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ABSTRACT

A mathematical study on solute dispersion has been carried out in a stenotic tube having an absorptive wall—a study relevant to arterial
pharmacokinetics. The rheology of blood is represented by Casson model and the solute is introduced at a point that is uniformly distributed
over the cross section. The two-dimensional fluid flow is considered in this study. The governing equations of motion for the flow of Casson
fluid, for the transport of solute in the lumen as well as in the tissue along with appropriate initial and boundary conditions, are numerically
solved by leveraging the Marker and Cell method and the immersed boundary method in staggered grids formulation. Following the intro-
duction of solute, we provide a comprehensive investigation of the influence of the wall absorption parameter (j), yield stress (sy), and the
severity of the stenosis (n) on the three transport coefficients, namely, the fraction of solute remaining in the fluid phase, the apparent con-
vection velocity, and the dispersion coefficient. Simulated results predict the diminishing magnitudes of the transport coefficients with the
increase in the values of yield stress and absorption parameter. Moreover, the transport coefficients and the axial mean concentration get sig-
nificantly perturbed by the severity of the stenosis. Obtained results presented graphically concur with existing steady-state results in the lit-
erature. The present study would certainly be of some use in the case of targeted drug delivery and in treatment related to microvascular
disease.
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NOMENCLATURE

Cf ,Cw fluid phase and wall phase concentration, respectively
Df ,Dw fluid phase and wall phase diffusion coefficient,

respectively
H Heaviside function
J2 rate of strain tensor invariant
J�2 second invariant of the stress tensor
Pef Peclet number
p pressure

Re Reynolds number
ðr; h; zÞ cylindrical coordinate

rc radius of the plug region
r0 dimensional upstream radius
t time

U0 centerline velocity in a Poiseuille flow

uz, ur axial and radial velocity, respectively
z0 half-length of the stenosis

Greek

b ratio of wall phase concentration to fluid phase concentra-
tion at equilibrium

d Dirac delta function
g viscosity coefficient of Casson fluid
j absorption parameter
k ratio of the diffusion coefficients

lðJ2Þ apparent viscosity
n maximum height of the stenosis
q fluid density
sij shear stress
sy yield stress of Casson fluid
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/ij rate of strain tensor
x relaxation parameter for S.O.R scheme

I. INTRODUCTION

The transportation of solute dispersion process has been widely
studied due to its extensive application in the field of chemical engi-
neering, physiological fluid dynamics, environmental sciences, and
pharmacology (cf. Phillips et al.,1 Or and Ghezzehei,2 Singhal and
Gupta,3 Dejam and Hassanzadeh,4 Gat et al.,5 and Das et al.6). Studies
on the dispersion of solute, such as drug, toxin, or nutrient, in blood
flow through a narrow artery having, a linear or constricted wall
received much attention owing to its significant contribution in under-
standing the issues in biomedical engineering and cardiovascular
mechanics. Constriction in an artery occurs because of the accumula-
tion of low-density lipoprotein (LDL) and other macromolecules along
the inner lining of the arterial wall. The formation of such lesion or
plaque started blocking the artery and reducing the normal blood
flow, medically termed as “atherosclerosis.”7 It is important for clini-
cians to analyze the rate of dispersion of an injected drug associated
with intravenous drug delivery into an affected artery because of its
therapeutic nature and also to measure the amount of drug in the sys-
tem for better efficacy as well as the effectiveness of the delivery.

Dispersion through the smaller tube considering Newtonian or
non-Newtonian fluid flow has been investigated by some assiduous
researchers. In a pioneering work, Taylor8 introduced the concept of
dispersion in fluid flow and, later, Aris9 extended the analysis of
Taylor’s dispersion by suppressing some constraints. In the presence
of pulsatile flow, Aris10 determined the effective dispersion coefficient
of solute by using the method of moments. A numerical study was
performed by Ananthakrishnan11 to discuss the effect of Peclet num-
ber on the dispersion process and validated the Taylor–Aris results for
large timescale. On account of all time analysis of dispersion, Gill and
Sankarasubramanian12 proposed a generalized dispersion model.
Further, Gill and Sankarasubramanian13 investigated the dispersion
phenomena using the generalized dispersion model for Casson fluid
flow through a tube having an absorptive boundary, under consider-
ation of exchange coefficient, convective coefficient, and dispersion
coefficient.

Mukherjee and Mazumder14 investigated the effect of pulsatile
Newtonian flow past a circular tube and parallel plates on the dispersion
of the cloud of contaminant using the method of moments. Mazumder
and Das15 analyzed the axial dispersion of a passive contaminant in a
time-dependent laminar flow in the presence of a reactive wall. Phillips
et al.1 considered a two-phase model to discuss the dispersion phenom-
ena of a tracer substance in respect of three effective transport coeffi-
cients, namely, the fraction of solute left in the fluid phase, the apparent
convection velocity, and the dispersion coefficient. For oscillatory flow
through an annular region, Sarkar and Jayaraman16 studied the disper-
sion of a tracer in the presence of irreversible reaction at the boundary.
A number of studies on solute dispersion in Newtonian fluid through a
tube/channel were carried out by considering both the reversible and
irreversible boundary reactions (cf. Ng,17 Ng and Rudraiah,18 and
Mazumder and Paul19) and by considering a porous tube/channel (cf.
Griffiths et al.,20Dejam et al.,21 and Kou and Dejam22).

