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ABSTRACT

In this paper we deal with the problem of free convection heat and mass

transfer of a non-Newtonian power law fluid with yield stress from a

vertical flat plate embedded in a fluid-saturated Darcy porous medium,

considering Soret and Dufour effects. Here, we consider two different

types of boundary conditions. In the first case, we assume the vertical

wall is maintained at uniform wall temperature and concentration, and

in the second case, we assume the wall is maintained at uniform wall

heat and mass flux conditions. In both these cases, similarity solutions

are possible. The results are analyzed with reference to the Soret and

Dufour parameters along with other parameters that arise due to the

non-Newtonian character of the fluid. Temperature and concentration

profiles in the boundary layer are presented, together with the Nusselt and

Sherwood numbers, for various combinations of problem parameters.
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NOMENCLATURE

C concentration x, y Cartesian coordinates along and

cp specific heat at constant pressure normal to the surface, respectively

cs concentration susceptibility Greek Symbols

Df Dufour number α thermal diffusivity

D mass diffusivity α0 threshold pressure

f dimensionless stream function βT coefficient of thermal expansion

K Darcy permeability βC coefficient of concentration expansion

kT thermal diffusion ratio φ dimensionless concentration

Le Lewis number, α/D η similarity variable

N buoyancy ratio parameter θ dimensionless temperature

n viscosity index ρ density

Nux local Nusselt number ψ stream function

Ran,x local Rayleigh number Ω rheological parameter

u, v Darcian velocities in the x and y Subscripts

directions, respectively w condition at wall

Sr Soret number ∞ condition at infinity

Shx local Sherwood number Superscript

T temperature ′ differentiation with respect to η

1. INTRODUCTION

Coupled heat and mass transfer by natural convection

in a fluid-saturated porous medium has attracted con-

siderable attention due to many important engineering

applications relevant to this problem. A substantial

amount of work has been reported in the literature

on Newtonian fluid flow in a porous medium due to

thermal buoyancy alone as well as due to combined

buoyancy forces resulting from temperature and con-

centration variations (Nield and Bejan, 2006; Vafai,

2005). Some of the applications where the combined

heat and mass transfer in porous media are often

encountered in the chemical industry, or in reservoir

engineering in connection with the thermal recovery

process, in the study of dynamics of hot and salty

springs of a sea. Underground spreading of chemical

waste and other pollutants, grain storage, evaporation

cooling, and solidification are few other application

areas where combined thermosolutal convection in

porous media are observed. Most of the theories

were proposed to analyze the flow through a porous

medium and to predict the heat transfer rates are

based on the assumption that the fluid is Newtonian

and Darcy’s law holds.

Many engineering applications involve the study

of non-Newtonian fluids. An illustrative example is

found in oil reservoir engineering in connection with

the production of heavy crude oils that are power

law fluids with yield stress. This process involves the

cyclic injection of steam into the well for the purpose

of increasing the temperature of the oil reservoir, a

procedure referred to as “steam soak” or “huff and

puff” in the industry. The increase in the temperature

of the reservoir decreases the fluid viscosity, result-

ing in a substantial increase in the mobility of the
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heavy crude oil, thus improving the production flow

rate by gravity drainage. It is obvious that the effi-

ciency of this process can be increased by obtaining

insight into the combined effects of convective heat

and mass transfer and convective flow in a power

law fluid–filled porous medium. On the other hand,

a number of industrially important fluids including

fossil fuels that may saturate underground beds exhibit

non-Newtonian fluid behavior. Non-Newtonian shear

flows are so widespread in industrial processes and

the environment that it would be no exaggeration to

affirm that Newtonian shear flows are the exception

rather than the rule.

Chen and Chen (1988) have studied the problems

of free convection flow of non-Newtonian fluids past

an isothermal vertical flat plate embedded in a porous

medium. Mehta and Narasimha Rao (1994) analyzed

the buoyancy-induced flow of non-Newtonian fluids

in a porous medium past a vertical flat plate with

nonuniform surface heat flux conditions. Combined

free and forced convection heat transfer in power

law fluid–saturated porous media was analyzed by

Nakayama and Shenoy (1993). Also, Nakayama and

Shenoy (1992) presented a unified similarity transfor-

mation for Darcy and non-Darcy forced, free, and

mixed convection heat transfer in non-Newtonian

inelastic fluid-saturated porous media. Mansour and

Gorla (2000) studied the combined convection in non-

Newtonian fluids along a nonisothermal vertical plate

in a porous medium. Rastogi and Poulikakos (1995)

studied the problem of double diffusion from a ver-

tical surface in a porous region saturated with a

non-Newtonian fluid. Cheng (2007) analyzed the dou-

ble diffusion from a vertical wavy surface in a porous

medium saturated with a non-Newtonian power law

fluid subjected to constant wall temperature and con-

centration.

