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Abstract: In a bid to simultaneous explanation of dark matter (DM) and tiny but non-zero

masses of left-handed neutrinos, we propose a minimal extension of the Standard Model (SM)

by a vector-like fermion doublet and three right handed (RH) singlet neutrinos. The DM arises

as a mixture of the neutral component of the fermion doublet and one of the RH neutrinos,

both assumed to be odd under an additional Z2 symmetry. As a result, the DM emerges to

be a dominantly Majorana particle and escapes from Z-mediated direct search constraints to

mark a significant difference from singlet-doublet Dirac DM. The other two Z2 even heavy RH

neutrinos give rise masses and mixing of light neutrinos via Type-I Seesaw mechanism. The

particle content automatically allows us to extend the model by a gauged U(1)B−L symmetry,

which is anomaly free and brings an additional portal between DM and SM particles. Relic

density and direct search allowed parameter space for both the cases are investigated through

detailed numerical scan, while collider search strategies are also indicated.
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1 Introduction

Astrophysical observations like galaxy rotation curves, gravitational lensing, Cosmic Mi-

crowave Background (CMB) acoustic fluctuations etc. provide compelling evidences towards

the existence of Dark Matter (DM)[1, 2], a form of matter that is electromagnetically inert

and hence extremely difficult to detect, but can be inferred from its gravitational affects. In

fact, satellite borne experiments like WMAP and PLANCK [3, 4], which measure anisotropies

in CMB, established that DM constitute almost 85% of the total matter content and 26.8%

– 1 –



of the total energy budget of the universe. Even after this tantalising hint, we have no answer

to the question what DM actually is. DM as a fundamental particle answers many puzzles

together like structure formation, self interaction, rotation curve etc., hence studied elabo-

rately. Since no SM particle resembles the properties of a DM particle expected to have, it

is believed that DM is essentially one or more particles beyond the Standard Model (BSM)

content. Several BSM scenarios have been formulated to explain the particle nature of the

DM, with additional field content and stabilising symmetry. Amongst different class of possi-

bilities, Weekly Interacting Massive Particles (WIMP) has been the most popular due to its

phenomenological richness, where DM can be explained as the thermal relics of the universe

[5].

Another equally important puzzle in particle physics is the tiny neutrino mass which has

been established by the solar and atmospheric neutrino oscillation experiments like T2K [6, 7],

Double Chooz [8, 9], Daya Bay [10–12], Reno [13] and MINOS [14, 15]. Besides, the nature

of neutrinos, whether Dirac or Majorana, is also not known. Neutrinoless double beta decay

experiments [16] perhaps will shed light onto it. Within the SM, neutrinos are assumed

massless with no right handed (RH) neutrinos. Even if RH neutrinos are incorporated to

the SM, the required Yukawa coupling to explain sub-eV neutrino mass through spontaneous

symmetry breaking via Dirac mass term turns out to be as tiny as 10−12, almost six orders of

magnitude smaller than the electron Yuwaka coupling and seems pretty unnatural. Assuming

that the neutrinos are Majorana, which violates lepton number by two units, the tiny neutrino

masses can be realised via the dimension five gauge invariant effective Weinberg operator

LLHH/Λ, where Λ denotes the scale of new physics and L, H are respectively the lepton

and Higgs doublets of the SM [17]. After electroweak symmetry breaking (EWSB), the SM

neutrinos acquire sub-eV masses given by Mν = 〈H〉2/Λ. One possibility of generating this

operator is to assume the presence of heavy RH neutrinos in the early universe, where the

scale of new physics (Λ) is decided by the mass of RH neutrinos. Thus it is straightforward to

see that for tiny neutrino mass of the order of Mν ∼ 0.1eV, the new physics scale requires to

be very heavy (Λ ∼ 1014GeV) when the involved couplings are of order one. This is usually

referred as type-I seesaw mechanism [18–21].

While the origin of DM and neutrino mass is hitherto unknown, it is highly appealing and

economical to find a model having simultaneous solution of both. In fact, such models are

expected to have constrained parameter space in comparison to their individual counterpart

and hence can be probed at ongoing and future terrestrial experiments. Motivated by this,

here we consider a simple extension of the SM to explain simultaneously the sub-eV masses

of neutrinos and DM content of the universe.

We consider a singlet-doublet WIMP like fermion DM [22–46]. The motivation of con-

sidering a singlet-doublet fermion DM has already been established; this is because a purely

singlet case requires a higher dimensional effective operator for DM-SM interaction, which is

mostly ruled out from direct search bound excepting for the Higgs resonance region, while the

pure doublet case is also ruled out from relic density and direct search bound upto several

TeVs of DM mass making the model inaccessible to probe. Our model consists of a vector-like

fermion doublet ΨT = (ψ0, ψ−) and three right handed neutrinos (NRi , i = 1, 2, 3). A Z2

symmetry is imposed under which the doublet Ψ and one of the right handed neutrinos, say
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NR1
are odd, while other particles are even. As a result there is mixing between the neutral

component of the doublet and the singlet through the Yukawa interaction and DM emerges

out to be a mixed state of the doublet ψ0 and NR1
after EWSB. Due to Majorana mass of

the RH singlet NR1
, the DM is dominantly a Majorana particle. As a result it escapes the

Z-mediated vector current direct search interaction and provide a distinction from the earlier

vector like singlet-doublet DM [40–45]. The field content permits us to extend the model easily

to a gauged U(1)B−L scenario, which allows an additional gauge mediated interaction for DM.

We find the relic density and direct search allowed parameter space for both the cases and

also indicate possible collider search strategies. The neutrino mass arises from the Yukawa

interaction of Z2 even RH neutrinos together with Majorana mass term in a minimal Type-I

Seesaw framework. Since two RH neutrinos take part in the seesaw, one of the light neutrino

mass is exactly zero. The masses of RH neutrinos, including the one which constitutes DM,

originate from the U(1)B−L symmetry breaking scale. We assume their masses to be of same

order and derive constraints from lepton flavour violating processes like µ→ eγ .

The paper has been arranged as follows. In section-2, we explain the details of the model,

followed by a summary of different theoretical and experimental constraints. We discuss the

relic abundance of dark matter in section-3 and direct detection in section-4. Then we discuss

the gauged U(1)B−L extension of the model in section-5. We briefly summarise collider search

strategy for both the cases in section-6. In section-7, we discuss the light neutrino mass and

finally conclude in section-8.

2 The Model for singlet-doublet Majorana DM

In this work the SM has been extended by one vector-like fermion doublet (VLFd) ΨT =

(ψ0, ψ−) (with hypercharge Y = −1, where we use Q = T3 + Y/2) and three heavy right

handed neutrinos (RHN) NRi(i = 1, 2, 3), which are singlets under the SM gauge group. All

the newly added particles are also singlet under SU(3)C , i.e. colour neutral. An additional Z2

symmetry is imposed under which Ψ and NR1
are odd, while all other fields are even. It is well

known that the stability of DM is ensured by some additional symmetry and Z2 serves as the

minimal one. The quantum numbers of the BSM fields under SU(3)c×SU(2)L×U(1)Y ×Z2

are listed in Table 1. The Lagrangian of the model (as guided by Table 1) is given by:

L = LSM +Ψ(iγµDµ −M)Ψ +NRiiγ
µ∂µNRi − (

1

2
MRiNRi (NRi)

c + h.c) + Lyuk. (2.1)

Apart from kinetic pieces, it is straightforward to note that since Ψ is a vector-like Dirac

fermion, it possesses a bare Dirac mass term M , while all the three right handed neutrinos

have Majorana mass MRi . Also worthy to note that Dµ denotes the covariant derivative

involving the SU(2)L gauge boson triplet W a
µ (a = 1, 2, 3) and U(1)Y gauge boson Bµ given

by:

Dµ = ∂µ − i
g

2
τa.W

a
µ − ig′

Y

2
Bµ; (2.2)

where τa are Pauli spin matrices (generators of SU(2)), g and g
′

denote SU(2) and U(1)

coupling strength respectively. This ensures that Ψ has SU(2) gauge interaction with the SM.
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Fields SU(3)C ⊗ SU(2)L ⊗ U(1)Y
︸ ︷︷ ︸

⊗Z2

VLFd
Ψ =

(

ψ0

ψ−

)

1 2 -1 -

RHNs NR1
1 1 0 -

NR2
1 1 0 +

NR3
1 1 0 +

Higgs doublet H =




w+

h+v+iz√
2



 1 2 1 +

Table 1: Charge assignment of BSM fields with SM Higgs doublet under the gauge group G ≡ GSM ⊗ Z2

where GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

We note that the Yukawa interaction plays the key role in this model and can be written

as:

− Lyuk =
[
Y1√
2
ΨH̃

(
NR1

+ (NR1
)c
)
+ h.c

]

+
(

YjαNRjH̃
†Lα + h.c.

)

. (2.3)

where H̃ = iτ2H
∗ and L denotes SM lepton doublet with indices j = 2, 3 and α = e, µ, τ .

NR1
being odd under Z2 has Yukawa coupling to fermion doublet Ψ and determines the DM

of the model after spontaneous symmetry breaking (SSB), as elaborated below. NR2
and NR3

being Z2 even, do not couple to Ψ, but couple to the SM lepton doublets and hence generate

Dirac masses for SM neutrinos after SSB, which will be discussed in details later.

2.1 Masses and mixing of dark sector particles

Thanks to the Yukawa interaction given in 2.3, the electromagnetic charge neutral component

of Ψ viz. ψ0 and NR1
mixes after the SM Higgs acquires vacuum expectation value (vev):

〈H〉 = 1√
2

(

0

v

)

. The mass terms for these fields can then be written together as:

− Lmass =Mψ0
Lψ

0
R +

1

2
MR1

NR1
(NR1

)c +
mD√
2
(ψ0

LNR1
+ ψ0

R(NR1
)c) + h.c. (2.4)

wheremD = Y1v√
2
, where v = 246 GeV. Writing these mass terms in the basis ((ψ0

R)
c, ψ0

L, (NR1
)c)T ,

we get the following mass matrix:

M =







0 M mD√
2

M 0 mD√
2

mD√
2

mD√
2
MR1






. (2.5)

– 4 –



In the above equation, assuming M is symmetric,

it can be diagonalised by a single unitary matrix U(θ) = U13(θ13 = θ).U23(θ23 = 0).U12(θ12 =
π
4 ), which is essentially characterised by a single angle θ13 = θ. So we diagonalize the mass

matrix M by U .M.UT = MDiag., where the unitary matrix U is given by:

U =







1 0 0

0 eiπ/2 0

0 0 1













1√
2
cos θ 1√

2
cos θ sin θ

− 1√
2

1√
2

0

− 1√
2
sin θ − 1√

2
sin θ cos θ






, (2.6)

where the extra phase matrix is multiplied to make sure all the eigenvales are positive.

The diagonalisation of the mass matrix 2.5 requires:

tan 2θ =
2mD

M −MR1

. (2.7)

The physical states that emerge are defined as χi =
χ
iL

+(χ
iL

)c√
2

(i = 1, 2, 3) and are related

to the unphysical states as:

χ
1L =

cos θ√
2
(ψ0

L + (ψ0
R)

c) + sin θ(NR1
)c,

χ
2L =

i√
2
(ψ0

L − (ψ0
R)

c),

χ
3L = −sin θ√

2
(ψ0

L + (ψ0
R)

c) + cos θ(NR1
)c .

(2.8)

All the three physical states χ
1
, χ

2
and χ

3
are therefore of Majorana nature and their

mass eigenvalues can be expressed respectively as,

mχ
1
=M cos2 θ +MR1

sin2 θ +mD sin 2θ,

mχ
2
=M,

mχ
3
=MR1

cos2 θ +M sin2 θ −mD sin 2θ .

(2.9)

In the small mixing limit (θ → 0), the eigenvalues can be further simplified as,

mχ
1
≈M +

m2
D

M −MR1

,

mχ
2
=M,

mχ
3
≈MR1

− m2
D

M −MR1

.