A state-of-the-art model for transport in blood vessels is indis-
pensable for a better understanding of normal physiological function
and interpretation of the findings obtained from experiments. This

dispersion model is applicable for transport of solutes in blood vessels
and of soluble gases in the airways of the lung (cf. Phillips et al.1). To
represent the non-Newtonian behavior of the fluid, Casson model has
received much attention than other non-Newtonian models present in
the literature. At a low shear rate, the Casson fluid model could be well
representative of blood when it flows through a vessel of smaller diam-
eter in the presence of hematocrits, anticoagulants, etc. (cf. Charm and
Kurland,23 Blair and Spanner,24 and MacDonald25). Sharp26 analyti-
cally determined the same proportionalities as in Taylor’s theory by
considering various fluid rheologies like Casson model, Power-law
model, and Bringham fluid. Dash et al.27 determined the flow charac-
teristics of Casson fluid for practical applications in the study of coro-
nary artery disease. Later, they28 described the solute dispersion
process in Casson fluid flow under the effect of variation in yield stress,
using generalized dispersion model. Considering both tube and chan-
nel flows of Casson fluid, Nagarani et al.29 investigated the effect of
wall absorption parameter and yield stress on solute dispersion. Due
to its significant application in physiological and industrial problems,
several researchers (cf. Nagarani et al.,30 Shaw et al.,31 Rana and
Murthy,32,33 Debnath et al.,34–37 and Roy et al.38–40) carried out exten-
sive studies on dispersion of solute in Casson fluid flow. Abbas et al.41

analyzed the flow phenomena of Casson fluid flow between parallel
disks under different motion conditions of disk. Later, Abbas et al.42

deliberated the impact of thermal radiation on the peristaltic transport
of a Casson fluid through an inclined tube. In the presence of thermal
radiation, the effect of variable viscosity on Casson fluid flow in
expanding/contracting channel with porous walls examined by Rafiq
et al.43 Rana and Murthy44,45 and Rana and Liao46 have considered
various non-Newtonian models to study the unsteady solute disper-
sion in the presence of wall absorption. Sarifuddin et al.47,48 discussed
the flow characteristics of fluid and mass transport in the case of flow
past an atherosclerotic vessel. To investigate the temperature and the
concentration dispersion, Reddy et al.49 assumed nanofluid flows in a
stenotic artery. Very recently, Das et al.6 extensively studied the disper-
sion of solute in Casson fluid flow in a two-phase stenotic system hav-
ing a first-order irreversible reaction at the interface. Effect of porous
vessel wall on solute dispersion process in two-fluid model of blood
flow was discussed by Tiwari et al.50 and Shah et al.51 Since the major-
ity of computational models tend to neglect the transient behavior of
the non-Newtonian fluid past a stenosis and/or the inclusion of the tis-
sue domain, these models are likely to be under-or over-estimating
solute uptake and redistribution in arterial tissue.

Computational modeling and numerical simulation have risen as
a fundamental tool in the investigation of targeted drug delivery, help-
ing to address some of the limitations of expensive and even extremely
variable experimental tests. It has enhanced the understanding of the
dispersion of the solute and its subsequent uptake by the absorbing
wall, and finally its transport into the arterial tissue. The majority of
the above works was performed considering the tubular geometrical
model with linear boundary and restricted themselves to analyze the
solute dispersion in the fluid phase of the tube only. In the present
investigation, we consider an idealized cosine-shaped stenotic tube as
a computational domain consisting of a fluid phase and a wall (tissue)
phase. The solute is injected at a point uniformly distributed over the
cross section of the lumen. We provide an extensive computational
study of unsteady solute dispersion in the transient non-Newtonian
flow of blood in a stenosed artery and in the arterial wall, in general,
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and we perform a large scale computation to elucidate the effect of
non-Newtonian rheology and the severity of the stenosis on the trans-
port coefficients and the spatiotemporal pattern of the dispersion in
the lumen as well as in the tissue. The discretized governing equations
representing the unsteady solute and momentum transport are solved
numerically using the Marker and Cell (MAC) method and the
immersed boundary method (IBM) in an irregular domain (cf.
Peskin52). The primary objective of the present study is to estimate the
effects of non-Newtonian rheology, absorption parameter, and severity
of the stenosis on various time-dependent factors like the fraction of
solute remaining in the fluid phase, the apparent convection velocity,
the dispersion coefficient, the spatiotemporal concentration, and the
axial mean concentration. The novelty of the present study is the con-
sideration of Casson model and the dispersion of the solute in the tis-
sue in general, and the choice of solute administration at a point
uniformly distributed over a cross section, which closely resembles the
physiological situation concerning intravenous drug delivery.

II. MATHEMATICAL FORMULATION

A. Geometry of the stenosed artery

The geometry of the arterial segment having a cosine-shaped axi-
symmetric stenosis in its lumen53,54 is of the form

RiðzÞ ¼
1�

n

2r0
1þ cos

pz

z0

� �� �

�z0 � z � z0;

1 otherwise;

8

>

<

>

:

(1)

where z0 is the half-length and n is the maximum height of the stenosis
(cf. Fig. 1). The lumen is surrounded by a tissue layer of thickness
½Rp � RiðzÞ� where the maximum thickness occurs at z ¼ 0:

B. Momentum transport equations

A two-dimensional unsteady flow of Casson fluid under axi-
symmetric conditions in cylindrical polar coordinates system (r; h; z)
may be written in a dimensional form as
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and

r
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þ
@ðrurÞ

@r
¼ 0: (4)