Turning now to the class of non-Newtonian power

law fluids with yield stress in a saturated porous

medium, we can cite a couple of papers dealing with

the heat and mass transfer. Chaoyang and Chuanjing

(1989) studied the problem of boundary-layer flow

and heat transfer and Jumah and Mazumdar (2000)

dealt with free convection heat and mass transfer,

while Cheng (2006) analyzed the natural convection

heat and mass transfer from a vertical plate with

variable wall heat and mass fluxes.

The Soret effect corresponds to species differentia-

tion developing in an initially homogeneous mixture

subjected to a thermal gradient, and the Dufour effect

corresponds to diffusion of heat caused by concen-

tration gradients. In several earlier studies, Soret and

Dufour effects are neglected on the basis that they

are of smaller-order magnitude than the effects de-

scribed by Fourier’s and Fick’s laws. These effects

are considered as second-order phenomena, but they

may become significant in areas such as hydrology,

petrology, or geosciences.

The importance of the Soret effect at low Rayleigh

number has been analyzed by Bergman and Srinivasan

(1989). However, Eckert and Drake (1972) indicated

the processes where the Dufour effect may become

significant. Kafoussias and Williams (1995) studied

the thermal diffusion and diffusion thermo effects on

forced, free, and mixed convection with temperature-

dependent viscosity. Postelnicu (2004) studied the in-

fluence of a magnetic field, considering Soret and

Dufour effects, from a vertical surface in porous

medium. Partha et al. (2006) studied the effect of

a magnetic field and double dispersion on free con-

vective heat and mass transport considering the Soret

and Dufour effects in a non-Darcy porous medium.

The influence of a chemical reaction on flow field

considering Soret and Dufour effects from a vertical

surface in porous medium was analyzed by Postelnicu

(2007). The effect of Soret and Dufour parameters on

free convection heat and mass transfer from a vertical

surface in a doubly stratified Darcian porous medium

has been reported by Lakshmi Narayana and Murthy

(2007).

In this paper, we deal with the problem of com-

bined free convection heat and mass transfer of a

non-Newtonian power law fluid with yield stress from

a vertical flat plate in a fluid-saturated Darcy porous

medium considering Soret and Dufour effects. Two

different types of boundary conditions are considered
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in this study, namely, (i) the vertical wall is main-

tained at uniform wall temperature and concentration

(ii) in the second case we assume the wall is main-

tained at uniform wall heat and mass flux conditions.

It is shown that in both these cases a similarity

solution is possible. The results are analyzed with

reference to the Soret and Dufour parameters along

with the parameters pertaining to the non-Newtonian

character of the fluid.

2. MATHEMATICAL FORMULATION

Consider the free convection boundary layer flow

along a vertical impermeable surface embedded in

a porous medium saturated with a non-Newtonian

fluid as shown in Fig. 1. The x coordinate is taken

along the plate, in the ascending direction and the y

coordinate is measured normal to the plate, while the

origin of the reference system is considered at the

leading edge of the vertical plate.

The wall is (i) maintained at constant temperature

and concentration, Tw and Cw (UWT/UWC), respec-

tively, which are higher than the temperature and

concentration in the ambient medium given by T∞

and C∞, respectively, which will be called hereinafter

case I and (ii) subjected to constant heat and mass

fluxes QT and QC (UWHF/UWCF), which will be

termed hereinafter case II.

