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a b s t r a c t

The spectrum cartography finds applications in several areas such as cognitive radios,
spectrum aware communications, machine-type communications, Internet of Things,
connected vehicles, wireless sensor networks, and radio frequency management systems,
etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques
for the construction of various radio environment maps (REMs). Following a brief
overview on spectrum cartography, various techniques considered to construct the REMs
such as channel gain map, power spectral density map, power map, spectrum map,
power propagation map, radio frequency map, and interference map are reviewed. In
this paper, we compare the performance of the different spectrum cartography methods
in terms of mean absolute error, mean square error, normalized mean square error,
and root mean square error. The information presented in this paper aims to serve as
a practical reference guide for various spectrum cartography methods for constructing
different REMs. Finally, some of the open issues and challenges for future research and
development are discussed.
©2021 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The growth in the usage of radio frequency based communication services increases the challenges in accessing the
spectrum [1]. Further, ever-increasing number of wireless devices causes spectrum crowding and results in the frequent
use of frequency links (channels). In such cases, intelligent methods such as spectrum cartography (SC), also known as
radio environment map (REM) are essential to utilize the spectrum resources effectively. The SC constructs a map from the
channel parameters collected from the sensor nodes deployed in a certain geographical area. The corresponding channel
parameters can be received signal power or channel gain (CG) or power spectral density (PSD) [2,3].

Cognitive Radio (CR) is one of the technologies that benefit from REM due to the usage of dynamic spectrum access.
CR allows the secondary users (SUs) to access the resources that are not utilized by primary users (PUs) without causing
any interference to PUs. Thus, these users need to be aware of the channel conditions in order to make the intelligent
decisions [4], which then helps in controlling the interference caused by secondary network to the PUs that are not
transmitting [5,6]. Thus, construction of REM helps the SUs to know the channel conditions. It allows them to utilize
unused spectrum without causing interference to PUs. REM also supports various CR applications such as spectrum access
in license band, spectrum sharing in unlicensed band, radio resource management, and spectrum monitoring [7].

A recent use case for REMs is in unmanned aerial vehicles (UAVs) communications have gained significant attention
as they can be used as flying relays for wireless networks. One of the applications of UAVs is to deploy them at low
altitude to provide superior link quality to users in dense urban environment with deep shadow fading. However, such
an application requires the knowledge of the channel conditions between the UAV and ground station. Therefore, it is
essential to learn the channel conditions of UAV–user pair. Thus, REM helps in constructing the radio map between all
possible locations of UAV–user pair [8].

Another scenario is the use of television (TV) spectrum for data delivery. The TV bands can be used by SUs without
causing any degradation in the quality of service requirements of incumbent users operating inside the building or nearby.
This is possible when the SUs have access to the knowledge about the PUs activities. The REM helps the SUs to have
complete knowledge on the radio activities of PUs [9].

Extreme doppler shifts are common in high speed trains (HSTs) and are detrimental to the orthogonal frequency
division multiplexing (OFDM) based LTE-Railway system. Further, the existing Doppler shift estimation methods do
not consider the features of HST such as the regular train routes, time tables, and predictable train routes for channel
estimation. The REM construction methods which are discussed in this article provide the detailed view on these
features [10]. Future 5G enables the vehicles to communicate with each other as well as with the infrastructure through
vehicle-to-anything (V2X) communication. However, the channel model changes when the vehicle moves from one
location to another and the variation is high in urban scenarios. The REM can help in estimating the channel quality
which helps us to adapt the resources of a vehicle heading to a poor coverage area.

In this survey, the functional architecture of REM, various types of REMs, and the performance metrics used for the
evaluation of SC algorithms are first discussed. Then, we describe the state-of-the-art mechanisms for the construction of
various REMs focusing on machine learning based approaches. We present the performance analysis of nearest neighbor
(NN) method for the construction of REMs in order to provide better insights of SC. In this method, the REM at a location
is estimated as the REM of a node which is nearest to the location. The numerical results are presented with single REM
measuring unit and three REM measuring units. Subsequently, the performance is evaluated in terms of mean absolute
error (MAE), mean square error (MSE), normalized MSE (NMSE), and root MSE (RMSE).

The rest of the paper is organized as follows: An overview of the SC is presented in Section 2. The state-of-the-art
SC mechanisms are discussed in Section 3. The performance comparison of state-of-the-art mechanisms is discussed in
Section 4. Finally, we provide the concluding remarks with a possible future work in Section 5.

2. Overview of spectrum cartography

REM defines the radio environment in different domains such as radio regulations, terrain information, and radio
frequency (RF) emission. It maintains the information about radio elements, radio scene, and environment. In general, REM
is constructed from the sensor node data. Thus, it can be easily adapted to dynamic environmental conditions. In [11], an
overview of the REM architecture, construction techniques, and quality metrics have been discussed. It is then extended
to heterogeneous networks composed of both licensed and unlicensed bands in [12]. Moreover, it has been extended
in [13,14] to cellular networks in the presence of heterogeneous LTE networks comprising of macro cell and femto cells.
A survey on the REM architecture for 5G cognitive radio networks (CRNs) has been presented in [15].

REM construction architecture involves four entities as shows in Fig. 1. Initial block represents the sensor nodes need
to be deployed to collect the information and send it to the REM data storage and acquisition unit, which stores the
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Fig. 1. Functional Architecture of REM.

sensor data and other processing information. The subsequent block indicates the REM manager which processes the
data collected by REM data storage and acquisition unit and constructs the REM. Once REM is constructed, SUs access the
unused resources for information transmission as depicted in the fourth block in Fig. 1 [12].

Based on the collected information, REM is categorized as channel gain (CG) map, power spectral density (PSD) map,
power map, spectrum map, power propagation map, radio frequency map, or interference map. The CG map constructs
the map that provides the channel state information between any two locations over a given link. Spectrum map aims at
constructing the received signal power from one location to another location over a given frequency band. Spectrum map
is also referred as RF REM. Interference map generation requires the measurement of the field strength at every location of
interest. REM constructed from the sensor node measurements provides the channel state information for links between
all locations even though sensors are not present. This helps in the network planning and interference management in
cellular networks [16]. From the state-of-the-art, we notice that the construction of power map, CG map, and frequency
map are at most focused. Thus, we have highlighted the construction of these maps in this manuscript.