The rheological equation55 considering an isotropic, incompress-
ible flow of a Casson fluid can be written as

sij ¼ 2lðJ2Þ/ij; (5)

where

lðJ2Þ ¼ 2�
1
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The mathematical form of flow criteria for Casson model is given by

/ij ¼

0; J�2 < s2y ;

1

2lðJ2Þ
sij; J�2 � s2y :

8

>

<

>

:

(6)

The dimensionless quantities uzðt; z; rÞ and urðt; z; rÞ are the axial
and the radial components of velocity conponents, respectively, scaled
with respect to the centerline velocity in a Poiseuille flow U0. The
dimensionless radial coordinate (r) and the axial coordinate (z) are
normalized with respect to the upstream radius of the lumen r0 and
Pef r0, respectively. The dimensionless shear stress (sij), the Reynolds
number (Re), the dimensionless pressure (p), and the Peclet number
for the fluid phase can be written, respectively, as

sij ¼
s0ijr0

gU0
; Re ¼

qU0r0

g
; p ¼

p0

qU2
0

; Pef ¼
r0U0

Df
:

Here, Df, lðJ2Þ; J2ð¼
1
2
/ij/ijÞ; /ij, and J�2 ¼ 1

2
sijsij

� 	

stand for the

fluid phase diffusion coefficient, apparent viscosity, the rate of strain
tensor invariant, rate of strain tensor, and the second invariant of the
stress tensor, respectively. The parameters sy, g, and q represent the
yield stress, the viscosity coefficient, and the fluid density, respectively.
The derivation of the governing equations (2)–(4) is given in the
Appendix.

The governing equations in a non-dimensional form can be writ-
ten as
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; (7)FIG. 1. Schematic diagram of the cosine-shaped stenosis model with 48% area
occlusion.
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1. Initial and boundary conditions for velocity

Initially, it is assumed that the system is at rest except a fully
developed flow of Casson fluid at the inlet whose mathematical form
may be as29,55
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and

urðt; z; rÞjz¼Cin;fluid
¼ 0; for 0 � r < RiðzÞjz¼Cin;fluid

; (11)

where rc ¼
sy
2


 �

stands for the radius of the plug region.

At the lumen-tissue interface, the usual no-slip boundary condi-
tion is given by

uzðt; z; rÞ ¼ 0 ¼ urðt; z; rÞ; at r ¼ RiðzÞ: (12)

The axial symmetry condition at the centerline is given by

@uz
@r

ðt; z; rÞ ¼ 0 ¼ urðt; z; rÞ; at r ¼ 0: (13)

At the downstream, the flow is left free which is mathematically
written as

@uz
@z

ðt; z; rÞ ¼ 0 ¼
@ur
@z

ðt; z; rÞ; on Cout:fluid: (14)

C. Solute transport equations

In the presence of non-Newtonian Casson fluid flow, the trans-
portation of solute through a stenotic tube in the fluid phase and wall
phase due to solute exchange between two phases can be represented
by the convection-diffusion equations whose mathematical expres-
sions in dimensionless forms in the cylindrical polar coordinate system
(r; h; z) can be written as (cf. Phillips et al.1)
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where the dimensionless parameter k ¼ Dw

Df
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be the ratio of the diffu-

sion coefficient ðDwÞ in the wall phase and the diffusion coefficient
ðDf Þ in the fluid phase. The solute concentrations in the fluid phase

(Cf) and in the wall phase (Cw) both are scaled with M
pPef r

3
0
, where M is

the total mass initially present.1

1. Initial and boundary conditions for solute

Initially at z¼ 0, an injected solute is uniformly distributed over
the cross section inside the lumen, and therefore, the initial condition
of concentration can be written mathematically in a dimensionless
form as1

Cf ðt;z;rÞjt¼0;z¼0 ¼ dðzÞHð1� rÞ ; for r�RiðzÞ onCt:fluid ;

Cwðt;z;rÞjt¼0 ¼ 0; for r>RiðzÞ onCt:wall;

8

<

:

(17)

where d is the Dirac delta function andH is the Heaviside function.
The conditions for concentration at the proximal and distal ends

for the luminal and tissue domains may be taken as

Cf ¼ 0; as z ! 61;

@Cw
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(18)
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Moreover, at the centerline, the condition for solute concentration is
given by

@Cf

@r
ðt; z; rÞ ¼ 0; at r ¼ 0: (19)

At the fluid-wall interface, continuity of concentration and solute flux
between fluid phase and wall phase has been taken in the dimension-
less mathematical form as1

Cwðt; z; rÞ ¼ bCf ðt; z; rÞ; on RiðzÞ;

k
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@n
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:

(20)

where b is the ratio of wall phase concentration to fluid phase concen-

tration at equilibrium, and the dimensionless parameter j ¼ k
1
2b


 �

represents the absorption parameter.
At the perivascular wall, a perfectly absorbing condition may be

taken as

Cwðt; z; rÞ ¼ 0; at r ¼ Rp: (21)

D. Determination of transport coefficients

Following Davidson and Schroter,56 let us determine the trans-
port coefficient in the fluid and wall phases as

hCðtÞi ¼
2

R2
p

ð1

�1

ðRp

0

rCðt; z; rÞdrdz; (22)

where

Cðt; z; rÞ ¼ Cf ðt; z; rÞ; for r � RiðzÞ;

Cðt; z; rÞ ¼ Cwðt; z; rÞ; for r > RiðzÞ:

(

(23)

The above integral can be split over the fluid phase and the wall phase
with same normalization.

