
Snatch Theft Detection in Unconstrained Surveillance Videos

Using Action Attribute Modelling

Debaditya Roya,∗, C. Krishna Mohana

aVisual Learning and Intelligence Group (VIGIL)

Department of Computer Science and Engineering

Indian Institute of Technology Hyderabad

Abstract

In a city with hundreds of cameras and thousands of interactions daily among people, manually identifying crimes like

chain and purse snatching is a tedious and challenging task. Snatch thefts are complex actions containing attributes

like walking, running etc. which are affected by actor and view variations. To capture the variation in these attributes

in diverse scenarios, we propose to model snatch thefts using a Gaussian mixture model (GMM) with a large number

of mixtures known as universal attribute model (UAM). However, the number of snatch thefts typically recorded in a

surveillance videos is not sufficient enough to train the parameters of the UAM. Hence, we use the large human action

datasets like UCF101 and HMDB51 to train the UAM as many of the actions in these datasets share attributes with

snatch thefts. Then, a super-vector representation for each snatch theft clip is obtained using maximum aposteriori

(MAP) adaptation of the universal attribute model. However, super-vectors are high-dimensional and contain many

redundant attributes which do not contribute to snatch thefts. So, we propose to use factor analysis to obtain a low-

dimensional representation called action-vector that contains only the relevant attributes. For evaluation, we introduce

a video dataset called Snatch 1.0 created from many hours of surveillance footage obtained from different traffic

cameras placed in the city of Hyderabad, India. We show that using action-vectors snatch thefts can be better identified

than existing state-of-the-art feature representations.
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1. Introduction

Abnormal events of interest like thefts and threats in

long video sequences like surveillance footage have an

extremely low probability of occurrence. Manually de-

tecting these rare events or anomalies is challenging in

cities as there are hundreds of cameras which need to be

monitored. Especially anomalies have localized spatio-
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temporal signatures where they occur over a small time

window in a long sequence or a small spatial region

in a wide surveillance area. The distinguishing feature

of these scenarios is that outside this anomalous spatio-

temporal region, regular activities are observed. Anoma-

lous activities like chain and purse snatching are espe-

cially prevalent in many countries.

Most of the existing literature on detecting anomalous

activities like snatching uses datasets collected in con-

trolled laboratory settings with no crowd or background

and with an excellent viewing angle of the activity. Even

when conducted in crowded scenes as in [1], the entire

pickpocket incident is staged with apriori knowledge of

how the incident is going to take place which makes anal-
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ysis a lot easier. So, to analyze real-life thefts, we present

a dataset called Snatch 1.0 1 collected from unconstrained

surveillance footage. This dataset contains surveillance

footage obtained from the traffic police department of Hy-

derabad city of India which includes various instances of

snatch thefts (details in Section 4.1). It was observed that

snatching incidents in surveillance videos can occur in a

variety of scenarios which are of diverse types and lead

to different victim reactions. Some of the examples of

snatch thefts are shown in Figure 1.

Table 1: Some cases of snatching scenarios, types and victim reactions
Snatch Type 1

(Direct grab)

Snatch Type 2

(Inquire and grab)

Scenario 1

(Thief on motorbike)

Reaction 1

(Victim chases)
Reaction 1

(Victim chases)
Reaction 2

(Victim dragged)

Reaction 3

(Victim falls

or remains standing)

Reaction 3

(Victim remains standing)

Scenario 2

(Thief on foot)

Reaction 1

(Victim chases)

Reaction 1

(Victim chases)

Reaction 3

(Victim falls

or remains standing)

Reaction 3

(Victim falls

or remains standing)

In Table 1, we list some cases of snatch thefts encoun-

tered in surveillance videos used for the present work. It

is evident that snatch thefts are not only complex to model

but also the definition of a snatch theft itself is non-trivial.

Each interaction between individuals needs to be studied

to decide whether or not it is a potential snatch theft or

not. These interactions can be considered as part of the

larger set of human actions [2]. Hence, we propose a

framework for analyzing these interactions. At first, an

unsupervised Gaussian mixture model called universal at-

tribute model (UAM) is trained using a variety of human

actions containing attributes like punching in HMDB51

and UCF101 datasets which is visually similar to grab-

bing in snatch thefts as shown in Figure 2. Gaussian mix-

ture models have previously been explored to model at-

tributes of actions [3, 4]. Using factor analysis, the es-

sential attributes useful for describing snatch thefts are

extracted and represented in the form of action-vectors.