With P0 denoting the received power at reference distance d0 = 1 m and α being the pathloss exponent, the received
power Pr (in dB), at a distance d, for the construction of power map is defined as [17]

Pr = P0 − 10α log10

(

d

d0

)

. (1)

Further, the CG at a distance of d for the construction of CG map is given as [18]

γ (dB) = β(dB) − 10α log10 d + ζ , (2)

where, β , α, and ζ denote the average CG at reference distance d0 = 1m, path loss exponent, and shadow fading. ζ can
be usually modeled as the zero mean Gaussian random variable with variance of σ 2. Finally, the frequency map can be
obtained by finding the received signal power from each user to BS at each frequency. The expression for received power,
Pr , at a distance d is given as

Pr = Pt − 21.98 + 20 log10(λ) − 20 log10(d) , (3)

where, Pt denotes the transmitted power, d is the distance between each user and BS, and λ = c/f . Here, c = 3×108 m/s
denotes the light speed and f is operating frequency.

From REM, we can estimate the transmitter locations, RF power, and channel state information [5]. The efficiency of
a REM construction algorithm is usually evaluated in terms of the construction time, number of sensor nodes considered
for collecting data, and sensor node deployment. Further, the performance of any of the REM construction algorithm is
evaluated in term of MAE, MSE, NMSE, or RMSE, which usually defines the error in reconstructing the REM. The expressions
for MAE, MSE, NMSE, and RMSE, respectively, are obtained as

MAE =
1

n

n
∑

i=1

|xi − x̂i| , (4)

MSE =
1

n

n
∑

i=1

(xi − x̂i)
2 , (5)

NMSE =
E

[

(xi − x̂i)
2
]

E
[

x2i

] , (6)

RMSE =







√

1

n

n
∑

i=1

(xi − x̂i)2 , (7)

where, n denotes the number of samples, xi is the measured value of sample i and x̂i is the reconstructed value, and
E[·] denotes the expected value [1]. Finally, we can also estimate the transmitter locations, RF power, and channel state
information from the reconstructed maps.
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3. State-of-the-art mechanisms

In this section, we discuss the state-of-the-art mechanisms focusing on architecture, sensor node deployment, and REM
construction. The consideration of number of sensor nodes, their locations, and way they collect the data has significant
effect on the REM construction. Thus, we first discuss some of the literature focusing on the sensor node deployment.
Then, we discuss the state-of-the-art REM construction methods. Most of the REM construction methods are compressive
sensing based methods which reduce the number of samples need to be processed. Consequently, we discuss some of the
machine learning (ML) based approaches in literature focusing on the construction of REM due to the diversity in the ML
application.

3.1. Architecture

Crowdsourcing based web spectrum monitoring system has gained increasing popularity in recent times. It provides
spectrum statics information to governmental organizations or telecom providers. However, the services does not reach to
the layman that limits its widespread deployment. In order to address this, Electrosense+ has been presented in [19] that
creates a open platform for spectrum sensing that uses low cost, embedded, and software defined spectrum IoT sensors.
The architecture contains a predecessor and Elecrosense for controlling and monitoring the spectrum IoT sensors. Further,
the authors have proposed different mechanisms to encourage the users to deploy new sensors for operating in the
Electrosense network. Moreover, they have proposed a novel method of assigning a reward to encourage the users to host
IoT sensors. Finally, a new Electrosense+ system architecture has been proposed to evaluate the performance for decoding
wireless signals such as FM and AM radio, LTE, and ACARS. In [20], the authors have designed, implemented, and validated
the hardware and software architectures for wideband radio spectrum monitoring inspired from the Lambda architecture.
This system offers spectrum sensing services to end users to easily access and process the radio spectrum data. The authors
have finetuned the data processing chain to reduce the latency of the services offered. The data models for MongoDB
and Cassandra databases have been designed for analyzing the sensor data characteristics. For spectrum visualization,
a MapReduce job has been developed and compared the performance of both the databases with experiments. It has
been concluded that Cassandra database outperformed the MongoDB database when different types of queries applied
on the data streams. A real time implementation solution for spectrum sensing using software defined radio USRP has
been proposed in [21]. The proposed solution uses the energy levels and radio frequency data detected at the USRP to
detect the spectrum occupancy. The hardware and software architectures of the proposed solution has been described
thoroughly and the optimal configuration of the USRP platform is described for spectrum sensing.

3.2. Sensor node deployment

This section focuses on the number of sensor nodes deployed to collect the RSSI. In [22–24] the authors have discussed
the effect of placement of sensor nodes and the selection of interpolation method on the REM constructed for very high
frequency/ultra high frequency band scenarios. A new tool has been discussed in [25] to construct the power map using
the RF power received from a set of sensor nodes deployed in a region of interest. The authors have used a data set
that contains the real-world power measurements to obtain the path loss exponent and decorrelation time for the region
of interest. Then, the power map is constructed using three interpolation techniques with a consideration of model-
based and model-free approaches. Finally, the authors have obtained minimum number of measurements to accurately
construct the map [25]. In [26], a novel distributed clustering (DC) algorithm has been proposed to construct the spatial
interference maps with limited number of sensor node deployment. Here, the clusters are formed subsequently with
limited number of sensor nodes with a constraint on Kriging variance. It has been shown that the proposed mechanism
is performed in a distributed way is power efficient, low complex, and scalable to network size [26]. In [27], the authors
have extended the DC algorithm by allocating the communication cost as a metric to decide which nodes are included
in each cluster. Through extensive simulations, it has been claimed that the proposed mechanism improves the network
lifetime by forming clusters of an average of 5 nodes only [27]. In [28], a SC technique has been proposed for CR where
the fixed wireless sensor network (WSN) is deployed to support the CR terminals. In this technique, the WSN is deployed
to estimate and update the PSD maps based on either centralized or distributed Kriging algorithm with the utilization
of spacial correlation of PSD over a given area. It has been shown that the ordinary Kriging technique applied to SC
outperforms the classical interpolation techniques with a proper semivariogram model even though the assumption of
constant PSD is in general not fulfilled.