(2.10)

where we have assumed mD << M,MR1
. Hence it is clear that mχ

1
> mχ

2
> mχ

3
and

χ
3

becomes the stable DM candidate. We may note here that the analysis taken up before

in [40–45], where the Z2 odd doublet Ψ mixes with a vector like singlet, providing a Dirac

DM state with one heavy electromagnetically charged Dirac state as opposed to two heavy

Majorana states here.
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Using the relation U .M.UT = MDiag., one can express Y1, M and MR1
in terms of the

physical masses and the mixing angle as,

Y1 =

√
2 ∆M sin 2θ

v
,

M = mχ
1
cos2 θ +mχ

3
sin2 θ,

MR1
= mχ

3
cos2 θ +mχ

1
sin2 θ;

(2.11)

where ∆M = (mχ
1
− mχ

3
). We can also see that in the limit of mD << M , mχ

1
≃

mχ
2
=M , where M is the mass of electrically charged components ψ± of vector-like fermion

doublet Ψ. The phenomenology of dark sector is therefore governed mainly by the three

independent parameters, DM mass, splitting with the heavier neutral component, and doublet-

singlet mixing :

Dark Parameters : { mχ
3
,∆M = (mχ

1
−mχ

3
) ≈ (mχ

2
−mχ

3
), sin θ }. (2.12)

2.2 Theoretical and Experimental constraints

• Perturbativity: In order to maintain perturbativity of the model, Yukawa couplings should

satisfy the following limits:

|Y1| <
√
4π, |Yαj | <

√
4π . (2.13)

•LEP limits: LEP exclusion bound on charged fermion mass mψ± = M > 102.7 GeV [47].

The bound from LHC applies to a typical case of type III seesaw model, for which mψ± =

M & 800 GeV [48, 49]. Note that we do not abide by the bound from LHC as the decay

channels are widely different.

•Relic Density and Direct Search of Dark Matter: The observed number density of

DM is constrained by the combined WMAP [3] and PLANCK [4] data as:

0.1166 ≤ ΩDMh
2 ≤ 0.1206. (2.14)

For direct search, we have used the current stringent bounds from non -observation of

DM at XENON-1T [50] (∼ 10−47 cm2). We also note that the fluctuation recently observed

at XENON 1T at ∼ KeV scale [51] do not apply to our case.

3 Relic Abundance of singlet-doublet Majorana Dark Matter

3.1 Annihilation/Coannihilation processes and Boltzmann Equations

The basic assumption for calculation of relic density of the DM here is to assume that DM is in

equilibrium with thermal bath due to its non-negligible interaction with the SM particles in the

early universe. It thereafter ‘freezes out’ from the hot soup of the SM particles via the number

changing processes through which DM number density depletes as the universe expands to

provide correct relic density. The dark sector consists of DM χ
3

as well as heavy neutral

components χ
1
, χ

2
and charged components ψ± (all odd under the dark symmetry Z2). The
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number density of DM (χ
3
) is therefore governed by its annihilation as well as coannihilations

with other dark sector particles (χ
1
, χ

2
and ψ±) into SM final states. Feynman diagrams of

relevant annihilation and coannihilation processes are shown in Fig. 1, Fig. 2 and Fig. 3. The

DM-SM interaction terms which essentially contribute to the relic density has been detailed

in Appendix A.

Figure 1: Annihilation channels to the SM through which the DM (χ
3
) density depletes.

Figure 2: Coannihilation channels of DM (χ
3
) with χ

1
, χ

2
and ψ±.

Figure 3: Annihilation channels of ψ+ and ψ− that contribute to coannihilation of DM (χ
3
).

The relic density of DM in this scenario can be estimated by solving the Boltzmann
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equation in the following form:

dn

dt
+ 3Hn = −〈σv〉eff

(

n2 − n2eq

)

, (3.1)

where n denotes number density of DM, i.e. n ∼ nχ3
and neq = g(mT2π )3/2exp(−m/T ) denotes

equilibrium distribution, which DM is initially subjected to. Then it freezes out depending

on 〈σv〉eff , which takes into account all number changing process listed in Fig. 1, Fig. 2 and

Fig. 3 as well as those annihilations involving χ
1,2 (although the contribution is very small)

and can be estimated as follows:

〈σv〉eff =
g23
g2eff

〈σv〉χ
3
χ
3
+

2g3g2
g2eff

〈σv〉χ
3
χ
2

(

1 +
∆M

mχ
3

) 3
2
exp(−x∆M

mχ
3

)

+
2g3g1
g2eff

〈σv〉χ
3
χ
1

(

1 +
∆M

mχ
3

) 3
2
exp(−x∆M

mχ
3

)

+
2g3g4
g2eff

〈σv〉χ
3
ψ±

(

1 +
∆M

mχ
3

) 3
2
exp(−x∆M

mχ
3

)

+
2g2g4
g2eff

〈σv〉χ
2
ψ±

(

1 +
∆M

mχ
3

)3
exp(−2x

∆M

mχ
3

)

+
2g1g4
g2eff

〈σv〉χ
1
ψ±

(

1 +
∆M

mχ
3

)3
exp(−2x

∆M

mχ
3

)

+
g22
g2eff

〈σv〉χ
2
χ
2

(

1 +
∆M

mχ
3

)3
exp(−2x

∆M

mχ
3

)

+
g1g2
g2eff

〈σv〉χ
1
χ
2

(

1 +
∆M

mχ
3

)3
exp(−2x

∆M

mχ
3

)

+
g21
g2eff

〈σv〉χ
1
χ
1

(

1 +
∆M

mχ
3

)3
exp(−2x

∆M

mχ
3

)

+
g24
g2eff

〈σv〉ψ+ψ−

(

1 +
∆M

mχ
3

)3
exp(−2x

∆M

mχ
3

),

(3.2)

where ∆M = mi −mχ3
and mi denotes the mass of χ

1
, χ

2
and ψ±. Here we have defined

geff as the effective degrees of freedom given by,

geff = g3 + g2

(

1 +
∆M

mχ
3

) 3
2
exp(−x∆M

mχ
3

)

+ g1

(

1 +
∆M

mχ
3

) 3
2
exp(−x∆M

mχ
3

) + g4

(

1 +
∆M

mχ
3

) 3
2
exp(−x∆M

mχ
3

),

(3.3)

where g3, g2, g1 and g4 are the internal degrees of freedom of χ
3
, χ

2
, χ

1
and ψ± respectively.

The dimensionless parameter x is defined as x =
mχ

3

T . We also note that the contributions

from processes which do not directly involve DM, like ψ+ψ− in effective annihilation 〈σv〉eff
is further Boltzmann suppressed by exp(−2x∆M

mχ
3

). The relic density of the DM (χ
3
) then can

be given by [52],[53],[54]:

Ωχ
3
h2 =

1.09× 109GeV −1

g
1/2
∗ MP l

1

J(xf )
(3.4)
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where g∗ = 106.7 and J(xf ) is given by

J(xf ) =

∫ ∞

xf

〈σv〉eff
x2

dx . (3.5)

Here xf =
mχ

3

Tf
, where Tf denotes the freeze-out temperature of the DM. We may note here

that for correct relic xf ≃ 20.

It is worthy to mention here that we have adopted a numerical way of computing annihi-

lation cross-section and relic density by inserting the model into the package MicrOmegas [55],

where the model files are generated using another package FeynRule [56, 57].

3.2 Parameter Space Scan

In order to understand the DM relic density, let us first study the dependence on important

relevant parameters: the mass of DM (mχ3
), the mass splitting (∆M) between the DM χ

3

and the next-to-lightest stable particle (NLSP) χ
2

and the mixing angle sin θ. Note that

the charged components of Ψ namely ψ± which contribute dominantly to the coannihilation

channels has the same mass as that of χ
2
, i.e., mχ2

= mψ± . Variation of relic density of DM

χ
3

is shown in Fig. 4 as a function of its mass for different choices of ∆M = 1-10 GeV, 10-30

GeV, 30-50 GeV, 50-100 GeV shown by different colour shades as in the inset of the figure

and for different choices of sin θ = 0.01, 0.1, 0.3, 0.5 in the top left, top right, bottom left and

bottom right panels respectively.

As seen from Fig. 4, when ∆M is small, relic density is smaller due to large coannihilation

contribution from flavour changing Z-mediated processes as well as W± mediated processes

(less Boltzmann suppression followed from Eq. 3.2). The resonance drops at mZ/2 is seen due

to s-channel off-diagonal Z mediated coannihilation interactions. As none of these neutral

current interactions are diagonal, we observe the resonance to be somewhat flattened rather

than a sharp spike that would have been expected if the interactions were diagonal. These

coannihilation channels dominantly contribute towards the relic density as long as the mass

splitting between the DM and NLSP is small, e.g., for ∆M = 10 GeV. As ∆M increases,

these coannihilations become less and less effective, and Higgs mediated processes takes over.

For ∆M = 30 GeV, both contributions are present comparable while for ∆M > 30 GeV, the

contributions from vector current (coannihilation) interactions are practically negligible and

the the Higgs mediated channel dominates. Consequently, we see a resonance drop at mh/2,

while the drop at mZ/2 disappears. We have also observed that as long as ∆M is small and

the coannihilation channels dominate, the effect of sin θ on relic density is quite negligible.

For smaller sin θ, the annihilation cross-section due to Higgs portal (see Eqn. A.3) is small

leading to larger relic abundance, while for large sin θ, the effective annihilation cross-section

is large leading to small relic abundance. However, this can only be observed when ∆M is

sufficiently large enough and coannihilation processes are negligible. In Fig. 4, we also show

the correct relic density by the silver horizontal line. In Fig. 5, the correct relic density allowed

parameter space has been shown in the plane of ∆M vs mχ
3

for wide range of mixing angle

{sin θ = 0.001 − 0.01, 0.01 − 0.1, 0.1 − 0.2, 0.2 − 0.4, 0.4 − 0.6}, indicted by different colours.

We can see that in Fig. 5, there is a bifurcation around ∆M ∼ 50 GeV, so the allowed plane

of mχ
3
− ∆M are separated in two regions: (i) the bottom portion with small ∆M , where
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Figure 4: DM relic density as a function of DM mass (mχ3
) for different mass splitting ∆M between the

DM and the NLSP (as mentioned in figure inset in GeV) for sin θ = 0.01 (top left panel), sin θ = 0.1 (top right

panel), sin θ = 0.3 (bottom left panel) and sin θ = 0.5 (bottom right panel). Correct relic density region from

PLANCK data (0.1166 ≤ ΩDMh
2 ≤ 0.1206) is indicated by the silver horizontal line.

∆M decreases with larger DM mass (mχ
3
) and (ii) the top portion of the figure with large

∆M , where ∆M increases slowly with larger mχ
3
.

In region (i), given a specific range of sin θ, the annihilation cross-section decreases with

larger DM mass mχ
3

(from annihilation diagrams) and hence more co-annihilation contri-

bution is required to get correct relic density, resulting ∆M to decrease. This also implies

that the region below the each coloured zone is under-abundant (small ∆M implying large

co-annihilation for a given mχ
3
), while the region above is over-abundant by the same logic.

In this region the Yukawa coupling Y1 which governs the annihilation cross-section is compar-

atively small since Y1 ∝ ∆M sin θ and ∆M is small. Also the annihilation cross-section de-

creases with increase in DM mass. Therefore, when DM mass is sufficiently heavy (mχ3
> 1.2

TeV), annihilation becomes too weak to be compensated by the coannihilation even when

∆M → 0, producing over abundance. Hence, for small ∆M , the allowed region has a maxi-

mum DM mass, as the region beyond mχ3
∼ 1.2 TeV is overabundant.

In region (ii), we note that, the co-annihilation contribution is much smaller due to large

∆M , so the annihilation processes effectively contribute to the relic density. Annihilation pro-

cesses are essentially gauge or Higgs mediated. We already noted that Higgs Yukawa coupling
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Figure 5: DM relic density (0.1166 ≤ ΩDMh
2 ≤ 0.1206) allowed parameter space in the plane of ∆M vs

mχ3
for different ranges of sin θ as mentioned in the figure inset. The shaded region in the bottom left corner

is ruled out by LEP exclusion bound on charged fermion mass, mψ± =M > 102.7 GeV.

is proportional to both sin θ and ∆M as Y1 ∝ ∆M sin 2θ. Hence, for a given sin θ, larger ∆M

leads to larger Y1 and hence larger annihilation cross-section to yield under abundance, which

can only be tamed down to correct relic density by having a larger DM mass. Also larger

sin θ requires smaller ∆M for the same reason. Therefore, the region above each coloured

zone (allowed by relic density for a specific range of sin θ) is under abundant, while the region

below each coloured zone is over abundant.