The fraction of solute remaining in fluid phase can be termed as

qf ðtÞ ¼

ð1

�1

ðRiðzÞ

0

rCf ðt; z; rÞdr

ðRiðzÞ

0

rdr

dz: (24)

The apparent convection velocity of solute is U0uðtÞ, where

uðtÞ ¼
d

dt

hzCðtÞi

hCðtÞi

� �

: (25)

The dispersion coefficient Df kðtÞ is defined as half the rate of change
of axial variance of solute, where

kðtÞ ¼
1

2
Pe2f

d

dt

hz2CðtÞi

hCðtÞi
�
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" #

: (26)

III. METHOD OF SOLUTION

A. The MAC methodology

The Marker and Cell (MAC) method has been adopted to simu-
late for the flow-field and solute concentration in interior cells from

the momentum equations and convection-diffusion equations, respec-
tively, using the prescribed initial and boundary conditions. The veloc-
ity, pressure, and concentration components are computed at different
positions of the MAC cell as depicted in Fig. 2. The first-order forward
difference formula is applied for the time derivatives terms, whereas a
hybrid second-order upwinding difference scheme is considered for
the convection terms. The diffusive terms are discretized using the
second-order accurate three-point central difference formula.

The discretized version of the continuity equation at ði; jÞth cell is
of the form

rj

Pef

un
z iþ1

2;jð Þ
� un

z i�1
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þ
rjþ1

2
un
r i;jþ1

2ð Þ
� rj�1

2
un
r i;j�1

2ð Þ

dr

 !

¼ 0;

(27)

where the axial and the radial velocity components are discretized
as uzðt; z; rÞ ¼ uzðndt; idz; jdrÞ ¼ unz ði;jÞ and urðt; z; rÞ ¼ urðndt;
idz; jdrÞ ¼ unr ði;jÞ; respectively, in which n stands for time direction
and dt; dz; dr as time increment, length increment, and breadth incre-
ment, respectively.

To determine the pressure component at each cell from the pres-
sure equation, derived from the discretized momentum equations, the
successive-over-relaxation (S.O.R.) method is applied with the over-
relaxation parameter as 1.2, and the intermediate pressure-field is
deduced using the velocity field already obtained. The divergence of
the velocity-field is calculated throughout the domain and checked for
its maximum divergence value. If this value exceeds the tolerance limit,
then the pressure-velocity correction scheme is applied as described in
Sec. III C. The solute concentrations in the fluid phase and wall phase
are explicitly determined from the discretized version of Eqs. (15) and
(16), respectively.

B. The immersed boundary method

As rectilinear grids are not conformed with complex geometry,
to estimate the values of the velocity, pressure, and concentration at
the intercepted cells (the cell where some grid points lie inside the fluid
domain and some points lie in the wall domain), the IBM is applied in

FIG. 2. A typical MAC cell.
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staggered grids. In the present analysis, a direct forcing approach has
been considered satisfying the no-slip and other prescribed boundary
conditions and determined the desired quantities at the vicinity of the
interfaces.57 Before the implementation of the IBM, it is necessary to
search whether a cell near the boundary is situated in the fluid domain
or in the wall domain or intercepted between the fluid and the wall
domains (cf. Fig. 3). This process is called “Cell tagging” and an effi-
cient search algorithm is made use of for this purpose.6,57

The curved interface is recognized by using a set of connected
points in the background of a structured mesh. The location of the
grid point in the wall/fluid domain is governed by the value of the dot
product of the position vector of grid point (~g ) and surface normal
vector (n̂). The grid point is located at fluid phase for ~g � n̂ � 0,
whereas if ~g � n̂ < 0, then grid point lies in the wall phase. At the
“intercepted cells,” some vertices (nodes) are in the fluid phase (called
“immersed nodes”) and some are outside the fluid phase (called “ghost
nodes”) (cf. Fig. 3). A similar approach has been applied for the cells
in the wall phase. This cell tagging procedure is implemented through-
out the computational domain at all the staggered grids. Thereafter, an
interpolation scheme is applied successfully to determine the velocity
profile, pressure, and concentration at immersed and ghost nodes.

FIG. 3. Depiction of interpolation scheme for immersed boundary method.

FIG. 4. Grid independent study. Centerline velocity for different grid sizes (64%
severity of the stenosis, Re¼ 100, Pef¼ 20, and sy ¼ 0:02).

(a) (b)

FIG. 5. Model validation: (a) the apparent convection velocity of solute based on averages over both phases for j ¼ 0:1 and (b) the convective component of the dispersion
coefficient based on averages over both phases for j¼ 0.
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The quadratic polynomial of the form f ðnÞ ¼ an2 þ bnþ c is
considered to maintain the overall-second order accuracy of the solution
algorithm and computed the value of all the desired variables at the cut-
cell grid points by performing interpolation and extrapolation,57,58where
n represents the coordinate value along the surface normal direction.
Consider two points along the normal direction where f is known and
one point at the interface where n¼ 0 such that the value of f satisfies
the boundary conditions. With the help of the function values at these
three points, the unknown coefficients a, b, and c are determined.

C. Pressure and velocity correction

While calculating pressure at each cell center, the number of iter-
ation of the S.O.R. scheme is limited to 10 to save computational cost.