3.3. Compressive sensing based methods

In [29], compressive sensing multispectral cartography (CSMC) has been proposed for spectrum sensing that collects
fewer samples than the required Nyquist criterion. Using collected samples, the method reconstructs the sparse or
compressible signals. In [30], a SC algorithm has been proposed where the PSD maps are constructed from the highly
quantized compressed measurements of wideband signals. In [31], REM has been formulated as a compressive sensing
(l1 minimization) problem that exploits the sparsity of the PUs in the space. Then, the Orthogonal Matching Pursuit
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Table 1

Comparison of the compressive sensing based methods.

Method Pros Cons Application/
Deployment scenario

CSMC [29] (1) Reduced number of storage data
(2) 50% data samples are sufficient to built
multispectral data cube
(3) 6.25% of original data is required to
store the SC information

Requires transmitter locations and other
information

(1) Smart cities
(2) CSMC network

SC algorithm [30] (1) Maps are constructed from the highly
quantized compressed measurements of
wideband signals
(2) Consideration of simple wideband
converters

(1) Requires transmitter locations and other
information
(2) Costly in terms of energy and
bandwidth due to the requirement of
spatially high density measurements

(1) Multipoint-to-point
medium access
topologies
(2) IEEE 802.22

OMPSE [31,32] 30% improvement in the detection of
wireless microphone in comparison to
existing methods

Described how power is distributed
spatially but not over frequency

TV White Space Wireless
Microphone detection

Location-free SC
method [33]

(1) Does not considers the locations of
sensors
(2) Overcomes the limitation of multipath
affect on pilot signals

Feature have similar nature that of time of
arrival (ToA) or time difference of arrival
(TDoA) but not same

(1) Network planning
(2) Power control
(3) Cognitive radios

Coupled block-term
tensor decomposition
framework [34]

Guaranteed identifiability of the emitter
radio map under realistic conditions

The assumption of spatial loss fields as low
rank matrices could be violated in urban or
indoor environments

For systematic and
random sensor
deployment

Non-parametric SC
algorithm [35]

Comparable performance to
semi-parametric methods

Described how power is distributed
spatially but not over frequency

For systematic and
random sensor
deployment

Online SC
method [36]

Reconstructs the PSD map in both space
and frequency

(1) Requires transmitter locations and other
information
(2) Costly in terms of energy and
bandwidth due to the requirement of
spatially high density measurements

Cognitive radio

Spatial Extension (OMPSE) algorithm has been used to solve the compressive sensing problem. In [32], the authors have
extended the work in [31] by considering fading environment in which the channel estimation is not feasible. In [32],
the compressive sensing based approach has been investigated for SC in an urban environment where Rayleigh fading
is prominent. Thus, the authors have formulated the cartography problem as a weighted l1 norm minimization and an
extension to the Iteratively Reweighted l1 (IRL1) algorithm has been used to solve the weighted l1 norm minimization
problem. Some of the existing SC techniques are required to estimate the locations of the sensor nodes. However, the
multipath propagation, especially in urban scenario, affects the pilot signals used to estimate the location of the sensor
nodes. Thus, in [33], a novel location-free SC method has been proposed which depends on the features of the pilot
symbols rather than locations of the sensor nodes. Further, the authors have proposed kernel-based learning algorithm
to explain the same. To address the disaggregation problem of the radio maps, a novel coupled block-term tensor
decomposition framework has been proposed in [34]. Unlike the existing cartography methods, the proposed framework
allows to recover the radio map of each transmitter. It has been claimed in [34] that the proposed framework works under
a number of systematic and random sampling schemes. Thus, it allows the system designers to handle the situations where
the sensor nodes deployment is challenging. The existing SC methods are parameter dependent such as transmitters
location and other parameters need to be considered. Further, they also require spatially high density measurements
which are costly in terms of energy and bandwidth. Motivated by this, in [35], the authors have developed a non-
parametric SC algorithm where the lower density measurements are used to update the parameters of the basis functions.
Here, the non-parametric means the parameters that are independent of the location and PSDs of the transmitters.
An adaptive Gaussian radial basis functions (RBFs) with no prior knowledge of the transmitters have been suggested
to achieve this goal. An online SC method has been proposed in [36] that reconstructs the PSD maps based on the
compressed and quantized sensor measurements. PSD values at each location is decomposed into a linear combination of
power spectra scaled by attenuation function which captures the propagation effects. Further, the attenuation function is
represented as sum of two components, where the first one denotes the linear combination of a collection of basis function
and the later denotes an element of a reproducing kernel Hilbert space of vector valued functions. Finally, the authors
have proposed a novel stochastic gradient descent method to compute both the components in a online fashion [36]. A
detailed description on each of the compressive sensing based approach is presented in Table 1.