Let us come back to region (i) again and note that allowed parameter space indicates

larger DM mass requires smaller and smaller ∆M and we reach a maximum DM mass (∼ 1

TeV) for ∆M → 0. However, with ∆M → 0, the charged companions ψ± are degenerate to

DM and are stable. This is not acceptable as DM won’t be dark then. Hence, ∆M can not

be arbitrarily small. We can put a lower bound on ∆M by requiring the charged partners ψ±

of the DM to decay before the onset of Big Bang Nucleosynthesis (τBBN ∼ 1 sec.). The decay

rate for the processes ψ± → χ
3
l±ν

l
in the limit of small ∆M is given by 1 :

Γψ± =
1

15(2π)3
e4 sin2 θ

sin4 θw

(∆M)5

M4
W

, (3.6)

By requiring that the charged fermions should decay before the onset of BBN, we can get

a lower bound on ∆M as,

τψ± =
1

Γψ±
≤ τBBN ∼ 1 sec =⇒

(∆M

GeV

)5
≥ 6.4× 10−13

sin2 θ
. (3.7)

In Fig. 6, we show the lower bound on ∆M for the range of sin θ we used in our work.

The region above the red line is allowed by the constraint. It is obvious that the bound is

more stringent for smaller sin θ.

1Semi-leptonic processes e.g. ψ± → χ
3
π± are also possible, see for example [58]
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Figure 6: Lower bound on ∆M as a function of sin θ from Big-Bang Nucleosynthesis (BBN). The shaded

region is allowed.

4 Direct Detection of singlet-doublet Majorana Dark Matter

Among different possibilities of detecting DM, one major experimental procedure is direct

DM search. Direct detection of the DM (χ3) at a terrestrial laboratory is possible through

elastic scattering of the DM off nuclei via Higgs-mediated interaction represented by the

Feynman diagram shown in Fig. 7. The presence of only Higgs mediated diagram for direct

Figure 7: Feynman diagram for elastic scattering of DM off nuclei at terrestrial laboratory.

search makes this model crucially segregated from that of a vector like singlet-doublet DM

as elaborated in [40–45]. Here, the DM being a Majorana fermion only has off diagonal Z-

coupling and therefore do not contribute to direct search as it is very difficult to produce a

heavier particle in the low energy scattering as in direct search experiment. The absence of

Z mediation crucially alters the available parameter space of the model as we describe below.

The corresponding vertex of χ
3
χ

3
h can be obtained from the Lagrangian LDM−Higgs given by

Eq. A.3. The cross section per nucleon for the spin-independent (SI) DM-nucleon interaction
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is then given by:

σSI =
1

πA2
µ2r |M|2, (4.1)

where A is the mass number of the target nucleus, µr is the reduced mass of the DM-nucleon

system and M is the amplitude for the DM-nucleon interaction, which can be written as:

M =
[

Zfp + (A− Z)fn

]

, (4.2)

where fp and fn denote effective interaction strengths of DM with proton and neutron of the

nuclei used for the experiment with A being mass number and Z being atomic number. The

effective interaction strength can then further be decomposed in terms of interaction with

parton as:

fp,n =
∑

q=u,d,s

fp,nTq αq
m(p,n)

mq
+

2

27
fp,nTG

∑

q=c,b,t

αq
m(p,n)

mq
; (4.3)

with

αq =
Y1 sin 2θ

M2
h

mq

v
=

∆M sin2 2θmq

v2M2
h

; (4.4)

coming from DM interaction with SM via Higgs portal coupling. Further, in Eq.4.3, the

different coupling strengths between DM and light quarks are given by Bertone et al [1, 59]

as fpTu = 0.020± 0.004, fpTd = 0.026± 0.005, fpTs = 0.014± 0.062, fnTu = 0.020± 0.004, fnTd =

0.036 ± 0.005, fnTs = 0.118 ± 0.062. The coupling of DM with the gluons in target nuclei is

parameterised by:

f
(p,n)
TG = 1−

∑

q=u,d,s

fp,nTq .

Using Eqs. 4.1, 4.2, 4.3 and 4.4, the spin-independent DM-nucleon cross-section is given by:

σSI =
4

πA2
µ2r
Y 2 sin2 2θ

M4
h

[mp

v

(

fpTu + fpTd + fpTs +
2

9
fpTG

+
mn

v

(

fnTu + fnTd + fnTs +
2

9
fnTG

)]2
(4.5)

In the above equation for DM-nucleon direct search cross-section, two parameters from model

that enter are the Higgs-DM Yukawa coupling (Y1) and singlet-doublet mixing parameter

(sin 2θ), which can be constrained by requiring that σSI is less than the current DM-nucleon

cross-sections dictated by non-observation of DM in current direct search data. Recently, there

has been a signal like event from electron recoil reported in XENON-1T data [51] observed at

sub-GeV DM mass, which remains out of our scan.

In the left panel of Fig. 8, we confront the direct detection cross section obtained for the

model as a function of DM mass, with bounds on spin-independent elastic scattering cross

section from XENON-1T [50], shown by black dashed curve. It is worth mentioning that

all points shown in left panel of Fig. 8 also satisfies relic density constraints from PLANCK.

Different coloured patches indicate different ranges of mixing angle (sin θ) as indicated in

figure panel. Obviously those regions that appear below the XENON-1T line can be allowed

by the bound. It is obvious that Y1 being proportional to sin θ (see Eqn. 2.11) and due to

the explicit presence of sin 2θ in the direct search cross section as in Eq. 4.4, parameter space
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Figure 8: [Left]: Direct detection cross section for the DM (χ3) confronted with bounds on spin-independent

elastic scattering cross section by XENON-1T [50] over and above relic density constraint from PLANCK;

[Right]: Correct DM relic density in ∆M −mχ
3

plane constrained by XENON-1T bound. Different coloured

points indicate different ranges of sin θ as mentioned in figure inset. The shaded region in the bottom left

corner of right panel plot is ruled out by LEP exclusion bound on charged fermion mass, mψ± = M > 102.7

GeV.

with smaller sin θ survive the cut. This is what is shown in ∆M−mχ
3

plane in the right hand

side (RHS) of Fig. 8, where we plot those points which simultaneously satisfy relic density [4]

and direct search XENON-1T bound [50] together. It is seen that null observation from direct

search crucially tames down the relic density allowed parameter space, which is evident when

we compare the RHS of Fig. 8 with that of Fig. 5, where only relic density allowed parameter

space is depicted. It is seen in RHS of Fig. 8, that sin θ is correlated to DM mass and ∆M .

For example, sin θ is very small for smaller DM mass with moderate ∆M (sin θ . 0.2 for

mDM ∼ 500 GeV with ∆M ∼ 20 GeV shown by red and green points); while larger sin θ ∼ 0.6

is allowed at higher DM mass ∼ 1000 GeV, with very small ∆M . 2 GeV (Cyan points). This

is simply because, the direct search cross-section is proportional to ∼ Y1 sin 2θ ∼ ∆M sin2 2θ,

therefore larger sin θ requires ∆M to be smaller to remain within correct direct search limit.

However, due to larger coannihilation contribution with small ∆M , the relic density drops

below the PLANCK bound, unless we restore it to the correct ballpark by having larger DM

mass (annihilation cross-section is inversely proportional to DM mass). This feature crucially

distinguishes the model at hand from vector like singlet-doublet scenario with Dirac dark

matter, where the presence of Z mediated direct search graph tames sin θ to much smaller

values like ∼ 0.2 (for details see [40–45]). Higgs resonance mχ3
∼ mh/2 is seen to satisfy

both relic density and direct search bound, where ∆M can be very large having very small

sin θ ∼ 0.2.

5 Singlet-doublet Majorana DM in gauged U(1)B−L Extension of the SM

5.1 The Model

Due to the presence of three right handed neutrinos NRi and the fermion doublet Ψ being

vector-like, the model is automatically U(1)B−L anomaly free if we assign one unit of B-L
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charge to each of these fields. This is because of the fact that in a gauged B-L theory with

only SM fermion content, non-zero anomalies are associated with the following two triangular

diagrams:

A1[U(1)3B−L] = ASM
1 [U(1)3B−L] = −3 ,

A2[(Gravity)
2 × U(1)B−L] = ASM

2 [(Gravity)2 × U(1)B−L] = −3 ,
(5.1)

which are exactly cancelled by anomalies from three additional right handed neutrinos since,

ARHN
1 [U(1)3B−L] = 3

ARHN
2 [(Gravity)2 × U(1)B−L] = 3 .

(5.2)

Motivated by this fact, we extend the gauge group of the model to SU(3)C × SU(2)L ×
U(1)Y × U(1)B−L ⊗ Z2. Besides, one new complex scalar singlet ΦBL is added with lepton

number −2. The particle content and the corresponding quantum numbers under the sym-

metry of the model are listed in the Table 2. Since two of the right handed neutrinos, say

NR2
, NR3

are chosen to be even under the imposed Z2 symmetry, they can couple to the SM

lepton and Higgs doublets to explain non-zero masses and mixing of light neutrinos. On the

other hand, the vectorlike fermion doublet Ψ and NR1
are chosen to be odd under the imposed

Z2 symmetry. As a result the DM emerges as a mixture of the neutral component of the dou-

blet Ψ viz. ψ0 and NR1
, similar to section 2. However, we notice certain differences in the

mass matrix of dark sector neutral fermions in comparison to Eq. 2.5 due to the conservatoin

of B − L charge. In the following we discuss in details the corresponding phenomenology.

Fields SU(3)C ⊗ SU(2)L ⊗ U(1)Y
︸ ︷︷ ︸

⊗U(1)B−L ⊗Z2

VLFd
Ψ =

(

ψ0

ψ−

)

1 2 -1 -1 -

RHNs NR1
1 1 0 -1 -

NR2
1 1 0 -1 +

NR3
1 1 0 -1 +

Higgs doublet H =




w+

h+v+iz√
2



 1 2 1 0 +

Scalar Singlet ΦBL =
φ+vBL+izφ√

2
1 1 0 -2 +

Table 2: Charge assignment of BSM fields along with the SM Higgs doublet under the gauge group G ≡
GSM ⊗ U(1)B−L ⊗Z2, where GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Owing to the symmetry and charge assignments of the particles given in Tab. 2, the

Lagrangian of the Model can be given as:

L = Ψ(i /D −M)Ψ +NRii /̃DNRi + Lyuk + LGauge + Lscalar + LSM ; (5.3)
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where the covariant derivatives Dµ and D̃µ are given by:

Dµ = ∂µ − i
g

2
τ.Wµ − ig′

Y

2
Bµ − igBLYBLZBL,

D̃µ = ∂µ − igBLYBL(ZBL)µ.
(5.4)

In the covariant derivative of Ψ, there is an additional term due to the lepton number assign-

ment, i.e. its transformation under U(1)B−L; gBL stands for U(1)B−L gauge coupling, which

serves as a additional free parameter of the model. Note that YBL can simply be replaced by

the lepton number assignment as given in Tab. 2.

The Yukawa interaction of the model is given by:

− Lyuk =
[

Y1ΨH̃NR1
+ h.c

]

+
(

YjαNRjH̃
†Lα + h.c.

)

+

[
y′i
2
ΦBLNRi (NRi)

c + h.c.

]

; (5.5)

where α = e, µ, τ , j = 2, 3 and i = 1, 2, 3. Due to B −L conservation, the Yukawa interaction

term ΨH̃(NR1
)c that was allowed in the earlier case (see Eqn. 2.3) is no longer allowed. For

the same reason, the bare Majorana mass terms of right-handed neutrinos are also not allowed.

The masses of right-handed neutrinos as well as the neutral gauge boson ZBL are generated

from the vev of ΦBL. Thus the gauge sector is augmented by a new gauge boson ZBL. The

new gauge kinetic terms that appear in the Lagrangian constitute of,

LGauge = −1

4
(ZBL)µνZ

µν
BL − ǫ

2
(ZBL)µνB

µν ; (5.6)

where ZµνBL represents the field strength of the U(1)B−L gauge boson and is defined as:

ZµνBL = ∂µ(ZBL)
ν − ∂ν(ZBL)

µ . (5.7)

In the second term, ǫ parametrises the kinetic mixing between the U(1)B−L and U(1)Y gauge

sectors. Such a mixing term can be generated through quantum corrections and approximated

at one loop as ǫ ≈ g′gBL
16π2 [60, 61]. Since gBL has tight upper bound from ATLAS, such one

loop mixing is very very small compared to other relevant parameters of the model and the

same has been neglected in rest of our analysis.