We assume the flow is governed by Darcy’s law,

which is valid only when the order of the pore-

dependant Reynolds number is very small. The ther-

mophysical properties of the fluid are assumed to

be constant except for the density dependency of

the buoyancy term in the momentum equation. The

Boussinesq approximation is valid and the fluid and

the porous medium are in local thermodynamic equi-

librium. Under these assumptions, boundary layer

equations may be written as in Chaoyang and Chuan-

jing (1989) as follows:

∂u

∂x
+

∂v

∂y
= 0 (1)
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Figure 1. Free convective heat and mass transfer from a semi-infinite vertical wall in a non-Newtonian fluid-saturated Darcy

porous medium



Soret and Dufour Effects on Free Convection of Non-Newtonian Power Law Fluids 971

un =
K

µ

{

−
dP

dx
− ρgx − α0

}

if

∣

∣

∣

∣

−
dP

dx
− ρgx

∣

∣

∣

∣

> α0 (2a)

u = 0 if

∣

∣

∣

∣

−
dP

dx
− ρgx

∣

∣

∣

∣

≤ α0 (2b)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

D kT

Cs Cp

∂2C

∂y2
(3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+

D kT

Tm

∂2T

∂y2
(4)

In the above equations α0 and n are the threshold

pressure gradient and the viscosity index, respectively.

The rheological fluids with n < 1 are called pseudo

plastic, while those with n > 1 are termed as di-

latants. Here Tm is the reference temperature. Other

notations are usual and are given in the list of sym-

bols. The appropriate boundary conditions are

v = 0, T = Tw, C = Cw

at y = 0, in case I (6a)

v = 0,
∂T

∂y
= −

QT

k
,

∂C

∂y
= −

QC

D

at y = 0, in case II (6b)

u→0, T →T∞, C→C∞ as y→∞ (7)

For the freestream, Eq. (2) gives

−
dP

dx
− ρ∞gx = 0 (8)

Eliminating dP/dx between Eqs. (2) and (8), we have

un =
K

µ
[(ρ∞ − ρ)g − α0]

if |(ρ∞ − ρ)gx| > α0 (9a)

u = 0, if |(ρ∞ − ρ)gx| ≤ α0 (9b)

Equations (9) express the fact that the flow through

the porous medium stops when the externally con-

trolled pressure gradient matches the hydrostatic pres-

sure gradient. Taking into account the linear variation

of temperature and concentration in the density,

ρ = ρ∞ [1−βT (T−T∞) − βC(C − C∞)] (10)

the Boussinesq-approximated momentum equation is

given by

un =
ρ∞gK

µ

[

βT (T−T∞)+βC(C−C∞)−
α0

gρ∞

]

if βT |T − T∞| − βC |C − C∞| >
α0

gρ∞

(11a)

u = 0

if βT |T − T∞| − βC |C − C∞| ≤
α0

gρ∞

(11b)

Introducing the following similarity transformation:

η =
y

x
Ra1/2

x , ψ(η) = αRa1/2

n,xf(η) (12)

θ(η) =
T − T∞

Tw − T∞

, φ(η) =
C − C∞

Cw − C∞

in case I (13a)

T − T∞ =
QT

k
xθ(η)

C − C∞ =
QC

D
xφ(η), in case II (13b)

where

Ran,x =
x

α

[

ρKgβT (Tw − T∞)

µ

]1/n

, in case I

and

Ran,x =
x

α

[

ρKgβT QT x

kµ

]1/n

, in case II
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Equations (3), (4), and (11) reduce to

• Case I

f ′ = (θ + Nφ − Ω)1/n

if (θ + Nφ) > Ω (14a)

f ′ = 0, if (θ + N φ) ≤ Ω (14b)

θ′′ + Df φ′′ +
1

2
fθ′ = 0 (15)

1

Le
φ′′ + Srθ′′ +

1

2
fφ′ = 0 (16)

• Case II

f ′ = (θ + N φ − Ω)1/n

if (θ + N φ) > Ω (17a)

f ′ = 0, if (θ + Nφ) ≤ Ω (17b)

θ′′ + Df φ′′ − f ′θ +
n + 1

2n
fθ′ = 0 (18)

1

Le
φ′′ + Srθ′′ − f ′φ +

n + 1

2n
fφ′ = 0 (19)

Here, Ω is the rheological parameter, N is the buoy-

ancy ratio parameter, Df and Sr are the Dufour and

Soret numbers, and these are given by

Ω =
α0

ρ∞gβT ∆T
, N =

βC∆C

βT ∆T

Df =
DkT ∆C

cscpα∆T
, Sr =

DkT ∆T

Tmα∆C
, in case I

Ω =
α0k

ρ∞gβT QT x
, N =

βCQCk

βT QT D

Df =
kQCkT

cscpαQT
, Sr =

DkT QT

TmαQCk
, in case II

and the diffusivity ratio parameter is given by Le =

α/D.