3.4. Machine learning based methods

A survey on the usage of REM-based techniques for various applications of wireless regional area network has been
discussed in [37]. In [37], the authors have focused on presenting the REM-enabled case and knowledge based learning
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algorithms for cognitive engine based wireless regional area network as a viable solution. The detection or identification
of state of PU is a key part of the REM construction. However, it is difficult to identify multiple PUs in an individual user
terminal. A hidden Markov chain model has been proposed in [38] that enables the sensor nodes to identify the states of
the PUs (either active or sleep) to efficiently construct the REM. An unsupervised classification method has been proposed
in [39] to classify the BS–user links into two propagation models such as line-of-sight and non-line-of-sight based on their
signal values. Then, maximum likelihood estimation (MLE) is used to compute the model parameters. Further, the 3D map
of the area is obtained based on the category information which signifies the obstacle layout. This area map can be used to
obtain the signal blockage of a corresponding BS–UE pair. Then, the signal reconstructed for that UE pair and the received
signal strength (RSS) can be obtained. By considering the geographical sparsity of the power propagation map (PPM), a
sparse Bayesian learning (SBL) algorithm has been proposed in [40] that can dynamically monitor the number, location,
and radio power profiles of PU and base station in CR. The proposed SBL algorithm can effectively reconstruct the PPM
which can be used for monitoring the spectrum usage of the PUs. The main advantage of SBL is that it only requires
the SUs information such as locations, received signal strength indicator (RSSI) values, and time instants. Experimental
validation of the functionality of a SC algorithm based on the adaptive RBFs has been performed in [41]. The received signal
power at each location is estimated as a linear combination of different RBFs. The expectation maximization with a least
squares loss function and a quadratic regularizer has been used to jointly optimize the weights of the RBFs, their Gaussian
decaying parameters, and locations. In [42], the authors have used machine learning to jointly optimize the weights of
the RBFs, their Gaussian decaying parameters and locations by representing the RBFs as centroids at optimal locations.
Similar to [41], the expectation maximization with a least squares loss function and a quadratic regularizer has been used
to jointly optimize the weights of the RBFs. In [43], the knowledge of dictionary learning and compressive sensing has
been adopted to design the spectrum sensing algorithms for CRs. These algorithms can predict the interference power
experienced by a CR node based on the past and current measurements made by a set of nodes. Based on the CR network
topology a regularization term has been incorporated by exploiting the fact that the spatial variation of interference is
smooth. Batch and online algorithms were derived, where the online alternative possessed a tracking capability at lower
complexity and memory requirements. In dense urban areas, the wireless signals are blocked by building terrains. In order
to address this issue, the unmanned aerial vehicles (UAVs) started being used as relays to forward the information between
base station (BS) and user equipment (UE). However, the position of UAV affects the CG between BS and UE. In order to
capture the signal strength and propagation conditions, the authors in [18] have exploited the finely structured radio
map. However, the radio map obtained will be complex in nature due to the irregular shapes of the buildings that affect
the signal strength. Thus, a machine learning approach has been proposed to reconstruct the radio map from a limited
number of signal strengths obtained from a set of locations [18]. The main goal of [18] is to train a channel predictor
and interpolate the CG to obtain the propagation conditions for each UAV-UE location. Then, an efficient data clustering
and parameter estimation algorithm has been proposed in [8] to construct a REM between each UAV-UE pair with fine-
grained propagation details by learning and reconstruction of small measurement samples. Further, a hidden multi-class
virtual obstacle model has been proposed to efficiently study the air-to-ground channel. The existing SC approaches mostly
depend on tomographic model, where the shadowing is modeled as the weighted integrals of spatial loss field (SLF). In
general, the SLF can be learned with regularization methods depending on the propagation environment. However, the
existing regularization methods are ineffective in case of heterogeneous environment. Thus, in [44], an adaptive Bayesian
framework has been proposed to construct the CG maps that provide the CG between any arbitrary transmitter–receiver
pairs over a heterogeneous environment. The proposed framework is based on a hidden Markov random field (MRF)
model that identifies the spatial correlations of the neighboring regions exhibiting the similar statistical behavior. Further,
Markov Chain Monte Carlo (MCMC) sampling has been used to derive the efficient field estimator which is a powerful
tool in the absence of the analytical solutions of minimum mean square error and maximum a posteriori estimators. In
order to reduce the uncertainty in the estimation of SLF, the authors have developed an adaptive data acquisition method.
A detailed description on each of the compressive sensing based approach is presented in Table 2.

3.5. Other techniques

In [1], the performance comparison of three interference cartography methods namely natural-neighbor, thin-plate
spline, and Kriging interpolation has been carried out for CRNs in terms of PU localization accuracy and RF field strength
estimation accuracy. It has been concluded that the natural-neighbor interpolation method provides the desirable features
suitable for CRNs [1]. A comparative analysis of three interpolation techniques such as Kriging, modified shepard’s method,
and gradient plus inverse squared method has been carried out in [45] for efficient management of spectrum resources
for future wireless networks. From numerical analysis, it has been concluded that Kriging method outperforms other
two in terms of relative MAE [45]. A probabilistic interference constrained method with a REM for spectrum sharing has
been proposed in [46] for spatial spectrum sharing. Ordinary Kriging method has been used for the construction of REM,
then, the transmit power of the PUs has been formulated based on the estimation error distribution. Subsequently, the
proposed method in [46] has been compared to existing path-loss based method, the perfect estimation, and the Kriging
based method without error prediction. It has been concluded that even with the small amount of measurement data, the
proposed method has higher spectrum sharing opportunity in comparison to other methods. A comparative analysis of the
local interpolation techniques such as nearest and natural neighbor and linear, quadratic and cubic interpolation which
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Table 2

Comparison of machine learning based methods.

Method Pros Cons Application/
Deployment scenario

Segmented regression
approach [18]

(1) Considers segmented propagation
structure of the radio map
(2) Requires fewer training samples
compared to KNN

Flight trajectory optimization for
accelerating the learning process

UAV-aided wireless
network

A comprehensive
cost-efficient
approach [37]

Cost efficient approach Did not exploited the sparsity of the active
users in frequency and space

(1) IEEE 802.22 Wireless
regional area network
(2) TV broadcast bands

Hidden Markov
Model [38]

Superior to unsupervised clustering
methods in the presence of both AWGN
and Rayleigh fading channels

Impractical assumption that the number of
primary users are known to the secondary
users

Cognitive radios

Sparse Bayesian
learning
algorithm [40]

30% improvement in the detection of
wireless microphone in comparison to
existing methods

Described the distribution of power over
space not over frequency

Cognitive radio systems

Adaptive RBF based
SC algorithm [41,42]

(1) Does not considers the locations of
sensors
(2) Overcomes the limitation of multipath
affect on pilot signals

Considered only Single receiver and not
with multiple

Cognitive radio

Dictionary learning
and compressive
sensing [43]

(1) Low complexity
(2) Low memory requirements

The work has mainly focused on spatial
domain

Cognitive radio network

are based on Delaunay triangulation has been presented in [47] for CRNs. Primary emitter localization accuracy and RF
field estimation efficiency are used as the performance metrics for evaluating the performance. Through simulations, it has
been concluded that the linear interpolation technique results in the same performance as such of complex interpolation
methods due to the utilization of triangulation [47]. The deployment of LTE-Advanced radio access network can improve
the network capacity and data rates by utilizing licensed spectrum access (LSA) channel. LTE-Advanced networks collects
each UEs’ measurement data by utilizing a feature named minimization of drive test reporting system. This data provides
the location and signal strength information. Motivated by this, in [48], a comparative analysis of four spatial interpolation
techniques such as Nearest Neighbor (NN), inverse distance weighting, triangular irregular network, and Kriging has been
presented for LTE-Advanced networks to estimate the interference map and the effect of spatial correlation and errors in
the measurement estimation has been studied.