The Lagrangian of scalar sector is given by:

Lscalar = |DµH|2 + |DµΦBL|2 − V (H,ΦBL) (5.8)

where Dµ and Dµ are given as follows:

Dµ = ∂µ − i
g

2
τ.Wµ − ig′

Y

2
Bµ

Dµ = ∂µ − igBLYBL(ZBL)µ .
(5.9)

The scalar potential is given by

V (H,ΦBL) = −µH2
(

H†H
)

+ λH

(

H†H
)2

− µΦ
2
(

ΦBL
†ΦBL

)

+ λΦ

(

ΦBL
†ΦBL

)2
+ λHΦ(H

†H)
(

ΦBL
†ΦBL

)

.
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We note here that H do not have any transformation under the extended symmetry, while

ΦBL is a singlet under SM, the only gauge invariant terms that one can cook up are H†H
and Φ†

BLΦBL, resulting a simple scalar potential, where the only interaction term that can be

written is (H†H)
(
ΦBL

†ΦBL
)
. λHΦ turns out to be an important additional parameter that

contributes to the phenomenology. We also note that for both H and ΦBL to acquire non-zero

vevs, we need both µH and µΦ to be positive.

We analyse the model as follows: scalar mixing in subsection-5.2, masses and mixing of

dark sector particles in subsection-5.3, theoretical and experimental constraints in subsection-

5.4, relic abundance of DM in subsection-5.5, direct detection in subsection-5.6 and finally

show the allowed parameter space in the light of ATLAS bound on gBL versus MZBL in

subsection 5.7.

5.2 Spontaneous symmetry breaking and physical scalars

At TeV scales ΦBL acquires a non-zero vev and breaks U(1)B−L to identity. The non-zero

vevs which spontaneously breaks GSM ⊗ U(1)B−L ⊗Z2 down to U(1)Q ⊗Z2 are given as:

〈ΦBL〉 =
vBL√

2
, 〈H〉 =




0
v√
2



 . (5.10)

The minimization conditions around the vev’s are given by :

∂V

∂H

∣
∣
∣
∣
v

= 0 : µ2H = λHv
2 +

λHΦv
2
BL

2
,

∂V

∂ΦBL

∣
∣
∣
∣
vBL

= 0 : µ2Φ = λΦv
2
BL +

λHΦv
2

2
. (5.11)

Due to presence of (H†H)
(
ΦBL

†ΦBL
)

interaction in the scalar sector, both weak states

h and φ mix with each other. Using above minimization conditions, the mass terms of the

scalar sector can be expressed as:

Lmass
scalar =

1

2

(

h φ
)
(

2λHv
2 λHΦvvBL

λHΦvvBL 2λΦv
2
BL

)(

h

φ

)

,

=
1

2

(

h1 h2

)
(

m2
h1

0

0 m2
h2

)(

h1

h2

)

. (5.12)

In order to obtain the mass eigenvalues, the flavor eigenstates are rotated by an orthogonal

matrix as follows : (

h1

h2

)

=

(

cosβ sinβ

− sinβ cosβ

)(

h

φ

)

; (5.13)

where h1 and h2 are the physical mass eigenstates. We identify h1 to be the physical Higgs

discovered in 2012 at LHC with mass mh1 = 125 GeV and mh2 remains a scalar beyond the

SM. How heavy h2 requires to be is constrained from LHC data which we discuss in a moment.

The CP odd states also mix with each other, but turns out to be massless states known as

– 17 –



Goldstone Bosons. In unitary gauge they are accounted as the longitudinal modes of massive

vector Bosons and do not enter into phenomenology explicitly. The scalar sector therefore

accounts for three free parameters:

{mh2 , vBL, sinβ}; (5.14)

which are constrained from Higgs data at Collider. We will discuss them in the next subsection.

Other quartic couplings λH , λΦ and λHΦ can be expressed in terms of the physical parameters

as:

λH =
m2
h1

cos2 β +m2
h2

sin2 β

2v2
,

λΦ =
m2
h1

sin2 β +m2
h2

cos2 β

2v2
,

λHΦ =

(
m2
h2

−m2
h1

)
sin 2β

2vvBL
. (5.15)

The broken U(1)B−L gauge symmetry yields mass for ZBL as:

MZBL = 2gBLvBL (5.16)

MZBL and gBL are constrained from both LEP and LHC which we shall address later. So

it follows from Eqn. 5.16 that vBL is no longer a free parameter. Instead, in the combined

gauged and scalar sector, the free parameters involved are:

{mh2 , MZBL , gBL, sinβ}; (5.17)

As we will see in the later sections, these parameters play a crucial role in DM phenomenology

in the U(1)B−L extension of the SM model.

5.3 Masses and mixing of dark sector particles

After electroweak symmetry breaking the mass term of the neutral dark sector particles can

be written as,

− Lmass =Mψ0
Lψ

0
R +

1

2
MR1

NR1
(NR1

)c +mDψ0
LNR1

+ h.c. , (5.18)

where mD = Y1〈v〉√
2

with 〈v〉 = 246 GeV being the vacuum expectation value (vev) of the SM

Higgs H and MRi =
y′ivBL√

2
, where vBL is the vev of new scalar ΦBL. Writing these mass terms

in the basis ((ψ0
R)

c, ψ0
L, (NR1

)c)T , we get the mass matrix:

M =







0 M 0

M 0 mD

0 mD MR1






. (5.19)

The above mass matrix of neutral dark sector particles can be diagonalized by using an

orthogonal transformation: Mdiag = U.M.UT , where U = U13(θ13).U23(θ23).U12(θ12) and
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U13(θ13), U23(θ23) and U12(θ12) are taken as three Euler rotation matrices. Assuming mD <<

M,MR1
, the mass eigenvalues are given by 2:

mχ
1
≈M +

m2
D

2(M −MR1
)
,

mχ
2
≈ −

(

M +
m2
D

2(M +MR1
)

)

,

mχ
3
≈MR1

(

1− m2
D

M2 −M2
R1

)

.

(5.20)

From Eqs. (5.19) and (5.20) we see that TrM = MR1
=
∑3

i=1mχi . Note that the above

diagonalization is upto O(
m2
D

M+MR1

). The corresponding physical eigenstates can be given in

terms of flavour eigenstates as:

χ
1L = (c13c12 + s13s23s12)(ψ

0
R)

c + (c13s12 − s13s23c12)ψ
0
L + (s13c23)N

c
R1
,

χ
2L = (−c23s12)(ψ0

R)
c + (c23c12)ψ

0
L + s23N

c
R1
,

χ
3L = (−s13c12 + c13s23s12)(ψ

0
R)

c + (−s13s12 − s23c12c13)ψ
0
L + (c13c23)N

c
R1
.

(5.21)

where we abbreviated cos θij = cij and sin θij = sij , with {ij : 12, 13, 23}. The diagonalisation

of the mass matrix requires:

θ12 =
π

4
,

tan 2θ23 =
−
√
2mD

M +MR1

,

tan 2θ13 =
(

√
2mD

M −MR1
− m2

D
2(M+MR1

)

)

cos θ23 .

(5.22)

Thus in the effective theory the dark sector comprises of three phyiscal Majorana fermions

χ
1
, χ

2
, χ

3
defined as χi =

χ
iL

+(χ
iL

)c√
2

(i = 1, 2, 3). We assume mχ
1
> mχ

2
> mχ

3
, so that χ

3

serves as a stable dark matter candidate. In the limit mD << M,MR1
, from Eq. 5.22, we can

further write,

Y1 ≈
∆M sin 2θ13

v
, (5.23)

where ∆M = |mχ
1
| − |mχ

3
| ≈ |mχ

2
| − |mχ

3
|. The mixing angle θ23 can be obtained using

values of mD in the definition of θ13. Therefore the phenomenology of dark sector is governed

mainly by the following three independent parameters: DM mass mχ
3
, splitting with the

heavier neutral components ∆M and mixing angle θ13. Thus the ultimate free parameters in

the dark sector are:

Dark Parameters : { mχ
3
, ∆M, sin θ13}, or { MR1

, M, sin θ13}. (5.24)

2Similar to Eqn. 2.6, the mass matrix 5.19 can be further rotated by a phase matrix Uph to make sure all

the eigenvalues are positive.
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5.4 Theoretical and Experimental constraints

• Stability of potential: In order to maintain stable vaccum, the quartic terms of the scalar

potential should obey following co-positivity conditions [62, 63]:

λH ≥ 0, λΦ ≥ 0 and λHΦ + 2
√

λHλΦ ≥ 0. (5.25)

• Perturbativity: In order to maintain perturbativity of the model, Yukawa couplings should

satisfy the following limits:

|λH | < 4π, |λΦ| < 4π, |λHΦ| < 4π ;

|Y1| <
√
4π, |Yαj | <

√
4π, |gBL| <

√
4π . (5.26)

• LEP limits: LEP exclusion bound on charged fermion mass, mψ± =M > 102.7 GeV [47].

Again, we note that the bound from LHC has been evaluated for a typical case of type III

seesaw model, mψ± =M & 800 GeV [48, 49], which is not strictly applicable to our case.

• Constraints on MZBL: LEP II data puts lower bound on MZBL/gBL ≥ 7 TeV [64]. Cor-

responding bound from ATLAS and CMS at LHC Run 2 is more severe than LEP II, MZBL

> 4.3 TeV for gBL of the same order as that of SM coupling [65–67]. However, this constraint

can be relaxed for lower value of gBL. For MZBL = O (1TeV), the upper bound on gBL can

be as small as 0.009 [68].

• Bounds on scalar singlet transforming under U(1)B−L: In the extended scalar sector,

the mixing angle (sinβ) and the mass of the extra physical state (mh2) faces the follow-

ing constraints: i) From W mass corrections at Next to Leading Order (NLO) [69]: For

250 GeV ≤ mh2 ≤ 850 GeV, one has 0.2 ≤ sinβ ≤ 0.3. ii) For the requirement of perturba-

tive unitarity [70]: sinβ ≤ 0.2 for mh2 ≥ 850 GeV. iii) Direct search measurement of Higgs

signal strength at LHC provides an upper limit on mixing angle | sinβ| < 0.36 [70].

5.5 Relic abundance of dark matter

Figure 9: Additional annihilation channels of the DM (χ
3
) to SM particles in U(1)B−L model.

The DM-SM interaction terms which deplete the number density of dark sector particles in

the gauged U(1)B−L case has been discussed in Appendix B. The additional relevant Feynman

diagrams of annihilation and coannihilation processes over and above those already present in

section 3 are shown in Fig. 9, Fig. 10 and Fig. 11.
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Figure 10: Additional coannihilation channels of DM (χ
3
) with χ

1
, χ

2
and ψ± in the U(1)B−L model.

Figure 11: Additional coannihilation channels of ψ+ and ψ− that contribute to relic density of DM (χ
3
)

in the U(1)B−L model.

Again we use MicrOmegas to calculate the relic density of DM. The plots for DM relic

density Ωh2 as a function of DM mass mDM = mχ
3

are shown in Fig. 12 for different mass

splitting ∆M between the DM and the NLSP and for a chosen mixing angle sin θ13. The

main difference in this B − L extended case compared to section 3 is the presence of new

resonances at mχ3
= mh1/2 and mχ3

= mh2/2. These resonances get prominent only when the

mass difference ∆M is sufficiently large such that the coannihilation processes are practically

negligible. As we can see from Fig. 12, for small ∆M , the coannihilation through off-diagonal

Z and W± mediated interactions dominate. Apart from that in Fig. 12 we also see new

resonances (in comparison to Fig. 4) occur at mχ3
= mZ/2 and mχ3

= MZBL/2. Note that

the resonance at mχ3
= mZ/2 is proportional to sin θ13. As a result in the limit sin θ13 → 0

and new particles, say h2 and ZBL heavy enough we get back to the same situation as in

Fig. 4.