We show that action-vectors perform better than existing

1http://www.iith.ac.in/vilg/datasets/

state-of-the-art feature descriptors while leveraging a lot

of existing video data containing human actions to effec-

tively represent snatch thefts.

The rest of the paper is arranged as follows. Section

2 discusses the related literature for anomaly detection in

surveillance videos with a focus on anomalous activities.

In Section 3, a detailed description of the proposed snatch

theft detection framework is presented. The results and

related analysis are reported in Section 4 and we conclude

with directions for future work in Section 5.

2. Related Work

A majority of existing literature in the field of anomaly

detection is aimed towards detection of generalized ab-

normal patterns [5, 6] or behaviour in case of individuals

or crowds [7]. Many approaches model normal behaviour

extensively and consider events which do not follow these

models as anomalous activities. One approach [8] pro-

posed a motion-influence map which localizes both global

and local unusual activities. The motion-influence map

considers the speed and direction of various objects to de-

termine their relative influence on other objects for detect-

ing unusual motion patterns. In [9], apart from magnitude

and direction of motion, entropy information was further

added to form a combined histogram of flow orientation,

motion, and entropy (HOFME) descriptor. The usage of

entropy was to determine the density of motion during

normal events. In [10], a roadside surveillance scene was

divided into zones like traffic lanes, stationary areas, etc.

each of which was termed as a scene context and the di-

rection and flow of persons in each of these contexts were

measured. Further, the interaction between any two in-

dividuals in the close spatial vicinity was measured for

gaze and motion direction information. This was termed

as social context and revealed normal behaviour in differ-

ent scene contexts.

Recently, deep learning methods have also been used

for anomaly detection in videos. In [11], appearance and

motion features were learned using two stacked denois-

ing auto-encoders (AE) trained on patches extracted from

each image in the video and corresponding optical flow

map, respectively. A fusion of the two AE outputs with a

one-class SVM was used for learning normal appearance

and motion. For extracting both appearance and motion

features simultaneously, in [12], 3D convolutional layers
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Scenarios Reactions

(a)

two persons on a motorbike pillion rider is unable to snatch the chain cleanly victim gets dragged

(b)

thief pretends to inquire snatches chain runs away victim chases.

Figure 1: Different snatching scenarios as captured in Snatch 1.0. Best viewed in colour.

(a) grab (b) punch

Figure 2: Visual similarity in (a) grabbing of Snatch 1.0 and (b) punch-

ing of HMDB51 dataset.

were added to the AE network above. Instead of train-

ing a one-class SVM, the reconstruction error was directly

used for predicting anomalies. A variant of AE involving

2D CNN for appearance features and a long-short mem-

ory (LSTM) was introduced in [13] for motion modelling.

The deep learning methods described above can regis-

ter only significant deviations from normal behaviour in

constrained environments and hence cannot be used for

recognizing snatch thefts in unconstrained environments

which vary only subtly from regular activities.

These approaches presented above assume that the test-

ing scenarios will be same as training scenes and enough

labelled data is available to learn the sequences. However,

snatch thefts in real-world scenarios are rarely similar and

labelled examples are scarcely available. A crime like

snatching can be characterized as having the following

characteristics: 1) snatching activity occurs much more

infrequently than regular interactions, 2) many actions

which contribute to snatching do not have significantly

different characteristics from normal activities like grab-

bing, running, etc. Further, the infrequency of snatching

events mean that the most of the completely supervised

methods where both the training and testing set should

contain large labelled data of abnormal patterns cannot

be employed. Similarly, the closeness to normal activi-

ties makes the use of completely unsupervised methods

unsuitable [14].

3. Proposed Framework

In the proposed approach we exploit the similarity of

snatch thefts to normal actions to our advantage by train-

ing a large UAM which encompasses attributes across

all actions. So, the training of the UAM is not depen-

dent on the availability of labelled snatch theft examples

which are difficult to obtain as they are infrequent activi-

ties. Next, we describe UAM construction in detail.