In [49], the advantage of directional antenna has been considered in order to estimate the unknown locations and
transmit powers of PUs. The area of interest, where the PUs are present, is divided into M grid points and it has been
assumed that the PUs may present within each grid. A set of sensor nodes with an antenna, each with elements of uniform
linear array, have been deployed to track the PUs. Then, the locations and powers of PUs have been modeled by a sparse
vector in which the elements are non-zero in the presence of a PU in the corresponding grid. Moreover, centralized and
distributed source localization algorithms have been developed in which the received signal strength (RSS) and direction
of arrival (DoA) are unified as a single field. In the centralized setup, a compressive sensing problem has been established
at fusion center. In the distributed setup, each sensor node shares the collected information with the neighbors and
then, each SU applies compressive sensing algorithm based on the information collected from neighboring SUs. It has
been shown that the proposed framework is applicable for dynamic SC [49]. A novel Kriged Kalman filtering (KKF)-based
algorithm has been proposed in [50] that can capture optimal estimates of the unknown CGs of arbitrary locations for a
given area using measurements corresponding to CRs. This algorithm adopted the dynamic shadow fading that can capture
both spatial and temporal correlations. A distributed version of the KKF algorithm, derived using alternating direction
method of multipliers, requires just local message passing yet construct the global view of the CG maps through concurrent
iterations. A Shepard’s interpolation technique has been considered in [51] to construct a spectrum map by fusing the
information shared by SUs with a consideration of their mutual distances and spatial orientation with each other. Then a
vector clustering technique that uses the tree structured vector quantization has been developed to determine the optimal
locations of the SUs [51]. In [52], a REM is constructed by utilizing the interference cartography and geo-graphical locations
of the users for CR based heterogeneous networks. The extraction of geo-locations of users gives a viable picture of the
environment for efficient detection, analysis, and decision. The advances in signal processing techniques are utilized to
extract the geo-locations of users efficiently. It has been shown that the proposed mechanism allows the SUs to efficiently
access the licensed band without creating interference to the PUs [52]. In [53], the need for REM dissemination for CR
networks has been discussed in order to reduce the network overhead. Then, the performance comparison of different
REM dissemination techniques under various network scenarios has been carried out. Finally, the authors have discussed
the ways to enhance the efficiency of REM dissemination and claimed that the REM dissemination can be significantly
reduced by extending the optimized link state routing protocol [53]. In [54], cooperative CR sensing problem has been
considered and novel spectrum sensing algorithms have been proposed to track the CG maps of PUs present in a given
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geographical area. Here, CG maps capture the propagation characteristics per frequency from any geographical location
to a CR user. Further, the Kriged Kalmann filtering has been considered to update the CG maps in real time. Then, a sparse
regression technique has been considered to track the transmit power and locations of unknown PUs in that area.

Two indirect methods to construct the REM have been proposed in [55]. The first one is based on the received
signal strength difference (RSSD) and second is based on RSS. These two indirect methods are compared using log-
normal shadowing under different scenarios. These scenarios include different number of sensor nodes, several shadowing
spread values, mobility of the sensor nodes. Through results, the authors claimed that the number of sensor nodes
and number of measurements considered has more effect on the REM [55]. In [16], it has been shown that the sensor
measurements convey more information than spatial loss fields in existing methods. In existing approaches the sensor
measurement conveys spatial loss field whereas the weights of the SLF is selected heuristically whose effectiveness is
not clear. Motivated by this, in [16], a blind channel gain cartography method has been proposed that extract both SLF
and the corresponding weights to obtain the CG maps of the area of interest. A low rank plus sparse matrix model has
been proposed in [56] for CG cartography. In this work, the CGs have been modeled as the tomographic accumulations
of SLF that capture the pathloss model of the channel. Here, the SLF was assumed to have a low-rank structure corrupted
by sparse outliers. Then, the authors have derived efficient batch and online algorithms by leveraging a bifactor-based
characterization of the matrix nuclear norm. In [57], it has been mentioned that the existing SC methods construct
the power maps from power measurements and PSD maps from PSD measurements by leveraging the framework of
kernel-based learning. In contrast to the existing methods, in [57], the authors have presented a family of methods for
nonparametric and semiparametric estimation of the PSD maps from RF power measurements. The proposed methods
support the low-cost and low-power sensor nodes as it is the estimation of RF power distribution over frequency and
space. In [58], a joint indoor localization and radio map construction method has been proposed for indoor environment
that can be employed with limited number of calibration fingerprints and source data set preserving spatial correlation.
The proposed method transfers the knowledge of this data set to calibration fingerprints and localization observations
to perform localization directly without radio map using manifold alignment. The method in [58] can also construct
the radio map by accumulating history of localized readings. In [59], the authors have divided the area of interest into
clusters and in each cluster a group of sensor nodes are deployed to collect the temporal correlation for a particular
cluster, not over the entire area and the Nyquist rate differs from group to group. Then, a fusion center collects these
groups of temporal correlation estimates and process all with the combined Nyquist rate to estimate the PSD of over
entire area. The main advantage of the proposed mechanism is that the required sampling rate for each sensor node is
less compare to the no cluster based approach. In [60], the authors have proposed a REM construction technique that
is based on active transmitter location estimation. Further, in [60], the authors have claimed that the proposed active
transmitter location estimation based REM construction mechanism outperforms the existing mechanisms such as Kriging
and inverse distance weighted interpolation methods in multipath and shadow fading channels in terms of RMSE. In [61],
a novel spectrum sensing based REM construction method has been proposed that forms a single heterogeneous testbed
by integrating both mid-end and low-end spectrum sensing devices. The performance of the proposed integrated system
in [61] has been analyzed in terms of accuracy of REM construction in real-time. In [62], the authors have considered
the application of spatial ordinary Kriging (OK) interpolation method for platoon based cellular vehicle to anything (V2X)
communication. With an assumption of availability of geo-localized received power values, OK interpolation method is
used to reconstruct the REM by estimating at other platoon vehicle locations. Through extensive numerical results, it has
been concluded that the OK is able to reconstruct the REM with acceptable MSE and also reduces the control information
for REM acquisition up to 64% [62]. A distributed incremental clustering (DIC) algorithm has been proposed in [63] for
future 5G automotive to reduce the number of sensor nodes required for the construction of REM. The DIC algorithm
based on regression Kriging (RK) method can efficiently estimate the average received power at locations where the
sensor nodes are absent. Through extensive results, the authors have claimed that path-loss and shadowing components
are important for efficient channel map construction. Further, the authors have claimed that the RK method leads to
superior performance in comparison to ordinary Kriging method [63]. In [64], the authors have proposed basic method
for the construction interference cartography for licensed networks in order to mitigate the interference caused by an
license shared access-licensed LTE-advanced Radio Access Network (RAN) in the uplink. The performance of the proposed
method is compared with the spatial interpolation techniques such as nearest neighbor, inverse distance weighing (IDW),
and Kriging method. It has been concluded that basic method outperforms the interpolation techniques in terms of correct
rejections and false alarms, however, the interpolation techniques dominates in terms of hit and miss percentage. Further,
it has been noticed that Kriging interpolation method outperforms all in overall [64]. In [65], the authors have aimed at
constructing the REM using energy detector for the coexistence of the terrestrial and satellite networks. This allows the
satellite users to access the resources unused by the terrestrial networks. In [66], the authors have used Discrete Cosine
Transform (DCT) for constructing the radio frequency map and a simulation study has been presented to compare the
performance of DCT with the other interpolation techniques. It has been claimed that DCT is more dynamic and accurate
technique in comparison to IDW method. In [67], a linear tomographic method has been used to construct the radio map
in order to obtain the shadowing attenuation between any two given points in the map. Here, the authors have considered
the shadowing attenuation as the weighted integral of spatial loss field. The proposed algorithm finds the solution in an
iterative way by relying on the alternating direction method of multipliers [67]. In [68], the authors have discussed the
ways to construct REM for TV signals in the context of indoor and outdoor environments using ordinary Kriging algorithm.
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Fig. 2. Applications of Spectrum Cartography.