In Fig. 12, we have chosen MZBL = 1.65 TeV, gBL = 0.03, mh2 = 300 GeV and the

mixing parameter of SM Higgs with the new B-L Higgs as sinβ = 0.2, consistent with the

available constraints. Also the masses of the two Z2 even right handed neutrinos are kept

fixed as MR2/3
= 500 GeV. As sin θ13 increases, the Yukawa coupling between the doublet and

the singlet increases, and hence the h1 (SM-like Higgs) mediated interactions become more

and more dominant. It is also clear from Fig. 12 that, irrespective of the mass difference ∆M ,

with increasing sin θ13 the annihilation rates increase making deeper resonance drops. Due to

the presence of off-diagonal interactions in all cases, all resonance drops has been somewhat
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Figure 12: DM relic density as a function of DM mass (mχ3
) for different mass splitting ∆M between

the DM and the NLSP (shown by different coloured patches as indicated in figure inset) for fixed values of

sin θ13 = 0.01 (top left panel), sin θ13 = 0.1 (top right panel), sin θ13 = 0.3 (bottom left panel) and sin θ13 = 0.5

(bottom right panel). Correct relic abundance from PLANCK data (0.1166 ≤ Ωh2 ≤ 0.1206) is shown by the

thick horizontal silver line. The other parameters kept fixed are: MZBL = 1.65 TeV, gBL = 0.03,mh2
=

300 GeV, sinβ = 0.2.

broadened up compared to the case of pure diagonal interactions.

In Fig. 13, the correct relic abundance is plotted in the plane of ∆M vs mχ
3
, where

∆M = (mχ
1
−mχ

3
). Again, the main outcome remain almost similar as before, excepting the

presence of additional peak at mχ
3
=

MZBL
2 GeV due to ZBL resonance. Other resonances at

mZ/2,mh1/2,mh2/2 are also visible. Just before the ZBL resonance, we can see the effect of

off-diagonal ZBL mediated interactions (see B.3).

We note here that in the limit sin θ23 → 0 (alongwith gBL → 0, sinβ → 0 and for very

heavy ZBL and h2), Fig. 13 reduces to Fig. 5, i.e. U(1)B−L extension boils down to the one

without it.

5.6 Direct Detection prospects

The DM candidate (χ3) in this model is a Majorana fermion, hence the Z and ZBL-mediated

vector current interaction vanishes. Although there is a possibility of spin dependent scattering

through axial vector interaction mediated by the vector bosons, the sensitivity and bounds
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Figure 13: DM relic density (0.1166 ≤ ΩDMh
2 ≤ 0.1206) allowed parameter space shown in ∆M−mχ3

plane

for the U(1)B−L model. Different coloured points indicate different ranges of sin θ13 as specified in the figure

inset. The parameters kept fixed for the scan are MZBL = 1.65 TeV, gBL = 0.03,mh2
= 300 GeV, sinβ = 0.2.

The shaded region in the bottom left corner is ruled out by LEP exclusion bound on charged fermion mass,

mψ± =M > 102.7 GeV.

are extremely weak. Therefore the prominent channel for direct detection of χ3 is through

H−ΦBL mixing, which results in spin-independent scattering of DM off nuclei. The Feynman

diagram for such interaction is shown in Fig. 14. The spin-independent DM-nucleon elastic

scattering cross-section is again given by Eqn.-4.1. However, in contrast to the previous case,

here there are two propagators (h1 and h2) that can mediate the DM pair production and

hence direct detection is through the interference of two diagrams. So in this case the effective

coupling strength αq is given by:

αq =
mq

v

(λa cosβ

m2
h1

− λb sinβ

m2
h2

)

, (5.27)

where

λa =
Y1
2
(s13 + s23c13)c13c23 cosβ − y′1

2
√
2
c213c

2
23 sinβ ,

λb = −Y1
2
(s13 + s23c13)c13c23 sinβ − y′1

2
√
2
c213c

2
23 cosβ .

(5.28)

In the numerical calculation we use the Yukawa coupling Y1 ≈ ∆M sin 2θ13/v as given by

Eqn. 5.23 and y′1 =
√
2MR1

/vBL = 2
√
2MR1

gBL/MZBL . So the direct search cross-section

indirectly depends on ∆M , gBL and MZBL as well.

The relative minus sign between the two propagators comes from the orthogonal mixing

matrix in Eqn. 5.13. From Eqs. 4.1, 4.2, 4.3 and 5.27, the spin-independent scattering cross-

section is given by,

σSI =
µ2r
πA2

(λa cosβ

m2
h1

− λb sinβ

m2
h2

)2[

Z
mp

v

(

fpTu + fpTd + fpTs +
2

9
fpTG

+ (A− Z)
mn

v

(

fnTu + fnTd + fnTs +
2

9
fnTG

)]2
(5.29)
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Figure 14: Feynman Diagram for elastic scattering of DM off nuclei at terrestrial laboratory in the U(1)B−L

extended model.

Figure 15: [Left]: Spin-independent direct detection cross section of DM (χ3) with nucleon as function of

DM mass (in GeV) for U(1)B−L model confronted with XENON-1T data over and above relic density constraint

from PLANCK; [Right]: Correct DM relic density allowed parameter space of the model in ∆M −mχ
3

plane

constrained by XENON-1T bound. Different coloured points indicate different ranges of sin θ13 as mentioned

in the figure inset. The parameters kept fixed for the scan are MZBL = 1.65 TeV, gBL = 0.03,mh2
=

300 GeV, sinβ = 0.2. The shaded region in the bottom left corner of right hand plot is ruled out by LEP

exclusion bound on charged fermion mass, mψ± =M > 102.7 GeV.

Now we turn to the parameter space of the model consistent with direct search constraints.

In left panel of Fig. 15, we have confronted the points satisfying relic density with the spin

independent elastic cross section obtained for the model as a function of DM mass. The

XENON-1T bound is shown by dashed black line. Again, the region below this line satisfy

both relic density as well as direct detection constraint. These points (satisfying relic density

as well as direct detection constraint from XENON-1T) are shown in the right panel of Fig. 13

in the ∆M−mχ
3

plane. Again we see that null observation from direct search crucially tames

down the relic density allowed parameter space. The available parameter space of the U(1)B−L
model is very similar to that without the gauge extension, excepting for the resonance regions

at mχ3
= mh1/2/2 and mχ3

=MZBL/2, where ∆M can be uncorrelated to DM mass.
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5.7 ATLAS bound on gBL −MZBL

We now turn to find the allowed parameter space in the ∆M −mχ
3

plane in light of ATLAS

bound on gBL versus MZBL . In the previous sections we kept MZBL fixed at 1650 GeV

corresponding to gBL = 0.03 compatible with ATLAS data [65]. As a result of choosing such

a small value of gBL, the effect of ZBL was only evident at resonance when mχ3
∼ MZBL/2

(see Fig. 15). In the following we highlight the effect of ZBL mediated diagrams by varying

the coupling and mass. We perform a scan by varying the model parameters in the following

range:






1 GeV ≤ mχ3
≤ 2000 GeV

1 GeV ≤ ∆M ≤ 1000 GeV

20 GeV ≤MZBL ≤ 4000 GeV

0.001 ≤ sin θ13 ≤ 0.6

0.001 ≤ gBL ≤ 0.3 .

(5.30)

Other parameters kept fixed are: sinβ = 0.2 and mh2 = 300 GeV. Also the masses of the two

Z2 even right handed neutrinos are kept fixed as MR2/3
= 500 GeV.

Figure 16: [Left]: Parameter space satisfying relic density constraint from PLANCK (0.1166 ≤ ΩDMh
2 ≤

0.1206) in the plane of gBL−MZBL for U(1)B−L model; [Right]: Parameter space satisfying both relic density

constraint from PLANCK and direct detection bound from XENON-1T in the plane of gBL −MZBL . The

thick silver line shows the ATLAS bound on gBL vs MZBL [65] plane from non-observation of ZBL in collider

data.

We first show the constraint coming from non-observation of a new gauge boson (ZBL)

at LHC coming from ATLAS [65] analysis on gBL for corresponding values of MZBL shown by

the silver thick line in Fig. 16. This indicates that points below the line with smaller gBL is

allowed, while those above the line are discarded. The left plot shows points which satisfy relic

density constraint from PLANCK (0.1166 ≤ ΩDMh
2 ≤ 0.1206) data and right plot shows the

points which satisfy both relic density and direct search bounds from XENON 1T. Different

colours indicate ranges of sin θ13 as mentioned in figure inset. We then showcase the fate of the

model when the bound from ATLAS is implemented on the parameter space in ∆M vs mχ3

plane for different gBL values in Fig. 17. In the top panel we show the available parameter
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space in terms of different ranges of sin θ13, while the same is shown in bottom panel for

different ranges of gBL coupling for relic density and direct search allowed parameter space

of the U(1)B−L model. For clarity in inferring how much parameter space gets discarded by

the ATLAS bound, in the left panel we show relic density and direct search allowed points

without ATLAS bound, while on the right panel, we show those after incorporating ATLAS

bound [65].

Figure 17: [Top Left]: Parameter space satisfying relic density (PLANCK) and direct search (XENON-1T)

bound in ∆M −mχ3
plane, different colours indicate different choices of sin θ13; [Top Right]: Same as top left

but additionally ATLAS bound on gBL −MZBL [65] applied; [Bottom Panel]: Same as in the top panel, but

different coloured points indicate different ranges of gBL coupling as mentioned in figure inset, with left (right)

plot without respecting (with) ATLAS bound. The shaded region in the bottom left corner is ruled out by

LEP exclusion bound on charged fermion mass, mψ± =M > 102.7 GeV.

We see from Fig. 17 when ∆M . 10 GeV, the contribution to relic density comes from

annihilation, coannihilation and ZBL resonance with relatively smaller gBL. As we go for

further larger ∆M , the coannihilation contribution to relic density decreases gradually and gets

compensated by ZBL exchange diagrams with increasing values of gBL. Beyond mχ3
= 1000

GeV, the correlation between ∆M and mχ3
is lost and relic is mostly dominated by Higgs and

ZBL mediation. In the right panel of Fig. 17, we impose bound on gBL−MZBL from ATLAS

data. The upper bound on gBL by ATLAS data for lighter ZBL is extremely small (for eg.,

MZBL ∼ O(1TeV), upper bound on gBL ∼ 0.009 [68]). Consequently if we have to satisfy
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ATLAS bound, then all those resonance points with large gBL in the left panel of Fig. 17

upto mχ3
∼ 500 GeV are no longer there in the right panel of Fig. 17. It is only when MZBL

becomes sufficiently large, so that gBL can take somewhat moderate values, we can see the

ZBL resonance affects. That is why in the right panel of Fig. 17, such resonance points survive

for mχ3
≥ 500 GeV. For mχ3

> 1000 GeV, the points which survive the ATLAS bound are

mostly due to ZBL resonances with relatively large gBL. Note that the direct detection cross

section has mild dependency on these resonance points. Therefore, these resonance points for

mχ3
> 1000 GeV also easily survive from XENON-1T bound.

6 Collider Signatures

Both the model frameworks studied here, have attractive signatures at the Large Hadron

Collider (LHC) due to the presence of SM isodoublet. There exists different types of production

processes and decay final states which can be categorized broadly into leptonic and hadronic

final states. Leptonic final states are favoured over hadronic states for less SM contamination.

All the heavier dark sector particles finally decay into the DM (χ3), which is missed in the

detector and necessarily associate each final state with missing transverse energy ( /ET ) defined

as:

/ET = −

√
√
√
√
√




∑

ℓ,j,unc

px





2

+




∑

ℓ,j,unc

py





2

, (6.1)

where the sum runs over all visible objects that include leptons (ℓ = e, µ) and jets, and un-

clustered components. Here we list some of the most important leptonic final states that

the models offer. We will refer to the model without U(1)B−L as model I and the one with

U(1)B−L extension as model II.

• Opposite sign dilepton (ℓ+ℓ− + /ET ):

Figure 18: OSD + /ET signal at LHC due to: (i) (Left) ψ+ ψ− production and (ii) (Right) χ3 χi production.