In order to obtain similarity transformation for the

UWHF/UWCF case, we assume α0 is linearly propor-

tional to x so that the rheological parameter Ω will

be independent of x. It is worth mentioning that this

restriction is not required for the UWT/UWC case.

The boundary conditions (6) and (7) become

f = 0, θ = 1, φ = 1

at η = 0, in case I (20a)

f = 0, θ′ = −1, φ′ = −1

at η = 0, in case II (20b)

f ′ → 0, θ → 0, φ → 0 as η → ∞ (21)

The nondimensional heat and mass transfer coeffi-

cients are given by

Nux

Ra1/2

n,x

=−θ′(0),
Shx

Ra1/2

n,x

=−φ′(0), for case I

where Nux and Shx are the local Nusselt and Sher-

wood numbers.

3. RESULTS AND DISCUSSION

The sets of ordinary differential equations for case

I and case II are solved using shooting and match-

ing techniques. For case I, Eqs. (14)–(16) along with

the boundary conditions (20a) and (21) are integrated

by giving appropriate initial guess values for f ′(0),

θ′(0), and φ′(0) to match the solutions with the

corresponding boundary conditions at f ′(∞), θ(∞),

and φ(∞). Similarly for case II, Eqs. (17)–(19) are

solved subject to the boundary conditions (20b) and

(21) by giving appropriate guess values for f ′(0),

θ(0), and φ(0) to match the solutions with the

corresponding boundary conditions at f ′(∞), θ(∞),

and φ(∞). The solution procedure is explained in

Partha et al. (2006). The following range of param-
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eters have been used for the numerical computation:

−0.2 ≤ N ≤ 1, 0.2 ≤ n ≤ 1.5, 0 ≤ Ω ≤ 0.4,

0 ≤ Df ≤ 0.1, 0 ≤ Sr ≤ 1, and 0.5 ≤ Le ≤ 30 for

case I; −0.2 ≤ N ≤ 1, 0.5 ≤ n ≤ 1.5, 0 ≤ Ω ≤ 0.4,

0 ≤ Df ≤ 0.1, 0 ≤ Sr ≤ 1, and 0.5 ≤ Le ≤ 5 for

case II. The results obtained here are accurate up to

the fourth decimal place. With n = 1 and Ω = 0,

the present problem reduces to the one with the Soret

and Dufour effects on free convection of Newtonian

flow from a vertical flat plate in a porous medium in

the absence of an inertia effect that was analyzed by

Partha et al (2006).

3.1. Case I: UWT/UWC

Aiding buoyancy: In Fig. 2, variation of the nondi-

mensional heat transfer coefficient is plotted against

the Dufour parameter Df for varying Soret parameter

Sr by considering pseudoplastic fluids with n = 0.5

and dilatants with n = 1.5. For both values of n, it

is seen that increase in the Soret parameter enhances

the heat transfer coefficient in the medium. Also, it is

observed that the heat transfer coefficient is more for

pseudoplastics when compared to dilatants.

In Fig. 3, variation of the nondimensional mass

transfer coefficient is plotted against the Soret parame-

0.00 0.02 0.04 0.06 0.08 0.10

0.52

0.54

0.56

0.58

0.60

0.62

0.64

N = 1, Le = 1,  = 0.4

N
u

x
 /
 R

a
n

, 
x

1
/2

D
f

 n = 0.5, S
r
 = 0.01

 n = 0.5, S
r
 = 0.1

 n = 0.5, S
r
 = 0.5

 n = 1.5, S
r
 = 0.01

 n = 1.5, S
r
 = 0.1

 n = 1.5, S
r
 = 0.5

Figure 2. Variation of nondimensional heat transfer

coefficient against Df for varying Sr in pseudoplastic and

dilatant fluids, other parameters are N = 1, Le = 1, and

Ω = 0.4
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Figure 3. Variation of nondimensional mass transfer

coefficient against Sr for varying Df in pseudoplastic and

dilatant fluids, other parameters are N = 1, Le = 1, and

Ω = 0.4

ter Sr for varying Dufour parameter Df in pseudoplas-

tics (n = 0.5) and dilatants (n = 1.5). For both types

of fluids, it is noticed that an increase in the Dufour

parameter reduced the mass transfer coefficient in the

medium. Also, it is observed that the mass transfer

coefficient is more for pseudoplastics when compared

to dilatants.