FIG. 6. Variation of transport coefficients for different values of the wall absorption parameter j (48% severity of the stenosis, Re¼ 50, Pef¼ 20, and sy ¼ 0:02). (a) The frac-
tion of solute remaining in the fluid phase. (b) The apparent convection velocity based on averages over both phases. (c) The dispersion coefficient based on average over
both phases.

TABLE I. Baseline values of involved parameters.

Description Parameters Values References

Centerline velocity

In a Poiseuille flow (cm/s) U0 14.0 64

Upstream radius (cm) r0 0.02 33 and 65

Fluid density (g m/cm3) q 1.05 53

Yield stress (dyn/cm2) sy ð0� 0:2Þ 28

Reynolds number Re ð20� 1000Þ 53

Wall absorption parameter j ð0:001� 10Þ 1

Dimensionless parameter k 10�4 1
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The velocity-field obtained using these inaccurate pressure values may
not satisfy the continuity equation, in general, and hence this necessi-
tates a corrector stage.

The pressure correction formula is of the form

pnði;jÞ ¼ p?ði;jÞ þ xdpði;jÞ; (28)

with

dpði;jÞ ¼ �
Div?ði;jÞ

dt
2rj

Pef dz2
þ
Pef rj�1=2

dr2
þ
Pef rjþ1=2

dr2

 !

2

6

6

4

3

7

7

5

;

where p?ði;jÞ is the obtained pressure from the pressure equation,

x ð� 0:5Þ is the relaxation parameter for S.O.R scheme, and Div?ði;jÞ

stands for divergence of the velocity-field at ði; jÞth cell derived after
solving the pressure equation.

The axial and radial velocity correction formulas are47

unþ1

z iþ1
2;jð Þ

¼ u?
z iþ1

2;jð Þ
þ
dtdpði;jÞ

dz
;

unþ1

z i�1
2;jð Þ

¼ u?
z i�1

2;jð Þ
�
dtdpði;jÞ

dz
;

unþ1

r i;jþ1
2ð Þ
¼ u?

r i;jþ1
2ð Þ
þ
Pef dtdpði;jÞ

dr
;

unþ1

r i;j�1
2ð Þ
¼ u?

r i;j�1
2ð Þ
�
Pef dtdpði;jÞ

dr
;
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:

(29)

where u?
z iþ1

2;jð Þ
; u?

z i�1
2;jð Þ

; u?
r i;jþ1

2ð Þ
, and u?

r i;j�1
2ð Þ
represent the updated

velocity-field.

D. Numerical stability

To obtain a stable numerical solution, we adopted the following
time stepping schemes. Welch et al.59 and Hirt60 suggested stability
criteria consisting of Reynolds number and can be applied for MAC
methodology directly for a suitable time stepping (dt1).

Another elegant time measuring criteria recommended by
Markham and Proctor61 in which at any given time step (dt2), no fluid
particle should pass more than one cell.

On account of solute diffusivity and dimensions of the control
volume, Courant–Friedrichs–Lewy stability criteria62 provided the
time stepping (dt3).

Moreover, considering all the criteria, we adopted a suitable time
stepping (dt), which is the minimum of all above three criteria. For
details of mathematical expression of time stepping, interested readers
are referred to Sarifuddin andMandal.63

E. Grid independence study and model validation

To verify the correctness of the computational code and error
associated with the grid sizes used, a grid independence study is per-
formed for centerline axial velocity at different grid sizes (relatively
coarse and finer) as shown in Fig. 4. It is noticeable that all three veloc-
ity profiles are almost overlapped with one another establishing the
correctness of the code at grid sizes used.

In order to validate our results, some comparisons have been
made with the results of Phillips et al.1 It may be recalled that Phillips

et al.1 studied the time-dependent dispersion of solute in both fluid
and wall phases in the presence of fully developed Poiseuille flow while
our model demands appreciable extension over that with some addi-
tional assumptions, namely, the transient flow of non-Newtonian fluid
(Casson fluid) and the presence of stenosis in which the solute is
injected at the throat of the stenosis. In a bid to validate our results, we
reduce our model to that of Phillips et al.1 and determine the apparent
convection velocity and the convective component of the dispersion
coefficient both based on averages over both phases shows excellent
agreement as exhibited in Figs. 5(a) and 5(b).

IV. RESULTS AND DISCUSSION

To investigate the dispersion of solute in a two-phase domain
such as lumen and tissue region, an unsteady analysis of mass and
momentum transport has been carried out in which the fluid is repre-
sented by a non-Newtonian Casson model. The stenotic tube with
boundary absorption and two-dimensional flow are considered in this
study. The effect of the wall absorption parameter (j), yield stress (sy),
and the severity of the stenosis (n) on the solute dispersion process has
been analyzed. The dispersion phenomena of the solute in both lumen
and tissue regions are explored numerically by applying leveraging the
Marker and Cell (MAC) method and the IBM in staggered grids for-
mulation. With the time step obtained in Sec. IIID and
Dr ¼ 0:02;Dz ¼ 0:04, we determine the transport coefficients for
larger time by extending the domain progressively in the downstream
to�6 � z � 8 to provide enough room for the solute to move down-
stream and to ensure that no solute particle leave the domain.18 The
steady state is achieved when the maximum divergence of the velocity
field is less than 10�12 and for concentration, the tolerance is less than
10�5 in the absolute sense. The plausible values of the parameters
involved in the computation of the desired quantities having major
physiological significance are given in Table I. The stability of our
numerical schemes has been discussed and the correctness of the

FIG. 7. The variation of axial mean concentration in fluid phase averages over lumi-
nal cross section for different values of the wall absorption parameter j at t¼ 5
(48% severity of the stenosis, Re¼ 50, Pef¼ 20, and sy ¼ 0:02).
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computational code is justified in this analysis. In addition, to check
the accuracy of the present investigation, our obtained results are com-
pared with the existing results in some special cases and found to be in
good agreement.