For model II i = 1, 2, for model I, i = 2.
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The heavy charged component of SU(2)L doublet, ψ± (NLSP) can be produced via (Z, γ)

mediation in model I and (Z, γ, ZBL) mediation in model II. Further they decay to leptonic

final state via on-shell or off-shell W± mediator (depending on mass splitting mψ± − mχ
3
)

and stable DM (χ
3
). As a result the process yields hadronically quiet opposite sign dilepton

(OSD) plus missing energy (ℓ+ℓ− + /ET ) signature at collider as shown in the Feynman graph

in the left panel of Fig. 18:

OSD + /ET : p p→ ψ+ ψ−, (ψ− → ℓ− νℓ χ3
), (ψ+ → ℓ+ νℓ χ3

); ℓ = {e, µ} .

Also the production of χi χ3 pair via Z propagator in model I and Z, ZBL propagator in

model II gives rise to OSD final state as shown in right panel of Fig. 18:

OSD + /ET : p p→ χi χ3 (χ1,2 → ℓ− ℓ+ χ
3
); ℓ = {e, µ} i = {1, 2} .

It is important to note that in model I, i = 2 is the only possibility [see appendix A and

Eq. A.2 in particular]. Also note that the production of the heavy neutral components as

above are proportional to the mixing angle (sin θ), which is small (to respect direct search

constraints). Therefore χi χ3 production is suppressed than the ψ+ ψ− production process,

which is independent of mixing angle (sin θ).

It is worth mentioning that similar process have been studied widely in context of su-

persymmetric theories by chargino pair production at LHC [71–80]. Non observation of any

excess in OSD signal events at LHC results in a bound on the charged fermion mass. The

bound(s) obtained for charginos are often specific to supersymmetric model given so many

additional parameters that the theory inherits and may not be applicable (fully) to our case.

Recasting the full analysis in our case is also out of the scope of this draft and will be taken

up elsewhere. We will however provide a short account of the event simulation procedure

and hint towards some broad conclusions. Note however that a model independent bound

was found in context of LEP experiment as mψ± & 102.7 GeV [81]. One may also look into

[40, 45] for event level analysis at LHC without U(1)B−L case and in [82] for U(1)B−L case.

• Three leptons (ℓℓℓ+ /ET ):

Figure 19: ℓℓℓ+ /ET signal at LHC. For model II, i = {1, 2}, while for model II, i = 2.
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Hadronically quiet trilepton plus missing energy signature can be obtained from the pro-

duction of heavy neutral, χ1,2 and charged fermions states, ψ± via W± mediator as shown in

Fig. 19:

3ℓ+ /ET : p p→ ψ± χi, (ψ
± → ℓ± νℓ(νℓ) χ3

), (χi → ℓ−ℓ+ χ
3
); ℓ = {e, µ} i = {1, 2} .

Again, it is worth noting that although the production process is same in both model I and

model II, subsequent decay of χi → χ3Z
∗ is only allowed for χ2 in model I and provides a

way of distinguishing the two cases. The fact that no significant excess in hadronically quiet

trilepton events are observed at LHC and the result agrees to SM contribution to a great

extent puts a bound on the relevant parametrs. From ATLAS data, following constraints can

be obtained: mχ1,2 ,mψ± < 270 GeV, mχ3
. 70 GeV with BR (χ1,2 → Zχ3) & 60% [83].

We may note that similar trilepton signature can also arise from Higsino-Bino production in

supersymmetric models, which have been studied in context of LHC data [72].

• Four leptons (ℓℓℓℓ+ /ET ):

The heavy neutral fermionic DM states, χ1,2 (NLSP) can be produced at LHC via Z

propagator in model I and Z,ZBL propagator in model II. The heavy states, χ1,2 further

decay to leptonic final states via Z and produce four leptons plus missing energy signature as

shown in Fig. 20:

ℓℓℓℓ+ /ET : p p→ χi χj , (χi,j → ℓ−ℓ+ χ
3
); ℓ = {e, µ}; i, j = {1, 2} .

Figure 20: ℓℓℓℓ+ /ET signal in model II at LHC (i, j = {1, 2}, i 6= j).

We should note here that there are two main issues of producing four lepton states: (i)

We need to produce χ1χ2 pair, (ii) then χ1,2 both needs to decay via Z to χ3. Now from

interaction vertex in appendix A and Eq. A.2, we see that the decay of χ1 can’t occur to χ3Z
∗

unless the model is extended by U(1)B−L [see appendix B and Eq. B.2], thus making the

signal exclusive for the U(1)B−L extension. Apart, one may also have hadronically quiet six

lepton states arising from the decay of χ1 → χ2Z
∗, χ2 → χ3Z

∗, followed by leptonic decays

of the off-shell Z from the same production process for both models with U(1)B−L extension

and without that.
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• Single lepton with jets (ℓ± + jj + /ET ):

The leptons in the final state arise out of W and Z boson decays (see Figs. 18, 19, 20),

which anyway could also decay to quark antiquark pair to yield jets. Therefore, apart from

purely leptonic signatures, one may also have hadrons or jet-rich final states. For example, the

charged fermion pair production can lead to single lepton with two jets plus missing energy

signature when one off shell W decays to hadronic final state (see Fig. 18). Obviously when

both W decays hadronically, one ends up with four (or more) jets. LHC being a QCD machine,

hadronic final states are prone to huge SM QCD background and therefore disfavoured. In

event analysis, segregating signal from SM background is an important task. Missing energy

variable as introduced in Eq. 6.1 play a crucial role, as in SM contributions to /ET mainly arise

from neutrinos and mistagging.

• Displaced vertex signature of ψ±:

We already observed that a large region of available parameter space of the model relies on

small ∆M (for example, see in the right panel of Fig. 8). The decay of ψ± is then phase space

suppressed and can produce a displaced vertex, which can serve as a very crucial signature of

the model. The decay length in its rest frame (following from Eq. 3.6) is given by,

L0 =
1.9× 10−2 cm
(
∆M
GeV

)5
sin θ

.

In Fig. 21, we show the decay length of ψ± as a function of ∆M for fixed sin θ values

depicted in different colours. We see that for ∆M < 10 GeV, the displaced vertex of ψ± can

be significantly large to be detected at the collider. On the other hand, non-observation of a

displaced vertex or a charge track will result in a bound on ∆M − sin θ plane.

Figure 21: The decay length of ψ± as a function of mass difference ∆M for fixed sin θ values.

• Effect of B − L gauge extension in ψ+ψ− pair production:

The effect of U(1)B−L gauge boson (ZBL) mediation in p p → ψ+ψ− production [84]

is an important question and we discuss the main features here. We summarise our obser-
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Figure 22: [Left] The production cross-section of ψ+ψ− pairs at collider is shown as a function of U(1)B−L

gauge boson mass, MZBL for fixed mψ± = 150 GeV. Different coloured lines depict different cases: SM

production cross-section is shown by black solid line; U(1)B−L case is shown for gBL = 0.03 (green dashed

line) and gBL = 0.3 (red dashed line). [Right] The production cross-section of ψ+ψ− pairs at collider is shown

as a function of mψ± with MZBL = 1.65 TeV, gBL = 0.03 (green dashed line) and MZBL = 4.4 TeV, gBL = 0.3

(red dashed line). Pure SM gauge boson mediated production cross-section (Model I) is also shown in black

solid line.

vations in Fig. 22. In the left panel of Fig. 22, we have shown the production cross-section

of ψ+ψ− pair at LHC as a function of MZBL for fixed mψ± = 150 GeV. On the right panel,

we plot the production cross-section of ψ+ψ− as function of mψ± , for two different com-

binations of ZBL parameters: {MZBL = 1.65 TeV, gBL = 0.03} (green dashed line) and

{MZBL = 4.4 TeV, gBL = 0.3} (red dashed line), which agree to the current ATLAS bound.

Only SM contribution with ZSM : (Z, γ) mediation is also shown by black solid line for com-

parison. It is evident from the Fig. 22, that for the smaller value gBL = 0.03, the contribution

from ZBL mediated production is negligible compared to SM and consequently green dashed

and black lines fall on top of each other. However, with a moderate value of gBL = 0.3,

the production cross-section significantly improves with ZBL mediation, which is seen in red

dashed line clearly separated from the other two. In the left plot we see that the effect of

s-channel resonance in amplitude ∼ 1
ŝ−M2

ZBL

showing up at MZBL = 2mψ± = 300 GeV as

the minimum subprocess center-of-mass energy required for this process to occur is
√
ŝ = 300

GeV with mψ± = 150 GeV. The resonance is extended to account its finite decay width

∼ 1
ŝ−M2

ZBL
+iMZBL

ΓZBL
. The same effect is seen on the right panel plot where the resonance

rise is visible at mψ± =
MZBL

2 ∼ 2 TeV for the red dashed curve (gBL = 0.3). To summarise,

the effect of ZBL mediation for the production of ψ± pair, which contributes to opposite sign

dilepton (OSD) plus missing energy signal, can only be realised at relatively larger values

of gauge coupling (gBL) and on-shell ZBL production whenever possible, albeit that current

experimental bound requires a higher ZBL mass with larger gBL coupling (see Fig. 16).

– 31 –



• Hadronically quiet OSD events at LHC:

We shall now briefly discuss the event level simulation for the OSD signal (ℓ+ℓ− + /ET )

and estimate SM background contamination for the same final state. Our elaboration will

be more indicative than exhaustive. For that, we refer to two different benchmark points

with ∆M = 15 GeV and 300 GeV keeping DM mass fixed at mχ3
= 150 GeV; important

to note here that the first case applies to the model I without B − L extension where the

second possibility with larger ∆M is only allowed in model II with B−L extension (compare

Fig. 8 to Fig. 17). For the analysis we generate the lhe file from the model implementation

in FeynRule [57] and run it in Madgraph [85] to generate events and finally pass onto Pythia

[86] for analysis. Following basic techniques are used in Pythia to mimic the actual collider

environment:

• Lepton isolation: To identify a lepton (ℓ = e, µ) in the detector, one requires a minimum

transverse momentum, which we keep as pT > 20 GeV. We also require the pseudorapidity

within |η| < 2.5, which ensures that leptons ejected centrally can only be observed in the

detector. Separation of leptons from each other requires (∆R)ℓℓ ≥ 0.2 in η − φ plane (where

∆R =
√

(∆η)2 + (∆φ)2). We further imposed (∆R)ℓj ≥ 0.4 to separate leptons from jets.

• Jet identification: Defining a jet (j) is an important issue at LHC environment. In the

numerical simulation performed here, jets are formed in Pythia using cone algorithm inbuilt

in PYCELL. A jet is then identified with all parton within a cone of ∆R ≤ 0.4 around a jet

initiator with pT > 20 GeV. We will finally require zero jet veto to ensure hadronically quiet

final state.

• Unclustered objects: The unclustered objects consist of those objets, which neither qualify

as jets nor identified as isolated leptons (following our previous definitions) and only contribute

to missing energy. All final state objects with smaller transverse momentum 0.5 < pT < 20

GeV and larger pseudorapidity 2.5 < |η| < 5 are therefore identified as unclustered objects.

Three kinematic variables play a key role in the analysis: Missing Energy ( /ET ), Trans-

verse Mass (HT ) and Invariant mass (mℓℓ); where the signal and background show different

sensitivity. Missing energy has already been defined (Eq. 6.1), the other two are:

• Transverse Mass (HT ): Transverse mass of an event is identified to:

HT =
∑

ℓ,j

√

(px)2 + (py)2 =
∑

ℓ,j

pT , (6.2)

where the scalar sum of transverse momentum runs over reconstructed objects like lep-

tons (ℓ) and jets (j).

• Invariant mass (mℓℓ): Invariant mass of opposite sign dilepton is defined by

mℓ+ℓ− =

√

(
∑

ℓ+ℓ−

px)2 + (
∑

ℓ+ℓ−

py)2 + (
∑

ℓ+ℓ−

pz)2. (6.3)

The normalised event distribution for OSD signal events ℓ+ℓ− + (/ET ) at the two bench-

mark points with dominant SM background events are shown in Fig. 23 with missing energy
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(/ET ) in the left panel and transverse mass (HT ) on the right panel. In both graphs, we note

that the peak for ∆M = 15 GeV appear on the left side of SM background, while the one for

∆M = 300 GeV is flatter and shifted towards high /ET /HT value. It is then quite apparent,

that segregating these two signals from SM background requires different selection cuts on

/ET , HT and mℓℓ, which are chosen as follows:

Figure 23: Distribution of missing energy (/ET ) and transverse mass (HT ) for signal events and dominant

SM background events at LHC with
√
s = 14 TeV .

