performance in the absence of topological
errors/bad data

This category of results aims at comparing the accuracy of the
proposed linear model approach with the quadratic model
approach. In the absence of topological error, the results
obtained using the QR-GN approach and the quadratic
model TR approach are the same. As a first case in this
category, the IEEE 30-bus system is considered. The
measurements are presumed to be the real and reactive
powers at selected locations and the voltage magnitude at
the slack bus. The errors injected in the power
measurements have a σ = 0.02 p.u. and that injected in
voltage magnitude measurements have a σ = 0.01 p.u. The
errors in the estimated magnitudes and angles for linear
model and quadratic model-based TR approaches are given
in Figs. 8a and b, respectively.
It can be observed from Figs. 8a and b that the estimates

obtained using the linear model-based approach are
comparable in terms of accuracy with that obtained using
the quadratic model-based approach.
In the last case, test results for a 514-bus equivalent system

of part of Indian grid is presented. The measurement set
considered for this system includes injection and flow
measurements along with voltage measurements at bus 1
(which is not the slack bus). The measurement redundancy
for this case is 2.15. Figs. 9a and b give the errors in
estimated voltage magnitudes for linear model and
quadratic model approach, respectively. It can be observed
that in this case, the proposed approach could get a better
estimate than the quadratic model approach.
In the next scenario, the effect of initial TR radius on the

convergence of the proposed algorithm is tested. Fig. 10a
represents the convergence of proposed algorithm for
various choice of initial TR radius. Fig. 10b gives the
convergence characteristics of the proposed approach with
two different initial conditions namely flat start and the
previous state estimate. Whereas using the previous state as
initial condition, first the estimate is obtained for 80% of

the system load and the resulting estimate is used as the
initial condition for case presented (100% load) in Fig. 10b.
The value of log||z− f (x)|| is plotted for each iteration. The

results indicate that the algorithm reaches global minima
irrespective of the initial conditions and initial TR radius.

5 Conclusions

A new method for SE-based on linear model TR method has
been presented. The proposed approach can effectively
provide a converged solution in cases where numerical
ill-conditioning and topology errors co-exist. Another
advantage of the proposed approach lies in the fact that
computing the model minimiser does not require any
sub-iterations, thereby bringing down the computation time.
Measurement mismatches are handled as constraints to
make the accuracy of the linear model mismatches
comparable to that of the quadratic model TR approaches
and QR-based GN methods. In view of the above
advantages, the proposed approach is a computationally
efficient alternative for cases in which orthogonal
transformation-based GN algorithm fails to converge. Case
studies on practical Indian systems are presented to clearly
illustrate the effectiveness of the proposed approach.
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