A. Effect of wall absorption parameter j

One of the key parameters that controls the solute transfer
between two phases is the wall absorption parameter j. Its effects on
three time-dependent transport coefficients are displayed in Fig. 6 in

logarithmic scale. It is noticed that the effects of wall absorption
parameter on the time-dependent transport coefficients are nonlinear.
These nonlinear effects are elaborately discussed in this study. The
fraction of solute remaining in the fluid phase [qf ðtÞ] strongly relies
on time t and j, and it is shown in Fig. 6(a). It is observed that at small
time for small values j, there is no significant change in qf ðtÞ but at
large time, qf ðtÞ decreases, and at very large time (after t � 10), it
approaches to a constant value. However, for large values of j at small
time, qf ðtÞ starts to decrease significantly and at large time, it
reaches early to a constant value. The physical significance of this

FIG. 8. Spatiotemporal variation of solute concentration for different times (48% severity of the stenosis, Re¼ 50, Pef¼ 20, j ¼ 0:1, and sy ¼ 0:02). (a) t¼ 1, (b) t¼ 5, and
(c) t¼ 10.
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phenomenon is that small values of j lead to low absorption rate at
the tube wall and due to this reason, at small time, very less amount of
solute is transported from the center of the tube to the wall region for
conducting the absorption. So, more amount of solute is present in the
fluid phase at small time. However, at large time, the convective and
diffusive transportation of the solute becomes more effective in the
system. For this reason, the solute decreases in the fluid phase and
transported to the wall region. Now at very large time, an equilibrium
state occurs between the absorption at the tube wall and the diffusive
transport from the center of the tube to wall region. For small values
of j, owing to the presence of comparatively higher amount of solute
substance in the fluid phase, it takes a larger time to achieve an equilib-
rium state. That means sufficient amount of solute retains in the fluid

phase for a more extended period in the case of lower values of j and
it is getting enough time to reach an equilibrium stage. However, for
large values of j, the rate of absorption at the tube wall becomes more.
Due to this, more amount of solute is transported to the tube wall
region. So, very less amount is present in the fluid phase. In addition,
the convective and diffusive transportation of the solute enhances the
depletion of the solute in the fluid phase. Therefore, at large time, an
equilibrium state is reached, i.e., the depletion becomes in stable condi-
tion. Hence, for large values of j, less time is required to reach the
equilibrium state. That means most of the solute substance absorbed
quickly for higher values of j and does not get enough extent to attain
the equilibrium stage. Also, it is evident from Fig. 6(a) that qf ðtÞ
decreases as j increases. The physical clarification is that as j increases

FIG. 9. Temporal variation of transport coefficients for different values of the yield stress (sy) (48% severity of the stenosis, Re¼ 50, Pef¼ 20, and j ¼ 0:1). (a) The fraction
of solute remaining in the fluid phase. (b) The apparent convection velocity based on averages over both the phases. (c) The dispersion coefficient based on averages over
both phases.
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in the system, the absorption raises at the interface of the lumen and
tissue, and the solute is absorbed rapidly at the tube wall. Owing to
this, for large values of j, more amount of solute diffuses to the tube
wall and very less amount of solute remains in the fluid phase. This
leads to a decrease in qf ðtÞ. The large absorption parameter (j¼ 10)
helps the solute to leave the luminal side more rapidly (as it is directly
proportional to the interfacial flux from lumen) and leaves behind
only 10% solute at t¼ 0.35 in the lumen.

The effect of the wall absorption parameter (j) on the solute con-
vection is discussed and its significant effect is observed in this investi-
gation. The apparent convection velocity (u(t)) based on averages over
both phases depends on the velocity of the fluid and the initial distri-
bution of the solute. It takes a minimum value till t � 0:2; thereafter,
increases with time, attains a peak value, and finally decreases to
approach a finite limit. It is interesting to note that for steady
Poiseuille flow without any constriction, our results do agree with
those of Phillips et al.,1 while for unsteady cases, these values are con-
stant until t � 0:2, and thereafter, it increases. Also for small values of
j, the convection process becomes stable at very large time, whereas
for large values of j, less time is required to reach the stable state. This
is similar like for the case of qf ðtÞ with different values of j. The physi-
cal explanation is that until t � 0:2, the injected solute is dispersed
downstream by molecular diffusion only and when the inlet velocity
touches the solute cloud, which enables the cloud to transport under
the action of convection as well as diffusion. So, until t � 0:2, the sol-
ute is not convected by the fluid velocity. Thereafter, as time increases,
the solute is convected with the velocity of the fluid and it leads to an
increase in u(t). At large time, the convection process of the solute is
stabilized, that means the solute is started to convect with the constant
velocity of the fluid. For small values of j, an equilibrium state
between convection process and absorption at the wall occurs at very
large time, whereas this equilibrium state occurs quickly for large val-
ues of j. In addition, as j increases from 0.01 to 10, u(t) decreases. For
smaller values of j, there remains a barely minimum, which disap-
pears for larger values of j [cf. Fig. 6(b)].