• Invariant mass (mℓℓ) cut: mℓℓ < (mZ − 15) GeV and mℓℓ > (mZ + 15) GeV is imposed

to get rid of SM Z boson contribution to OSD final state.

• /ET and HT cuts:

– /ET < 30 GeV, HT < 70 for ∆M = 15GeV < mW± .

– /ET > 100 GeV, HT > 150 for ∆M = 300GeV > mW± .

Model mχ3
(GeV) ∆M (GeV) σℓ

+ℓ−X (fb) /ET (GeV) HT (GeV) σℓ
+ℓ−X

eff
(fb) N ℓ+ℓ−X

eff
(@L = 102fb−1)

Model I 150 15 392.37 < 30 < 70 1.48 148

Model II 150 300 9.48 >100 >150 1.83 183

Table 3: Signal (ℓ+ℓ− + (/ET )) cross-section for the chosen benchmark points for
√
s = 14 TeV at LHC

with luminosity L = 100 fb−1 in Model I (without B − L) and Model II (with B − L) after the selection cuts

employed.

After imposing above cut-flow we list the signal and dominant SM background events in

Table 3 and Table 4 respectively for luminosity 100 fb−1. We see that W+W− production

provides the most significant background for OSD at LHC, which couldn’t be tamed by the

cuts used. This is surely the key reason for not being able to observe any signal excess over the

huge SM background at LHC. The numbers of signal and SM background events thus obtained

can provide the discovery reach of the signal for two benchmark points in terms of significance

defined as σ = S√
S+B

, where S denotes signal events and B denotes SM background events,
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SM Bkg. σℓ
+ℓ−X (fb) /ET (GeV) HT (GeV) σℓ

+ℓ−X
eff

(fb) N ℓ+ℓ−X
eff

(@L = 102fb−1)

< 30 < 70 6.23 623

t t̄ 36.69× 103 >100 >150 10.64 1064

< 30 < 70 131.18 13118

W+ W− 4.74× 103 >100 >150 7.72 772

< 30 < 70 0.53 53

Z Z 0.25× 103 >100 >150 0.18 18

< 30 < 70 0.01 1

W+ W−Z 1.00 >100 >150 0.06 6

Table 4: Dominant SM background contribution to ℓ+ℓ− +(/ET ) signal events for
√
s = 14 TeV at LHC for

luminosity L = 100 fb−1.The SM background cross-section are quoted with next-to-leading order (NLO) level

with appropriate K-factors [87].

Figure 24: Signal significance σ = S√
S+B

of the benchmark points characteristic to model I (in blue) and

model II (in red) at LHC with
√
s = 14 TeV, in terms of luminosity (fb−1), subject to the selection criteria

imposed in this analysis. 3σ and 5σ reach

shown as a function of luminosity in Fig. 24. It shows that 5σ discovery reach is difficult to

achieve for the model I without U(1)B−L characterised by low ∆M (L ∼ 1500 fb−1), while

the case with large ∆M in model II with U(1)B−L extension can be probed in near future

with L ∼ 150 fb−1.

7 Non-zero masses and mixing of light neutrinos

The very construct of this model is motivated by the fact that we wish to have phenomenolog-

ically viable WIMP like DM and non-zero masses and mixing of light neutrinos in a minimal

extension of the SM. This could be achieved by the presence of three RH neutrinos. While,

one of them constitute the dark sector being odd under a stabilising Z2 symmetry, the other

two can contribute to neutrino sector. In this model, a tiny yet non-zero neutrino mass can

– 34 –



be generated via Type I seesaw from the following terms in the Lagrangian 2.1,

− Lνmass ⊃
(

YjαNRjH̃
†Lα + h.c.

)

+
(1

2
MRjNRj (NRj )

c + h.c.
)

; (7.1)

where α = e, µ, τ and j = 2, 3. After EW symmetry breaking, the SM Higgs acquires a vev

to generate the Dirac mass terms for the neutrinos. In the gauged B-L scenario, the mass

of all three right handed neutrinos are generated through the vev of the scalar ΦBL. So for

simplicity we can consider the mass of two Z2 even right handed neutrinos that take part in

the seesaw to be quasi-degenerate and of the same mass scale as that of the Z2 odd right

handed neutrino taking part in the dark sector phenomenology. Without loss of generality,

we assume the heavy Majorana mass matrix that take part part in seesaw to be diagonal, i.e.,

MR = Diag(0,MR2
,MR3

). In this basis, the light neutrino mass matrix obtained through

Type-I seesaw is given as,

mν = −mDM
−1
R mT

D (7.2)

which is a complex 3× 3 matrix and can be diagonalized by the PMNS matrix [88] as,

(mν)
diag = UT mν U (7.3)

where (mν)
diag = Diag(m1,m2,m3) contains at least one zero eigenvalue.

The PMNS matrix U is given by:

U =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






Uph (7.4)

where cij and sij stand for cos θij and sin θij respectively and Uph is given by:

Uph = Diag(1, e−iα/2, 1) (7.5)

where α is the CP-violating Majorana phase.

Using Casas-Ibarra parameterization [89], the Dirac mass matrix mD can be parametrized

as,

(mD)jα =
√

MRjRji
√
miU

†
iα (7.6)

where mi are the eigenvalues of the light neutrino mass matrix mν and R is in general a

3× 3 complex orthogonal matrix. Since in our case, NR1
is decoupled from the spectrum, the

corresponding Yukawa coupling Y1α for a particluar flavour α in the Dirac mass matrix given

by Eqn. 7.6 is zero, i.e.,

Y1α =
1

v
(
√

MR1
R1i

√
miU

†
iα)

=
1

v
(
√

MR1
R11

√
m1U

†
1α +

√

MR1
R12

√
m2U

†
2α +

√

MR1
R13

√
m3U

†
3α) = 0

(7.7)

At present, the oscillation experiments measure two mass square differences: namely so-

lar (∆m2
⊙) and atmospheric (∆m2

atm) along with three mixing angles θ23, θ12 and θ13. Data
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indicates that |∆m2
atm| >> ∆m2

⊙, but depending on the sign of ∆m2
atm, two cases can arise.

• Normal Hierarchy (NH):






m1 = 0

m2 =
√

∆m2
⊙ ≪ m3 =

√

∆m2
atm

(7.8)

In Normal Hierarchy(NH), the lightest mass eigenstate m1 = 0. So, in order for LHS

of Eqn 7.7 i.e., Y1α to vanish, R12 and R13 must be zero, since m2 and m3 are non zero.

The orthogonality of R then implies that R11 = 1 and R21 = 0 = R31. The four remaining

elements of R viz., R22, R23, R32 and R33, form a 2 × 2 complex orthogonal matrix, defined

by one complex angle z [90]. Thus the structure of R matrix in case of NH is reduced to the

simple form:

R =







1 0 0

0 cos z − sin z

0 sin z cos z







(7.9)

The neutrino Dirac mass matrix obtained has the form :

mD = v







0 0 0

Y2e Y2µ Y2τ

Y3e Y3µ Y3τ







(7.10)

where each element Yαj of mD is given by Eqn. 7.6.

• Inverted Hierarchy (IH):






m3 = 0

m1 =
√

∆m2
atm , m2 =

√

∆m2
atm +∆m2

⊙
(7.11)

In the case of Inverted Hierarchy(IH), we need to set m3 = 0. So in order for LHS of Eqn. 7.7

i.e., Y1α to vanish, R11 and R12 must be zero. Again, orthogonality of R demands R13 = 1

making the first row and the third column of R trivial. The four remaining elements of R viz.,

R21, R22, R31 and R32 then form a 2× 2 complex orthogonal matrix, defined by one complex

angle z. Thus the structure of R matrix in case of IH is given by:

R =







0 0 1

cos z − sin z 0

sin z cos z 0







(7.12)

Again we a get a Dirac mass matrix of the same structure as that of NH case, with each

element given by Eqn. 7.6.

Now, we turn to comment on the charged lepton flavour violation under this parametriza-

tion. In particular we study the the process µ → eγ. The branching ratio of this process is

given by [91–95],
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Br(µ→ eγ) =
α3
ws

2
w

256π2
m4
µ

M4
W

mµ

Γµ
|Gµeγ |2 (7.13)

where αw is the weak coupling strength, sw is the sin of Weinberg’s angle, mµ is the muon

mass, MW is the mass of W boson and Γµ ≈ 2.996× 10−19GeV denotes the total decay width

of muon. The factor Gµeγ si given by,

Gµeγ =
∑

i

UeiU
∗
µiGγ(xi) =

∑

j

UeNjU
∗
µNjGγ(xNj ) (7.14)

where, xi =
m2
νi

M2
W

and xNj =
M2
Nj

M2
W

. where i (j) runs over total number of light (heavy)

physical neutrino states. mν(MN ) denotes the mass of light (heavy) physical neutrinos and

Uei(UeNi) represents the mixing matrix elements of light (heavy) neutrinos. The loop integra-

tion factor Gγ(x) is given by,

Gγ(x) = −x(2x
2 + 5x− 1)

4(1− x3)
− 2x3

2(1− x4)
ln(x) (7.15)

To study the dependence of this branching ratio on the right handed mass scale in light

of Casas-Ibarra parameterization, we derive from 7.13 the following equation,

Br(µ→ eγ) =
α3
ws

2
w

256π2
m4
µ

M4
W

mµ

Γµ

4

M4
R

G2
γ(xN )|(m†

DmD)eµ|2 (7.16)

where MR denotes the mass of the right handed neutrino states. For simplicity we as-

sume the two right handed neutrinos to be degenerate and MN = MR. The matrix element

(m†
DmD)eµ for NH and IH respectively can be written using Eqn. 7.6 as,

(m†
DmD)eµ

∣
∣
∣
NH

=MR

[
(m2Ue2U

∗
µ2 +m3Ue3U

∗
µ3) cosh(2Im[z])

+ i
√
m2

√
m3(Ue3U

∗
µ2 − Ue2U

∗
µ3) sinh(2Im[z])

] (7.17)

(m†
DmD)eµ

∣
∣
∣
IH

=MR

[
(m1Ue1U

∗
µ1 +m2Ue2U

∗
µ2) cosh(2Im[z])

+ i
√
m1

√
m2(Ue2U

∗
µ1 − Ue1U

∗
µ2) sinh(2Im[z])

] (7.18)

where Uαi are the PMNS matrix elements parametrized as in Eqn 7.4. In Eqn. 7.17

and 7.18, there are three free parameters namely MR, Im[z] and α all other quantites being

measured by oscillation experiments within a range. In left panel of Fig. 25, we have shown

the Br(µ → eγ) as a function of heavy neutrino mass MR and Im[z] taking all oscillation

parameters within their 3σ range as given in [96, 97] in case of NH. The Majorana phase α

is varied between 0 to 2π. and the amplitude |(m†
DmD)eµ| is almost independent of phase α.

We confronted our result with current most stringent bound from MEG experiment Br(µ→
eγ) ≤ 4.2 × 10−13 [98], represented by the contour in black colour in left panel of Fig. 25.

The red contour shows the projected MEG-II sensitivity of Br(µ → eγ) ∼ 6 × 10−14. The

region above the black contour is ruled out by MEG experiment while the region below this

contour provides us a wide allowed parameter space for Br(µ→ eγ) in the MR− Im[z] plane
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simultaneously satisfying MEG limit and low scale neutrino phenomenology. Similar result

has been obtained for IH as well. In the right panel of Fig. 25, we have shown log[Br(µ→ eγ)]

for two particular values of Im[z], Im[z] = 0 and 10.

Figure 25: [Left]: Br(µ → eγ) in MR − Im[z] plane; [Right]: Log[Br(µ → eγ)] for Im[z] = 0, 10 for both

NH and IH. The black dashed line represents the MEG limit.

In the simplest scenario Im[z] = 0, the branching ratio is very very less than the current

sensitivity of worlds leading experiments like MEG for both NH and IH. For Im[z] = 10, the

branching ratio is near to the current sensitivity. For intermediate values of Im[z], Br(µ→ eγ)

is below the current bound by MEG experiment, while for Im[z] > 10, Br(µ → eγ) is above

the MEG limit for almost all mass range of MR upto 1000 GeV. As it can also be seen from the

left panel of Fig. 25 that only for MR ≤ 10 GeV, Im[z] can take values upto 14. Naturalness

and vacuum stability bounds can also be applied in principle as done in [99], but these bounds

are extremely weaker for MR upto TeV scale.