Then, they have used multiple methods to construct the REM from real time data collected from Poznan and Poland.
Finally, the authors have discussed the new approaches to consider the attenuation from walls while constructing the
REM [68]. In [69], the authors have proposed a framework to construct the 3D spectrum map based on region of interest
(ROI)-driven UAV deployment for efficient spectrum construction and management in smart IoT. The proposed framework
in [69] is composed of four stages such as pre-sampling, spectrum situation estimation, ROI-driven UAV deployment, and
total variance based spectrum map reconstruction.

3.6. Open challenges and future scope

The UAVs have gained significant attention in many applications as they can be used as flying relays for wireless
networks. The dynamic change in network topology has lead to many spectrum mapping and communication challenges.
One such challenge is the construction of 3D REM that includes both space and time. The state-of-the-art SC mechanisms
focused on the construction of 2D REM, however, very limited research has been done for the construction of 3D REM [69].
The 3D data to be collected and processed is huge. Thus, future works should focus on the compressive sensing based 3D
REM construction approaches that require less data to process to accurately construct the REM. Further, machine learning
based approaches are more suitable to learn the dynamic change in the network topology to efficiently construct REM.
The novel approaches that include both compressive sensing and ML seem to be more efficient as they can track the
dynamic network topology and construct the REM with limited data and processing time.

3.7. Applications of REM

• In [70], the authors have proposed a spectrum sharing technique for CRNs that allows the SUs to share the spectrum
with the PUs by exploiting REM. Further, the authors have developed REM-enabled CR adaptation algorithms for both
open area and dense urban area. A simulation analysis has been presented to compare the performance of global
REM and local REM. It has been claimed that the CR can make situation-aware adaptations in topology, routing
protocols, transmit power, and transmission timing leading to reduced interference to PUs. Further, the global REM
method has been used to mitigate the problem of hidden node or hidden receiver.
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• A framework for REM-enabled situation aware learning algorithm has been proposed in [71], that allows the SUs to
coexist with the PUs without causing more interference. Further, it has shown that the proposed mechanism in [71]
mitigates the hidden node problem.

• A REM enabled soft frequency reuse scheme has been proposed in [72] to improve the throughput of the 4G LTE
networks by 14%. In [72], the REM stores signal strength and traffic maps and then, the BSs’ subchannel transmit
powers tuned so as to maximize the throughput.

• In [9], the authors have proposed the REM enabled scheme for controlling the transmit power levels of base stations
in 4G/5G networks without causing the interference to licensed band. This enables the dynamic spectrum access so
as to increase the network throughput in both indoor and outdoor networks.

• Local cartography-based dynamic spectrum access technique has been proposed in [73] that allocates the joint power
and frequency resource blocks (RBs) by creating the interference map. In this mechanism, the SUs classify resource
blocks at target locations and use them for transmission with required power levels without disturbing the PUs
which enhance the throughput.

• In [10], cognitive Doppler spread compensation (CDSC) algorithms have been proposed for HSTs that compensate the
time-varying Doppler spread by using the REM. Here, REM contains the spatial–temporal information of the radio
channel parameters along a given railway. It has been claimed that the proposed CDSC algorithm is more efficient
in comparison to the typical OFDM based broadband mobile system which presents a new paradigm for mobile
communication in HSPs.

• The estimation of Doppler shift for HSTs is a big challenge. Motivated by this, in [74], a Doppler shift estimation
algorithm has been proposed for an OFDM based HSTs. The REM has been constructed which includes Doppler
shift information, from the field tests by using the HST time tables, regular and repetition routes. Then, maximum
a posteriori estimator (MAPE) has been proposed to estimate the Doppler shift accurately. MAPE exploits the
cyclic prefix structure for OFDM using REM and obtains the MAP estimates. It has been claimed that the proposed
mechanism outperforms REME and classical CP based estimator in terms of mean square error (MSE) [74].