In Fig. 4a, the nondimensional heat transfer coef-

ficient is shown as a function of power law index

parameter n for varying Ω and Df and fixed Soret

number. From Fig. 4a, it is seen that the nondi-

mensional heat transfer coefficient is increased with

increasing Dufour parameter, while a reduction in

heat transfer coefficient is obtained for increased Ω.

Also, it is observed that the heat transfer coefficient

is decreased with the power law index parameter n.

Variation of the nondimensional mass transfer coef-

ficient is plotted against power law index parameter

n for varying Ω and Sr and fixed Dufour parameter

in Fig. 4b. From this figure, it is seen that the mass

transfer coefficient is reduced for increasing Ω and

Sr. On the other hand, the mass transfer coefficient

decreases with the power law index parameter n.

Variation of the nondimensional heat transfer coef-

ficient is shown as a function of the diffusivity ratio

parameter Le for varying power law index parame-

ter n and the Soret parameter Sr in Fig. 5a. From
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Figure 4. a) Variation of nondimensional heat transfer co-

efficient against n for varying Ω and Df, other parameters

are N = 1, Le = 1, and Sr = 0.2; b) variation of nondimen-

sional mass transfer coefficient against n for varying Ω and

Sr, other parameters are N = 1, Le = 1, and Df = 0.1

Fig. 5a, it is observed that the heat transfer coeffi-

cient for pseudoplastics is more for Le ≤ 1 and it

is less for Le > 1 when compared to dilatants in

the medium. Another observation is that as Le is

increased, the heat transfer coefficient is reduced in

the porous medium. Also, it is clear that as the Soret

parameter increased, the nondimensional heat transfer

coefficient is increased up to certain Le, but as the

Lewis number is increased further a reduction is seen

with increasing values of the Soret parameter. Vari-

ation of the nondimensional mass transfer coefficient

against Lewis number for varying Soret number for
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Figure 5. Variation of nondimensional a) heat transfer

coefficient and b) mass transfer coefficient against Le

for varying Sr in pseudoplastic and dilatant fluids, other

parameters are N = 1, Ω = 0.4, and Df = 0.1

both pseudoplastics and dilatants is shown in Fig. 5b.

Increasing Le enhanced the mass transfer coefficient

in the medium, and the mass transfer coefficient in

the medium is more for pseudoplastics and it is less

for dilatants. As the Soret parameter is increased, a

reduction in the mass transfer coefficient occurs for

both pseudoplastics and dilatants.

Opposing buoyancy: Variation of the nondimensional

heat transfer coefficient against the Dufour parameter

for varying power law index parameter n and Soret

parameter is shown in Fig. 6. From this figure, it is

observed that the heat transfer coefficient is increased
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Figure 6. Variation of nondimensional heat transfer

coefficient against Df for varying Sr in pseudoplastic and

dilatant fluids, other parameters are N = −0.2, Le = 1, and

Ω = 0.2

with the Dufour parameter, while a reduction in the

heat transfer coefficient is observed with the Soret

parameter. In the opposing buoyancy case it is evident

that the heat transfer coefficient in the medium is

more for dilatants while it is less for pseudoplastics.

Variation of the dimensionless mass transfer co-

efficient against the Soret parameter is plotted in

Fig. 7 for various values of the Dufour parameter,
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Figure 7. Variation of nondimensional mass transfer

coefficient against Sr for varying Df in pseudoplastic and

dilatant fluids, other parameters are N = −0.2, Le = 1, and

Ω = 0.2

considering both pseudoplastics and dilatants. It is ob-

served that the mass transfer coefficient in the porous

medium is decreased with increasing values of Soret

parameter for both pseudoplastics and dilatants. A

reduction in the mass transfer coefficient is obtained

for increasing values of the Dufour parameter, while

the mass transfer coefficient is more for dilatants than

that of pseudoplastics. Also, it is observed that for

large values of Soret parameter, the nondimensional

mass transfer coefficient takes negative values in the

medium.

In Fig. 8a, variation of the nondimensional heat

transfer coefficient is plotted against the power law

index parameter n for various values of the rheologi-

cal parameter Ω and the Dufour parameter. The heat

transfer coefficient in the medium is increased with

increasing values of n and the Dufour parameter, but

a reduction in the heat transfer coefficient is observed

with increasing value of rheological parameter Ω. In

Fig. 8b, the nondimensional mass transfer coefficient

in the medium is plotted against the power law in-

dex parameter n for varying rheological parameter

Ω and the Soret parameter. As n is increased, the

mass transfer coefficient in the medium is increased,

but a reduction is found with an increasing value of

Ω. Also, it is observed that an increase in the Soret

parameter reduced the mass transfer coefficient in the

medium.