3.1. Universal Attribute Model (UAM)

Each action clip can be considered to be a sample func-

tion which realizes the random process generating the ac-

tion. For estimating the sampling function, we need the
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parameters of the pdf which describes the random pro-

cess. If such a pdf can be estimated using a GMM, then

the number of mixtures must be sufficiently large to ac-

commodate the intra-action variances encountered in dif-

ferent recording conditions. We call this model the univer-

sal attribute model (UAM) which can be represented as

p(xl) =
∑C

c=1 wcN(xl|µc,σc) where the mixture weights

wc satisfy the constraint
∑C

c=1 wc = 1 and µc,σc are the

mean and covariance for mixture c of the UAM, respec-

tively. A feature xl is part of a clip x represented as a

set of feature vectors x1, x2, · · · , xL. This feature can be

histogram of optical flow (HOF) [15] or motion boundary

histogram (MBH) [15] descriptor and we train the UAM

using standard EM estimation. Owing to the large number

of mixtures in the UAM, a small number of snatch theft

examples are not enough to train the UAM. Hence, we

use the clips from the training split of large human action

datasets like UCF101 [16] and HMDB51 [2] containing

101 and 51 actions, respectively, to train the UAM.

As the goal is to find the pdf of the action that gener-

ates a clip, we need to adapt the UAM parameters using

the data in the clip [17, 18]. The UAM parameters are

adapted for every clip to enhance the contribution of the

attributes present in it. Given L feature vectors of a clip

x, the probabilistic alignment of these feature vectors into

each of the C mixture components of the UAM is calcu-

lated as a posterior p(c|xl) which is computed as

p(c|xl) =
wc p(xl|c)

∑C
c=1 wc p(xl|c)

, (1)

where xl is a d × 1 feature vector and p(xl|c) is the likeli-

hood of a feature xl arriving from a mixture c.

The posterior probability is used to calculate the ze-

roth and first order Baum-Welch statistics for a clip x as

nc(x) =
∑L

l=1 p(c|xl) and Fc(x) =
(

∑L
l=1 p(c|xl)xl

)

nc(x),

respectively.

The MAP adapted parameters of a clip-specific model

can be obtained as a convex combination of the UAM

and the clip-specific statistics. For every mixture c of the

UAM, the adapted weights and means are calculated as

ŵc = αnc(x)/L + (1 − α)wc (2a)

and

µ̂c = αFc(x) + (1 − α)µc. (2b)

The adapted means for each mixture are then concate-

nated to compute a (Cd × 1)-dimensional SAV for each

clip represented as s(x) = [µ̂1µ̂2 · · · µ̂C]t. Obtaining a

fixed-dimensional representation like the super action-

vector normalizes the effect of varying length clips but

results in a high-dimensional representation. This rep-

resentation though contains many of the attributes that

do not contribute to the clip and hence are not changed

from the original UAM. Since each clip contains only a

few of the total UAM mixtures (attributes), only those

means are modified. Hence, the SAV is intrinsically low-

dimensional, and by using a suitable decomposition, we

can extract such a representation which we refer to as an

action-vector.

3.2. Action-vector representation

In order to arrive at a low-dimensional representation,

the super-action vector s is decomposed as

s = m + Tw, (3)

where m is the supervector that is actor and viewpoint in-

dependent (can be assumed to be the un-adapted UAM

supervector), T is a low-rank rectangular matrix known

as the total variability matrix of size Cd × r, and a r-

dimensional action-vector w whose prior distribution is

assumed to be a standard GaussianN(0, I) [19]. The pos-

terior distribution of the action-vector after observing a

clip x as

P(w|x) ∝ P(x|w)N(0, I) (4)

∝ exp

(

−
1

2
(w − L(x))tM(x)(w − L(x))

)

,(5)

where Σ is a diagonal covariance matrix of dimension

Cd × Cd and it models the residual variability not cap-

tured by the total variability matrix T. The matrix L(x) =

M−1(x)Tt
Σ
−1s̃(x) where s̃(x) is the centered supervector

which appears because the posterior distribution of w

is conditioned on the Baum-Welch statistics of the clip

centered around the means of the UAM. The first order

Baum-Welch statistics centered around the UAM mean

can be obtained as F̃c(x) =
∑L

l=1 p(c|xl)(xl − µc).