• A user handover algorithm based on the REM has been proposed in [75] that predicts the best network connection
based on the constructed REM. Through extensive Monte Carlo simulations it has been claimed that a 10% reduced
in the ping pong handovers can be achieved with the proposed handover algorithm [75].

• An emulation based analysis has been carried out in [76] in three cities of Japan to help the SUs to find the free band
in TV white spaces. Fig. 2 provides an overview of all the applications of spectrum cartography.

4. Performance analysis

In this section, we provide the simulation results for the comparison of the actual REM and reconstructed REM with
NN method [1] that is used frequently in the literature. We consider a grid of 25 × 25 with the locations of PUs at grid
points. Then, 50 sensor nodes randomly deployed in the grid to extract the data. We consider the unit distance d0 = 1 m,
the reference power at unit distance is 20 dBm, and the path-loss exponent (α) is, 2 [77], for the calculation of received
power and CG towards power map and CG map, respectively. We consider β = −30, α = 3.64, σ 2 = 3, c = 3×108 m/s,
and f = 1080 MHz for the calculation of received power for frequency map.

Figs. 3 and 4 show the image and surface plots of the actual and reconstruction maps, respectively, with a single REM-
acquisition unit (REM-AU) at the center of the grid. Figs. 3(a) and 4(a) show the image plot and surface plots, respectively,
of actual power map at the exact locations of the primary devices. We consider the REM-AU at the center of the grid and
the received signal strength is calculated from (1). From Figs. 3(a) and 4(a), it is observed that the received signal strength
is high at the grid points near the REM-AU as the distance is less. However, when we go from away from the center, the
RSSI reduces in a logarithmic manner due to the attenuation. Figs. 3(b) and 4(b) show the image and surface plot of the
reconstructed map with NN method considered with 400 sensor nodes deployed randomly in the grid. From Figs. 3(b)
and 4(b), it is observed that the reconstructed power map is similar to the actual map. However, it is not same with the
actual map as the NN method chooses the NN to estimate the RSSI at a particular grid location. Figs. 3(c) and 4(c) show
the image and surface plot of the CG map constructed from (2). Since the CG also depends on the distance of the user
from the REM-AU, the CG values are more for the locations near the REM-AU. The peak values near the center in Fig. 4(c)
represents the same. However, when the devices are away from the REM-AU, the CG values decreases. Additionally, the
blue color in Fig. 3(c) represents the same. Figs. 3(d) and 4(d) show the image and surface plot of the reconstructed CG
map with NN method considered with 400 sensor nodes deployed in the grid. From Figs. 3(d) and 4(d), it is observed that
the reconstructed CG map is similar to the actual map. However, it is not same as the actual map, because the NN method
chooses the NN to estimate the CG at a particular grid location. Figs. 3(e) and 4(e) show the image and surface plot of
the frequency map constructed from (3). From (3), it is noted that the RSSI is a function of both frequency and distance.
However, in this work, we consider a constant frequency of 1080 MHz, hence, the RSSI also depends on the distance. Thus,
the RSSI values are high at the grid points near the REM-AU which can be observed from the peak at the center in Fig. 4(e).
Figs. 3(f) and 4(f) illustrate the image and surface plot of the reconstructed frequency map with NN method considered
with 400 sensor nodes deployed over the grid. From Figs. 3(f) and 4(f), it is observed that the reconstructed frequency
map is almost matches with the actual map as the RSSI depends on the frequency and we consider fixed frequency herein.
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Fig. 3. An illustration of (a) Actual power map and (b) Reconstructed power map (c) Actual CG map (d) Reconstructed CG map (e) Actual Frequency
map and (f) Reconstructed Frequency map using NN method with 400 sensor nodes deployed in the grid.

Figs. 5(a), 5(b), 5(c), and 5(d) depict the variation of MAE, MSE, NMSE, and RMSE with increasing number of sensor
nodes for single REM-AU. Here, we varied the number of sensor nodes from 50 to 750. From Fig. 5, it is observed that all
the errors are more for CG maps in comparison to other maps. CG values decreases 36.4 times the logarithmic of distance
for CG map whereas for other maps the RSS decreases 20 times the logarithmic of distance. Further, it is observed that the
error decreases with increasing number of sensor nodes as the number of sensor nodes near the grid locations increases.

Figs. 6 and 7 show the image and surface plots of the actual and reconstructed maps with respect to all three maps,
respectively, consisting three REM-AUs at (−10, −10), (0, 0), and (13, 13). From Figs. 6 and 7, it is observed that the
reconstructed map is almost similar to the actual map for all three maps even though there is a difference in the peak
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Fig. 4. An illustration of (a) Actual power map and (b) Reconstructed power map (c) Actual CG map (d) Reconstructed CG map (e) Actual Frequency
map and (f) Reconstructed Frequency map using NN method with 400 sensor nodes deployed in the grid.

values which is not the case for single REM-AU as can be observed from Figs. 3 and 4. This is due to the fact that a sensor
node reports to the REM-AU which is near to it. Since the distance from NN of a location to the REM-AU is less, the error
is less.

Figs. 8(a), 8(b), 8(c), and 8(d) illustrate the variation of MAE, MSE, NMSE, and RMSE with increasing the number of
sensor nodes with three REM-AUs. Similar to single REM-AU case considered in Fig. 5, we varied the number of sensor
nodes from 50 to 750. From Fig. 8, it is observed that all the errors are more for CG maps in comparison to other maps.
Further, the error values are less for three REM-AU case in comparison to single REM-AU case as the NN method almost
recreates the map. Moreover, it is observed that the error decreases with increasing number of sensor nodes as the number
of sensor nodes near the grid locations increases.

Finally, Tables 3–5 demonstrate the summary of performance comparison of the recent SC methods proposed for the
construction of power map, CG map, and frequency map, respectively. It is observed from Table 4 that, adaptive Bayesian
framework results in the improved performance for the construction of CG map as it requires only 30% less number of
samples for the construction of map as compared to other methods. It is also observed from Table 5 that an efficient
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Fig. 5. Variation of (a) MAE, (b) MSE, (c) NMSE, and (d) RMSE with increasing number of sensor nodes for the reconstruction of power map, CG
map, and frequency map using NN method.