In Fig. 9a, variation of the nondimensional heat

transfer coefficient is shown as a function of Le for

pseudoplastics and dilatants for various values of the

Soret parameter. From this figure, it is observed that

heat transfer coefficient is increased with increasing

Le for pseudoplastic fluids, but for dilatants it in-

creased to certain Le and further it is reduced as Le

is increased. A reduction in heat transfer coefficient is

found with Soret parameter in the medium. In Fig. 9b,

variation of the nondimensional mass transfer coef-

ficient is plotted against Le for pseudoplastics and

dilatants with varying Soret parameter in the medium.

From this figure, it is observed that mass transfer

coefficient is increased with the both Le and power

law index parameter n. But a reduction in mass trans-
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Figure 8. a) Variation of nondimensional heat transfer

coefficient against n for varying Ω and Df in pseudoplastic

and dilatant fluids, other parameters are N = −0.2, Le = 1,

and Sr = 0.1; b) variation of nondimensional mass transfer

coefficient against n for varying Ω and Sr in pseudoplastic

and dilatant fluids, other parameters are N = −0.2, Le = 1,

and Df = 0.05

fer coefficient is found with increased value of Soret

parameter.

In this case, the behavior of the nondimensional

heat and mass transfer coefficients is largely affected

by the Soret and Dufour parameters along with the

rheological parameter Ω for both pseudoplastics and

dilatants. It is worth noting that the nondimensional

mass transfer coefficient in the opposing buoyancy

case becomes negative for large values of the Soret

parameter. This phenomenon can be seen further if the

value of the Soret parameter is increased.
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Figure 9. Variation of a) nondimensional heat transfer

coefficient and b) nondimensional mass transfer coefficient

against Le for varying Sr in pseudoplastic and dilatant

fluids, other parameters are N = −0.2, Ω = 0, and Df =

0.05

3.2. Case II: UWHF/UWCF

Aiding buoyancy: In Fig. 10a, variation of the nondi-

mensional temperature distribution inside the bound-

ary layer is shown for varying power law index

parameter n and the Dufour parameter while the

Soret parameter is fixed. From this figure, a reduction

in temperature distribution is observed for increasing

Dufour parameter. Besides, as n increased, temper-

ature distribution is enhanced in the medium. In

Fig. 10b, the nondimensional concentration distribu-
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Figure 10. Variation of a) temperature and b) concen-

tration inside the boundary layer with varying n&Df and

n&Sr respectively for temperature and concentration with

fixed values of N = 1, Le = 1, Ω = 0.4

tion inside the boundary layer is plotted for varying

Soret parameter and power law index parameter n

with fixed Dufour parameter. It is seen that as the

values of n and the Soret parameter are increased

as the concentration distribution is enhanced in the

medium.

In Figs. 11a and 11b, variation of the nondimen-

sional temperature and concentration distributions are

plotted within the boundary layer for varying rheolog-

ical parameters n and Ω with fixed Dufour and Soret

parameters in the medium. From Figs. 11a and 11b,

it is observed that both temperature and concentration
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Figure 11. Variation of a) temperature and b) concentra-

tion inside the boundary layer with varying n and Ω, other

parameters are N = 1, Le = 1, Df = 0.02, and Sr = 0.2

distributions are increased with increasing values of

rheological parameters n and Ω.

In Figs. 12a and 12b, variation of the nondimen-

sional temperature and concentration distributions are

plotted inside the boundary layer for varying Le and

n with fixed values of Soret and Dufour parameters.

From Fig. 12a, it is seen that the temperature distribu-

tion is increased with increasing Le, but it is reduced

with n. Contrary to this, the dimensionless concen-

tration distribution is observed to be decreased with

increasing Le, while it is enhanced with n, as shown

in Fig. 12b.
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Figure 12. Variation of a) temperature and b) concentra-

tion inside the boundary layer with varying Le and n, other

parameters are N = 1, Ω = 0.04, Df = 0.02, and Sr = 0.2

Opposing buoyancy: In Fig. 13a, temperature distri-

bution inside the boundary layer is shown when n

and Dufour parameters are varied. From Fig. 13a,

temperature distribution inside the medium is more

for pseudoplastics and it is less for dilatants. Also, it

is observed that an increase in the Dufour parame-

ter value reduced the temperature inside the medium.