We can now express s̃(x) as the concatenated first-order

statistics s̃(x) = [F̃1(x)F̃2(x) · · · F̃C(x)]t. Also, the matrix

M(x) = I + Tt
Σ
−1N(x)T where N(x) is a diagonal matrix
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of dimension Cd × Cd whose diagonal blocks are nc(x)I,

for c = 1, ...,C and I is the identity matrix of dimension

d × d.

From Equation 5, the mean and covariance matrix of

the posterior distribution are given by

E[w(x)] =M−1(x)Tt
Σ
−1s̃(x) (6a)

and

Cov(w(x),w(x)) =M−1(x), (6b)

respectively. Using EM algorithm [20], we iteratively es-

timate the posterior mean and covariance in the E-step and

use the same to update T and Σ in the M-step.

In the first E-step of the estimation, m and Σ are ini-

tialized with the UAM mean and covariance, respectively.

For the total variability matrix T, a desired rank r is cho-

sen, and the matrix is initialized randomly. Then E[w(x)]

and Cov(w(x),w(x)) calculated according to Equations 6a

& 6b.

In the M-step, the matrix T is calculated as the solu-

tion of
∑

x N(x)TE[w(x)wt(x)] =
∑

x s̃(x)E[wt(x)] which

results in a system of r linear equations. For each

c = 1, · · · ,C, the residual matrix Σ is estimated mix-

ture by mixture as Σc =
(

∑

x S̃ c(x) −Mc

)

/nc(x) where

Mc denotes the cth diagonal block of the Cd × Cd ma-

trix 1/2
∑

x s̃(x)E[wt(x)]T t + T E[w(x)]s̃t(x) and S̃c(x) is

the second-order Baum-Welch statistics of the clip cen-

tered on the means of the UAM calculated as S̃c(x) =

diag
(

∑L
l=1 p(c|xl)(xl − µc)(xl − µc)t

)

.

After the final M-step i.e. estimation of T and Σ matri-

ces, the action-vector for a given clip can be represented

using the mean of its posterior distribution as

w(x) = (I + Tt
Σ
−1N(x)T)−1Tt

Σ
−1s̃(x). (7)

This process of obtaining the action-vector is known as

factor analysis [20]. This action-vector can now be used

for training classifiers in order to detect snatch thefts.

4. Experimental protocols and Results

4.1. Snatch 1.0 : Dataset Description

The videos obtained from the surveillance cameras are

low-resolution in most surveillance setups. In cases of

wide area surveillance, events of interest can occur further

away from the camera because of which person detection

becomes more challenging. As snatch theft incidents oc-

cur infrequently, we could only obtain a total of 35 chain

snatch theft incidents after searching through the archived

video footage of over six months from different surveil-

lance cameras placed in the city of Hyderabad, India. The

snatch thefts were spread within 4.5 hours of surveillance

footage containing 37485 regular interactions. It was ob-

served that snatch thefts are 4-5 seconds in duration, so

we divided the entire surveillance footage into 10-second

clips which resulted in a total of 816 clips.

4.2. Effect of different feature descriptors and UAM mix-

tures

In this work, action-vectors are formed using two state-

of-the-art feature descriptors namely, HOF and MBH

which are obtained as part of the improved dense trajec-

tory set of features [15]. In Table 2, the classification

performance of these action-vectors is presented for vary-

ing number of UAM mixtures. Also, different classifiers

like ensemble subspace discriminant analysis (ESDA), k

nearest neighbours (k-NN), and support vector machines

(SVM) are used for evaluation. For each of the classi-

fiers, 3-fold cross-validation is used. The dimension for

the action-vector referred to as r in the previous section

is fixed to be 200 as it is found that varying the action-

vector dimension does not yield any change in classifica-

tion performance. It can be observed that action-vector

performs consistently across all the settings making it an

effective representation. Further, even smaller UAM with

less number of mixtures can help in efficien representing

snatch thefts leading to proper classification. In Figure 3,

the t-SNE plot of the action-vectors with HOF and MBH

features using 256 UAM mixtures is shown where clear

separability can be noticed between the regular interac-

tions and snatch thefts.

Table 2: Action-vector classification performance (in %) for Snatch 1.0.

