Header menu link for other important links
X
Solvothermal synthesis of hybrid nanoarchitectonics nickel-metal organic framework modified nickel foam as a bifunctional electrocatalyst for direct urea and nitrate fuel cell
M. Ravipati,
Published in Elsevier B.V.
2023
Volume: 34
   
Issue: 8
Abstract
Urea and nitrate-based fuel cells have emerged as promising electricity generation devices. However, most of these catalysts are expensive and limited in supply, which limits their practical applications. Hence, metal-organic frameworks (MOF) have been explored as catalysts due to their low cost, easy preparation, and high redox activity. Here, we synthesize nickel-based MOF (Ni-MOF) via one-pot solvothermal technique as bifunctional electrocatalyst for the direct urea and nitrate fuel cell. The as-synthesized Ni-MOF is deposited on nickel foam (NF) and used as working electrode (Ni-MOF/NF) which demonstrates a peak current density of 188 mA/cm2 for urea oxidation reaction (UOR) and −14 mA/cm2 for nitrate reduction reaction (NRR) at an onset potential of ∼ 1.58 V (vs RHE), and ∼ 1.12 V (vs RHE), respectively The enhanced functionality of the Ni-MOF/NF electrode can be attributed to the high catalytic efficacy of the Ni-MOF. This is mainly due to the presence of multiple oxidation states of N (i.e., Ni2+/3+) and excellent electronic conductivity of the organic ligands in MOF structure. Moreover, Ni-MOF/NF electrodes retain ∼ 71.2% and ∼ 83.9% capacity after 20000 s of UOR and NRR, respectively. This efficacy of the as-fabricated electrocatalyst proves MOF as a promising platform for direct fuel cell applications. © 2023 Society of Powder Technology Japan
About the journal
JournalAdvanced Powder Technology
PublisherElsevier B.V.
ISSN09218831
Open AccessNo