In Fig. 13b, the concentration distribution across the

boundary layer is shown for varying n and the Soret

parameter. Figure 13b shows that the concentration

distribution is more for pseudoplastics and it is less

for dilatants. Also, it is observed that an increase in
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Figure 13. Variation of a) temperature and b) concentra-

tion inside the boundary layer with varying n and Df, other

parameters are N = −0.2, Le = 1, Ω = 0.2, and Sr = 0.2

the Soret parameter value enhanced the mass transfer

inside the medium.

In Fig. 14a, temperature distribution in the bound-

ary layer is plotted for varying n and Ω, and for fixed

nonzero Soret and Dufour parameters. It is seen that

as n is increased, temperature distribution is reduced,

while it is increased with Ω. A similar behavior is ob-

served for the concentration distribution with varying

n and Ω in Fig. 14b.

Temperature distribution across the boundary layer

is plotted for varying Le and n for fixed values of

Soret and Dufour parameters in Fig. 15a. From this
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Figure 14. Variation of a) temperature and b) concentra-

tion inside the boundary layer with varying n and Ω, other

parameters are N = −0.2, Le = 1, Df = 0.1, and Sr = 0.2

figure, it is observed that as the value of Le is in-

creased, a reduction in the temperature distribution is

found. Similar behavior is found with n. The concen-

tration distribution inside the boundary layer is plotted

for varying (Le, n) for fixed (Sr, Df) in Fig. 15b. From

this figure, it is observed that as the value of Le is

increased, a reduction in concentration distribution is

found. A similar behavior occurs with n.

4. CONCLUSIONS

Natural convection heat and mass transfer, including

the Soret and Dufour effects, from a vertical surface
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Figure 15. Variation of a) temperature and b) concentra-

tion inside the boundary layer with varying Le and n, other

parameters are N = −0.2, Ω = 0.2, Df = 0.1, and Sr = 0.2

embedded in a Darcy porous medium saturated with

a non-Newtonian power law fluid with yield stress,

has been analyzed. Two different types of boundary

conditions have been considered. In case I, the vertical

wall is maintained at uniform wall temperature and

concentration; while in case II, the wall is maintained

at uniform wall heat and mass flux conditions. Some

conclusions are summarized below.

4.1. Case I, Aiding Buoyancy

Heat transfer is enhanced when the Soret parameter is

increased, for both pseudoplastic (more) and dilatants
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(less) fluids, and the Dufour parameter is increased.

The difference in the heat transfer coefficients is less

but enhanced with the Dufour parameter and with the

Ω.

The mass transfer is enhanced by increasing the

Lewis number. The mass transfer coefficient is re-

duced when the Dufour parameter is increased, for

both pseudoplastic and dilatant fluids, along with the

Soret parameter. Also, the mass transfer coefficient is

reduced with the power law index parameter n and

with the rheological parameter Ω.

4.2. Case I, Opposing Buoyancy

Heat transfer is enhanced when the Dufour parameter

increases; this is more for the dilatants compared

with the pseudoplastics. The Soret parameter reduced

the heat transfer coefficient in the medium. As n

increases, the heat transfer coefficient is enhanced but

reduced with the rheological parameter Ω.

The mass transfer coefficient in the medium is

reduced with increasing values of Soret parameter

for both pseudoplastics and dilatants; for increasing

values of the Dufour parameter, and with increasing

of the rheological parameter Ω. The mass transfer

coefficient is enhanced when the viscosity index n is

increased.

4.3. Case II, Aiding Buoyancy

A reduction in the temperature distribution is obtained

for increased Dufour parameter in the medium, while

the temperature distribution is enhanced when n in-

creases. As the values of n and Soret parameters are

increased, the concentration distribution is enhanced

in the porous medium. Both temperature and con-

centration distributions are intensified with increasing

values of rheological parameters n and Ω.

4.4. Case II, Opposing buoyancy

The temperature distribution inside the porous

medium is more for pseudoplastics and it is less for

dilatants. On the other hand, an increase in the Du-

four value reduces the temperature inside the medium.

The concentration distribution in the boundary layer

is more for pseudoplastics and it is less for dilatants.

On the other hand, an increase in the Soret parameter

value enhances the mass transfer inside the medium.

For fixed nonzero Soret and Dufour parameters, tem-

perature and concentration profiles are reduced as n is

increased.
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