The dispersion coefficient [k(t)] arises from the distribution of
the solute cloud between parts of the system moving with different
velocities. It depends on both fluid velocity and molecular diffusion of
the solute. Figure 6(c) exhibits the results for the dispersion coefficient
based on averages over both phases due to unsteady flow of Casson
fluid past a stenosed artery as a logarithmic plot. It is worth noting
that initially, until t � 0:2, the solute dispersion process is controlled
by molecular diffusion of the solute and as time increases, the trans-
portation process is more controlled by convection of the fluid as well
as diffusion [which leads to an increase in k(t)], and again at large
time, diffusive transport is effective in the system [which leads to a
decrease in k(t)]. This phenomenon on solute dispersion is seen in our
study and it is more significant for large values of j. It is also noticed
that for small values of j, an equilibrium state between dispersion pro-
cess and absorption at the wall occurs at large time, whereas for large
values of j, an equilibrium state is not reached and a continuous dec-
rement is observed in the dispersion coefficient. This is due to the
rapid transportation of solute from fluid phase to wall phase at large
values of j. It is also observed that as j increases, the dispersion coeffi-
cient decreases at large time. When j is small (j ¼ 0:01), there is
slowness of solute transported to the stationary wall, whereas for
higher jð¼ 10Þ, a reverse phenomenon is observed. The fact that the

wall absorption consumes solute in the near-wall fluid where the fluid
velocity is small but the velocity gradient is high. In the presence of ste-
nosis, the center of mass of the solute cloud moves faster to the central
fluid of the stenosed tube, thereby leading to an increase in the advec-
tion speed, which eventually decreases the dispersion coefficient for
larger j: This is the physical reason for the decrement of k(t).

Figure 7 represents the streamwise change in axial mean concen-

tration ðCmðt; zÞ ¼

Ð RiðzÞ

0
rCf ðt;z;rÞdr
Ð RiðzÞ

0
rdr

Þ in fluid phase for a range of the

absorption parameter j at time t¼ 5 for an unsteady flow of Casson
fluid flowing through a stenosed artery. It is interesting to note that
the peak value of Cm decreases with increasing j. The physical justifi-
cation is that for large values of j, the rate of absorption at the tube
wall enhances in the system. Owing to this, more amount of solute
leaves the lumen and it is depleted rapidly at the tube wall. As a result,
there is decrement of the mean concentration. Moreover, when j¼ 10,
most of the solute absorbed in the downstream vicinity of the injected
site and less spreading of solute takes place, which makes the peak flat-
tened. Visual representation of the temporal spreading of the solute
cloud is presented in Fig. 8, which further establishes our findings. As
time progresses from t¼ 1 to t¼ 10, the initially injected uniform solute
cloud at the throat of the stenosis (z¼ 0) does spread downstream non-
uniformly under the action of both molecular diffusion and fluid con-
vection along with the absorption at the stationary wall.

B. Effect of yield stress

The time-dependent transport coefficients of solute for a range of
values of the non-Newtonian parameter (sy) are presented in Fig. 9 for
j ¼ 0:1 at t¼ 5. Here sy is considered as 0 to 0.06. sy ¼ 0 represents
the Newtonian characteristic of the fluid and rest of the values of sy
indicate the non-Newtonian characteristic of the fluid. Figure 9(a)
shows the effect of sy on the fraction of solute remaining in the fluid

FIG. 10. The variation of axial mean concentration in fluid phase for different values
of the yield stress (sy) at t¼ 5 (48% severity of the stenosis, Re¼ 50, Pef¼ 20,
and j ¼ 0:1).
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phase [qf ðtÞ]. It is observed that there is no significant effect of sy on
qf ðtÞ. The physical reason is that since the nonzero solute flux at the
tube wall is independent of the non-Newtonian nature of the fluid,
there is no significant effect of sy on qf ðtÞ. However, the non-
Newtonian characteristic of the fluid has significant effect on the
apparent convection velocity and the dispersion coefficient, and it has
been displayed in Figs. 9(b) and 9(c). As sy increases, there is no
change in values of the convection and dispersion coefficients until
t � 0:2, and thereafter, the values diminish with increasing sy, indicat-
ing that the dispersion phenomena are greatly modulated by the non-
Newtonian rheology of the flowing fluid. The increase in yield stress of
the fluid decreases the fluid movement and as a result, the solute is
convected with lower velocity of the fluid. That is the reason for decre-
ment in u(t). Also, solute is dispersed with this lower velocity of the
fluid and owing to this phenomenon, k(t) decreases with increasing sy.

The peak value of the axial mean concentration in the fluid phase
increases with increasing yield stress (cf. Fig. 10) and the peak does
shift toward the downstream when the non-Newtonian effect gradu-
ally disappears. As yield stress of the fluid increases, flow velocity
decreases and it decreases the solute dispersion. That is the physical
significance for increment in axial mean concentration.