Classifier

Number of UAM mixtures

HOF MBH

256 512 1024 256 512 1024

ESDA 99.2 99.3 99.3 98.3 99.4 99.4

k-NN 99.5 99.4 99.4 99.7 99.5 99.5

SVM 99.7 99.7 99.8 99.8 99.6 99.4
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snatch

regular

snatch

regular

(a) HOF (b) MBH

Figure 3: Action-vectors for Snatch 1.0 using (a) HOF features and (b)

MBH features, using 256 UAM mixtures. Best viewed in color.

4.3. Comparison with state-of-the-art feature descriptors

Action-vectors are compared against recent state-of-

the-art feature descriptors for describing human actions:

a) HOFM (histogram of optical flow and magnitude) [9]

and b) 3D convolutional neural network (3DCNN) fea-

tures [21]. For HOFM, we use the parameter settings as

per [9] where a regular grid of size 30 × 30 × 3 is created.

The first two dimensions correspond to grid cell dimen-

sions (width and height) in space, and the third dimen-

sion corresponds to the depth in time. For 3DCNN, a pre-

trained network trained on the sports 1M dataset as per

[21] was used to obtain the features. Each 3DCNN fea-

tures summarizes the information in 16 frames into a sin-

gle descriptor and resulting in 20 feature descriptors for

every 10-second clip used in our experiments. The classi-

fication outputs of these 20 descriptors are then combined

using majority voting to produce the final classification

output for the clip.

From Table 3, it can be observed that the proposed

framework misses only 1 snatch theft as compared 5, 20,

and 24 and to the other features. In terms of both accuracy

and area under the curve (AUC), action-vector represen-

tation outperforms other features as shown in Figure 4.

Also, when action-vectors calculated using MBH features

are compared to MBH features, a significant improvement

can be observed. This shows that action-vectors can ex-

tract meaningful information from existing descriptors to

produce even more discriminative representations.

We present some of the detected snatch theft scenarios

in Figure 5 according to the scenarios explained in Table

1. It can be observed that action-vectors recognize a di-

verse set of snatch thefts which have little similarity to

each other. However, a few false positive cases are also

Table 3: Comparison with state-of-the-art feature descriptors using

SVM classfier.

Method Missed Snatches
Accuracy

(in %)

AUC

(in %)

HOFM [9] 24 47.6 69.8

MBH [15] 20 59.3 72.4

3DCNN [21] 5 96.6 98.3

action-vector (HOF) 1 99.8 99.8

action-vector (MBH) 1 99.8 99.9

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
r
u
e
 P

o
s
it
iv

e
 R

a
t
e

ROC Curve

3DCNN
action-vector

HOFM

(MBH)

Figure 4: ROC for performance comparison with state-of-the-art. Best

viewed in colour.

encountered where regular interactions are identified as

snatch thefts are shown in Figure 6. Such cases are diffi-

cult to address without identifying and tracking the thief’s

limbs.

5. Conclusion

In this paper, we presented a framework for snatch

theft detection in unconstrained videos using action at-

tribute modelling. To learn all the action attributes in

the snatch thefts, a large GMM called universal attribute

model (UAM) was trained using existing video datasets

of human actions. The means of the UAM were adapted

to obtain a high dimensional super action-vector for each

snatch theft clip. To remove redundant attributes, fac-

tor analysis was used to obtain a low-dimensional action-

vector. For evaluation, we introduced a dataset called

Snatch 1.0 that contains snatch thefts in surveillance
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(a) Scenario 1, Snatch Type 1 and Reaction 1

(c) Scenario 2, Snatch Type 2 and Reaction 1

Figure 5: Detection results of snatch theft using the proposed framework. For visualization, a YOLO [22] detector and a kernelised correlation filter

[23] based tracker was applied on each of the detected snatch theft clips. Bounding boxes are drawn (in green) with the id (in blue) on top of the

box for different persons. Best viewed in colour.

(a) (b)

Figure 6: False positive cases where normal interactions detected as

snatch thefts

videos. It was shown that action-vector provides better

discriminative representation for snatch thefts than ex-

isting state-of-the-art feature descriptors. In future, we

would like to work on live streams of surveillance and

generate real-time alerts for a smart monitoring system

which can immediately warn the security personnel at the

surveillance site for possible snatch thefts in the area.
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