Table 3

The state-of-the-art for power maps.

Method Map considered Kind of study Parameters

SC algorithm in [30] PSD map Simulation MSE
Location free SC method [33] Power maps Simulation NMSE
Coupled block-term tensor decomposition framework [34] Power map Simulation Normalized absolute error
Non-parametric SC algorithm [35] PSD map Simulation NMSE
Online SC method [36] PSD map Simulation Efficiency
SBL algorithm [40] Power propagation map Simulation Normalized RMSE
SC method based on adaptive RBFs [41] PSD maps Experimental NMSE
Machine learning for adaptive RBFs [42] PSD maps Experimental NMSE
Usage of directional antenna [49] Power maps Experimental MSE, Normalized error
Two indirect methods [55] REM Simulation Transmitter location error
Nonparametric and semiparametric methods [57] PSD maps Simulation NMSE
Distributed incremental clustering (DIC) algorithm [63] Power maps Simulation MSE

data clustering and parameter estimation algorithm reduces the radio frequency REM reconstruction time by 300% when
compared to conventional methods. Further, machine learning based approaches have increased the MSE for radio map
reconstruction by 90%.

Table 6 illustrates the complexity analysis of some of the state-of-the-art SC methods. Here, M and N represent the
number of estimating REM locations and measurements with M,N → ∞, M > N . P and p denote the order of the spline
function and number of unknowns in linear system of equations.

5. Conclusion

In this paper, we have presented the state-of-the-art on the spectrum cartography (SC) techniques available for the
construction of radio environment map (REM). We have discussed the architecture of SC and presented the expressions
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Fig. 6. An illustration of (a) Actual power map and (b) Reconstructed power map (c) Actual CG map (d) Reconstructed CG map (e) Actual Frequency
map and (f) Reconstructed Frequency map using NN method with 400 sensor nodes deployed in the grid.

Table 4

The state-of-the-art for CG maps.

Method Map considered Kind of study Parameters

Adaptive Bayesian framework [44] CG maps Experimental SLF
Kriged Kalmann filtering-based algorithm [50] CG map Simulation RMSE
Cooperative CR sensing [54] CG maps Simulation MSE
A low rank sparse matrix model [56] CG map Experimental NMSE
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Fig. 7. An illustration of (a) Actual power map and (b) Reconstructed power map (c) Actual CG map (d) Reconstructed CG map (e) Actual Frequency
map and (f) Reconstructed Frequency map using NN method with 400 sensor nodes deployed in the grid.

for received signal strength for power and frequency map and channel gain (CG) for CG map. We have discussed the REM
construction methods based on compressive sensing, which use less sensor data to construct REM. Subsequently, we
discussed machine learning based approaches, which are mostly learning based approaches for dynamic spectrum access.
Through extensive simulations, we have presented the various REMs and surface plots corresponding to the actual maps
and reconstructed maps with NN method to provide an overview of REM construction and evaluated the performance of
nearest neighbor (NN) with MAE, MSE, NMSE, and RMSE. Finally, we have tabulated the summary of various state-of-the-
art mechanisms for constructing REMs. It has been observed that adaptive Bayesian framework results in the improved
performance for the construction of CG map as it requires only 30% less number of samples for the construction of map as
compared to other methods. An efficient data clustering and parameter estimation algorithm reduces the radio frequency
REM reconstruction time by 300% when compared to conventional methods. Further, machine learning based approaches
have increased the MSE for radio map reconstruction by 90%.

The state-of-the-art SC mechanisms focused on the construction of 2D REM, however, very limited research has
been done for the construction of 3D REM. Thus, future works should focus on the compressive sensing based 3D REM

15



Y.S. Reddy, A. Kumar, O.J. Pandey et al. Pervasive and Mobile Computing 79 (2022) 101511

Fig. 8. Variation of (a) MAE, (b) MSE, (c) NMSE, and (d) RMSE with increasing number of sensor nodes for the reconstruction of power map, CG
map, and frequency map with NN method in the presence of three REM-AUs.

Table 5

The state-of-the-art for frequency maps.

Method Map considered Kind of study Parameters

Data clustering and parameter estimation algorithm [8] Radio map Simulation REM reconstruction time

ML approach [18] Radio map Simulation MSE

CSMC [29] Interference map Experimental Number of samples

Compressive sensing problem [31] Frequency map Simulation Reconstruction error

Compressive sensing based approach [32] Frequency map Simulation Probability of false alarm
Standard deviation
0.95 probability of cutoff

Sparse Bayesian learning algorithm [40] REM map Simulation RSME, MSE

Kriging, modified shepard’s method, and gradient plus inverse
squared method [45]

REM map Simulation RMAE

Nearest and natural neighbor and linear, quadratic and cubic
interpolation based on Delaunay triangulation [47]

Interference map Simulation RMSE, Efficiency

Spatial interpolation techniques such as Nearest Neighbor (NN),
inverse distance weighting, triangular irregular network, and
Kriging [48]

Interference map Simulation RMSE

DCT [66] Interference map Simulation RMSE, efficiency

3D spectrum map framework [69] Frequency map Simulation RMSE

Doppler shift estimation algorithm [74] Frequency map Simulation MSE

construction approaches that require less data to process to accurately construct the REM. Further, machine learning

based approaches are more suitable to learn the dynamics in the network topology to efficiently construct REM. Finally,
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Table 6

Complexity analysis.

Method Complexity

Inverse distance weighted interpolation method [78–80] O(MN)
Nearest neighbor method [81,82] O(M logN)
Spline method [83] O(MNP2)
Natural neighbor method [78,81] O(M(N + k) logN)
Modified Shepard’s method [78,84] O(M logN)
Gradient plus inverse distance squared method [85] O(M logN)
Ordinary Kriging method [86] O(MN2)
LIvE method [87] O(MN2.376)
SNR-aided method [88] O(Np2)
Indirect indoor method [89] O(Np2)

we claim that novel approaches that includes both compressive sensing and ML are more efficient as they can track the
dynamic network topology and construct the REM with limited data.
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