C. Effect of severity of stenosis n

The axial dispersion of solute is directly proportional to the sever-
ity of the stenosis (n), which contributes much to three transport coef-
ficients. In this study, no stenosis ð0%Þ and various severities of
stenosis ð36%; 48%; and 64%Þ at the tissue-lumen interface are con-
sidered. Figure 11 shows that with the increase in severity of stenosis,
the value of the fraction of solute remaining in the fluid phase [qf ðtÞ]

FIG. 11. Temporal variation of transport coefficients for various severities of the stenosis (j ¼ 0:1, Re¼ 50, Pef ¼ 20; and sy ¼ 0:02). (a) The fraction of solute remaining in
the fluid phase. (b) The apparent convection velocity based on averages over both phases. (c) The dispersion coefficient based on averages over both phases.
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decreases significantly. It is noticed that the inlet profile touches the
solute cloud at t¼ 0.17, and before that time, only diffusive transport
of the solute is present in the system to conduct the absorption.
Because of this fact, more severe stenosis helps conduct more absorp-
tion due to the increased interfacial area. The values of the apparent
convection velocity based on averages over both phases (u(t)) and the
dispersion coefficient (k(t)) increase at early times, and thereafter
diminish and get a finite limit. The above observation may be justified
in the sense that as the severity of the stenosis increases, the flow is
accelerated at the site of the stenosis and although the velocity in the
vicinity of the interface is near zero, the solute gradient is high, which
eventually increases u(t) and k(t); however, for larger times when a
lesser amount of solute remaining in the fluid phase, the above coeffi-
cients diminish. There is a high rate of absorption in the case of severe
stenosis (64% stenosis), and subsequently, it is observed that a smooth
peak occurs in k(t) due to the rapid change in concentration in the
fluid phase. This phenomenon gradually decreases as it is moved to
the moderate (48% stenosis) and mild stenosis (36% stenosis) model.
In a bid to confirm our findings, the effect of severity of stenosis on
axial mean concentration is presented in Fig. 12, indicating that the
peak value of the mean concentration over cross section in the fluid
phase diminishes with the increase in the value of the severity of the
stenosis and the peak is shifted downstream, as anticipated. The physi-
cal explanation is that as n increases, the solute convection and disper-
sion increase in the system, which leads to a decrease in axial mean
concentration.

V. CONCLUSION

The solute transportation process in the presence of non-
Newtonian characteristic of the blood in small stenosed vessels and its
surrounding tissue regions is analyzed by considering the two-
dimensional Casson fluid flow and a two-phase stenotic system. The
governing equations are numerically solved in staggered grid formula-
tion with the help of the Marker and Cell (MAC) method and the

immersed boundary method (IBM). In the case of a steady Poiseuille
flow, the obtained results for transport coefficients, viz., the apparent
convection velocity and the dispersion coefficient, agree well with
those of Phillips et al.1 This shows the accuracy of our analysis.

In this study, the fraction of solute remaining in the fluid phase
[qf ðtÞ], the apparent convection velocity coefficient [u(t)], the disper-
sion coefficient [k(t)], and the axial mean concentration of the solute
(Cm) are determined. The following salient observation may be noted
from the present investigation:

(i) The fraction of solute remaining in the fluid phase [qf ðtÞ] dimin-
ishes with the increase of the wall absorption parameter j.

(ii) The apparent convection velocity coefficient [u(t)] of the
solute approaches a finite limit for all values of j and an
early quasi-steady state is observed for larger jð¼ 10Þ:

(iii) The value of the dispersion coefficient [k(t)] decreases for
larger jð¼ 10Þ due to an increase in the advection speed.

(iv) The peak value of the axial mean concentration in fluid
phase (Cm) decreases with increasing j as the higher the
value of j, more amount of solute leaves the lumen.

(v) The peak value of the axial mean concentration in fluid
phase (Cm) increases with increasing yield stress ðsyÞ and
the peak does shift toward the downstream when the non-
Newtonian effect gradually disappears.

(vi) There is a high rate of dispersion of solute for more severe
stenosis due to increased interfacial area.

(vii) With increasing severity of the stenosis, the peak value of
the axial mean concentration in the fluid phase (Cm) dimin-
ishes and the peak is shifted downstream.
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APPENDIX: DERIVATION OF MOMENTUM AND
CONTINUITY EQUATIONS

The differential form of the law of conservation of momentum,
considering that there is no external force acting on the fluid, is (cf.
Bird et al.66)

@ðqvÞ

@t
¼ � r � U½ �; (A1)

where ðqvÞ is the momentum per unit volume at a point in the fluid
and U is the combined momentum flux tensor.

Combined momentum flux tensor ðUÞ is the sum of the
molecular momentum flux tensor ðpdþ sÞ and the convective
momentum flux tensor ðqvvÞ. Then Eq. (A1) becomes

@ðqvÞ

@t
¼ � r � qvv½ � � rp� r � s½ �; (A2)

where rp is the pressure gradient and ½r � s� represents the diver-
gence of the stress tensor. Equations (2) and (3) can be obtained
from Eq. (A2) by expressing the vector form into cylindrical polar
coordinates system (r; h; z).

FIG. 12. The variation of axial mean concentration in fluid phase for various severi-
ties of the stenosis at t¼ 5 (j ¼ 0:1, Re¼ 50, Pef ¼ 20; and sy ¼ 0:02).
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From the equation of continuity, we know that the rate of
increase in mass per unit volume is equal to the net rate of mass
increase per unit volume by convection and can be written mathe-
matically as

@q

@t
¼ �ðr � qvÞ: (A3)

In the present analysis, we consider that the density of the fluid ðqÞ
is constant and Eq. (A3) becomes

r � v ¼ 0; (A4)

and by expressing this equation into cylindrical polar coordinates
system, we obtain Eq. (4) as

r
@uz
@z

þ
@ðrurÞ

@r
¼ 0;

where uz and ur are the axial and radial components of the velocity
vector v, respectively.
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