8 Conclusion

In this paper, we have studied a minimal extension of the SM by adding a vector like fermion

doublet Ψ and three singlet right handed neutrinos NRi to simultaneously address non-zero

masses and mixing of light neutrinos as well as a phenomenologically viable dark matter

component of the universe. An additional Z2 symmetry is required on top of the SM gauge

symmetry to ensure the stability of the DM. Now, the Z2 symmetry crucially distinguishes the

added fermions; for example, the vector-like fermion doublet and one of the three right handed

neutrinos are assumed odd, while the rest are even. As a result the dark matter emerges as the

lightest Majorana fermion from the mixture of the neutral component of the doublet Ψ and

the singlet, which is odd under the same Z2. The other two right handed neutrinos being even

under the Z2 symmetry couple to SM Higgs and generate non-zero masses for light neutrinos

via type-I seesaw. The absence of either the doublet or the singlet (odd under Z2), make the
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DM absurdly constrained from relic density and direct search prospects. Therefore, one can

simply see that the model under study is possibly the most economical one to simultaneously

address neutrino mass and a phenomenologically viable DM candidate of the universe.

We studied the allowed parameter space of the model taking into account all annihila-

tion and co-annihilation channels for DM mass ranging from 1 GeV to 1 TeV. The allowed

parameter space is shown in the ∆M ∼ mχ
3

plane, where mχ
3

is the mass of the dark matter

and ∆M is its mass difference with next to lightest dark sector particle. We confronted our

results with recent data from both PLANCK and XENON-1T to obtain the correct parameter

space satisfying both relic density and direct detection constraints. Since the DM is Majorana

in nature, it escapes from the strong Z-mediated direct detection constraint. As a result we

end up with relatively large singlet-doublet mixing. In particular, for DM mass of 1TeV, the

allowed singlet-doublet mixing can be as large as sin θ ∼ 0.6. This crucially distinguishes the

Majorana singlet-doublet DM from a vector like singlet-doublet DM. This feature also hasn’t

been highlighted in earlier analysis of a similar model framework.

Since with three right handed neutrinos, the model is qualified for a anomaly-free gauged

B-L extension, we studied how our results change in light of U(1)B−L gauge extension. Clearly,

the model requires an additional complex scalar singlet to break the gauge group and the

massive gauge boson ZBL further enhances the DM-SM coupling. The relic density allowed

parameter space additionally enhances due to ZBL resonance in regions where mDM < MZBL .

Also, the scalar sector mixes the SM doublet and additional singlet to produce two neutral

scalar fields to mediate DM-SM interactions and enhance direct search possibility. The con-

straint on gBL−MZBL from current LHC data is significant enough to ensure the coupling to

be minuscule for relatively smaller MZBL ∼ TeV, so that the DM signal at LHC doesn’t have

any additional contribution from ZBL mediation to ψ± pair production. However with larger

MZBL ∼ 4 TeV, the coupling (gBL) can be large enough to show up additional signal strength

at LHC, which can be probed in its high luminosity run. It is worthy to mention that both

the models offer variety of leptonic signatures like hadronically quiet opposite sign dilepton

(OSD), trilepton or four lepton in association with missing energy. In a toy simulation for

OSD events at LHC, we showed that it is easier to probe large ∆M regions of the model, char-

acteristic to the U(1)B−L scenario than the small ∆M regions characteristic to the framework

without U(1)B−L. The model may also offer displaced vertex or stable charge track whenever

the mass splitting ∆M between the charged companion and DM becomes very small.

Neutrino mass generation although fused naturally in this model, do not have direct

influence on the dark sector. However, the RH neutrino mass turns out crucial for the neutrino

sector, constrained from flavour changing decays like (µ → eγ). On the other hand, in the

small mixing scenario, DM mass is dominantly controlled by the RH neutrino odd under Z2

symmetry i.e. mDM ∼ MR1
. Since in the context of U(1)B−L model, the Majorana masses

of all the three RH neutrinos (including the one in the dark sector) are generated uniformly

from the same symmetry breaking scale, we can treat them as a common parameter of the

framework constrained by both dark sector and neutrino sector as a bridging ligand of the

model.
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Appendix

A DM-SM Interaction in model I

Expanding the covariant derivative of the Lagrangian given by Eq.2.1, we get the interaction

term of ψ0 and ψ± with the SM gauge bosons as follows:

Lint = Ψiγµ(−ig
2
τ.Wµ − ig′

Y

2
Bµ)Ψ

=
( e

2 sin θW cos θW

)

ψ0γµZµψ
0

+
e√

2 sin θW
(ψ0γµW+

µ ψ
− + ψ+γµW−

µ ψ
0)

− eψ+γµAµψ
−

−
( e cos 2θW
2 sin θW cos θW

)

ψ+γµZµψ
−.

(A.1)

where g = e
sin θW

and g′ = e
cos θW

with e being the electromagnetic coupling constant and θW
being the Weinberg angle.

These interactions, when written in terms of the physical states becomes:

Lint =
( e

2 sin θW cos θW

)

(− cos θχ
1Liγ

µZµχ2L − sin θχ
2Liγ

µZµχ3L + h.c.)

+
e√

2 sin θW
(cos θχ

1
γµW+

µ ψ
− + χ

2
iγµW+

µ ψ
− − sin θχ

3
γµW+

µ ψ
−)

+
e√

2 sin θW
(cos θψ+γµW−

µ χ1
− ψ+iγµW−

µ χ2
− sin θψ+γµW−

µ χ3
)

− e ψ+γµAµψ
−

− (
e cos 2θW

2 sin θW cos θW
) ψ+γµZµψ

−.

(A.2)

Another possibility of interaction between DM sector and the visible sector arises from

the Yukawa interaction term Y1√
2
ΨH̃(NR1

+(NR1
)c) and its hermitian conjugate by expanding

the SM Higgs H around its vev.Writing in terms of physical bases,

−LDM−Higgs =
Y1√
2

[

sin 2θ(χ
1
hχ

1
− χ

3
hχ

3
) + cos 2θ(χ

1
hχ

3
+ χ

3
hχ

1
)
]

. (A.3)

– 40 –



Additionally, dark sector particles can annihilate into Z2 even right handed neutrino NR2/3

and SM neutrinos via the Yukawa term
(

YjαNRjH̃
†Lα + h.c.

)

present in Eqn. 2.3. As it has

been stated already, the lightest stable particle χ
3

serves as the DM. The relic abundance of

χ
3

can be obtained through its annihilations to as well as through coannihilations with χ
1
, χ

2

and ψ± to SM particles. The main processes which contribute to the relic abundance of DM

are noted below:

χ
1
χ

1
→ hh,W+W−, ZZ, f f̄ ,NR2/3

ν̄e/µ/τ
χ

1
χ

2
→ hh, Zh,W+W−, ZZ, f f̄

χ
1
χ

3
→ hh,W+W−, ZZ, f f̄ ,NR2/3

ν̄e/µ/τ
χ

2
χ

1
→ hh, Zh,W+W−, ZZ, f f̄

χ
2
χ

3
→ hh, Zh,W+W−, ZZ, f f̄

χ
3
χ

1
→ hh,W+W−, ZZ, f f̄ ,NR2/3

ν̄e/µ/τ
χ

3
χ

2
→ hh, Zh,W+W−, ZZ, f f̄

χ
3
χ

3
→ hh,W+W−, ZZ, f f̄ ,NR2/3

ν̄e/µ/τ
χ

1
ψ± →W±γ,W±h,W±Z, f ′f

χ
2
ψ± →W±γ,W±h,W±Z, f ′f

χ
3
ψ± →W±γ,W±h,W±Z, f ′f

ψ±ψ∓ →W±W∓, Zh, γZ, γγ, ZZ, f f̄

B DM-SM Interaction in model II with U(1)B−L extension

The interaction terms of the dark and visible sector particles in the gauged U(1)B−L scenario

can be obtained by expanding the kinetic terms of Ψ and NR1
given in Eq.-5.3 as the following,

Lint = Ψiγµ[−ig
2
τ.Wµ − ig′

Y

2
Bµ − igBLYBL(ZBL)µ]Ψ

+NR1
iγµ(−igBLYBL(ZBL)µ)NR1

=
( e

2 sin θW cos θW

)

ψ0γµZµψ
0

+
e√

2 sin θW
(ψ0γµW+

µ ψ
− + ψ+γµW−

µ ψ
0)

− e ψ+γµAµψ
−

−
( e cos 2θW
2 sin θW cos θW

)

ψ+γµZµψ
−

− gBL

[

ψ0γµ(ZBL)µψ
0 + ψ+γµ(ZBL)µψ

− +NR1
γµ(ZBL)µNR1

]

.

(B.1)

where g = e
sin θW

and g′ = e
cos θW

with e being the electromagnetic coupling constant, θW
being the Weinberg angle and gBL is the U(1)B−L coupling constant. The other interaction is

through the Yukawa interaction term Y1ΨH̃NR1
, where we now have to also take into account
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the mixing between H ans ΦBL. In terms of physical bases χ
1
, χ

2
and χ

3
, the interaction

terms of DM with the SM gauge bosons are given by:

LDM−SM =

(
e

2 sin θW cos θW

)[

(2s23s13c13)
(
χ

3Lγ
µZµχ3L − χ

1Lγ
µZµχ1L

)

+
(
c23c13χ1Lγ

µZµχ2L − c213s23χ1Lγ
µZµχ3L − s13c23χ2Lγ

µZµχ3L + h.c.
)]

+
e√

2 sin θW

[

1√
2

(

(c13 − s13s23)χ1L + c23χ2L − (s13 + s23c13)
)
χ

3L

)

γµW+
µ ψ

−
L

+
1√
2

(

(c13 + s13s23)χ1L − c23χ2L − (s13 − s23c13)χ3L

))

γµW+
µ ψ

−
R + h.c.

]

− e ψ+γµAµψ
− −

( e cos 2θW
2 sin θW cos θW

)

ψ+γµZµψ
−.

(B.2)

Additionally we have the interactions of DM with ZBL as follows:

LDM−ZBL = −gBL
[

(s23s213 + c213c
2
23)
(
χ

3Lγ
µ(ZBL)µχ3L

+ (s213c
2
23 − s23s213)χ1Lγ

µ(ZBL)µχ1L + s223χ2Lγ
µ(ZBL)µχ2L

+ (
1

2
s223s13 + c23c13)(χ1Lγ

µ(ZBL)µχ2L + h.c)

+ (
1

2
s213c

2
23 − c213s23)(χ1Lγ

µ(ZBL)µχ3L + h.c.)

+ (
1

2
s223c13 − s13c23)χ2Lγ

µ(ZBL)µχ3L + h.c.)
]

− gBLψ
+γµ(ZBL)µψ

−.

(B.3)

Here, we abbreviated sin 2θij and cos 2θij as s2ij and c2ij respectively. We note that in

the limit sin θ23 → 0 (along with gBL → 0), we get back to the interactions present in A.2.

DM-Scalar interaction also have additional channels from H and ΦB−L mixing given by,

−LDM−Higgs =
Y1
2
(h1 cosβ − h2 sinβ)

[(

(c13 − s13s23)χ1L + c23χ2L − (s13 + s23c13)χ3L

)

(

s13c23(χ1L)
c + s23(χ2L)

c + c13c23(χ3L)
c
)

+ h.c.
]

+
y′1
2
√
2
(h2 cosβ + h1 sinβ)

[(

s13c23(χ1L)
c + s23(χ2L)

c + c13c23(χ3L)
c
)

(

s13c23χ1L + s23χ2L + c13c23χ3L

)

+ h.c.
]

,

(B.4)

where h1, h2 are the two physical scalars of the model and β represents H − ΦB−L mixing

angle. The annihilation channels of dark matter in the U(1)B−L extended case differs from the

one without it, by having additional ZBL and an additional scalar present both in mediator

as well as in final states. The following processes contributes to the relic abundance of the

DM particle χ
3

in this model with U(1)B−L extension.
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χ
1
χ

1
→ h1h1, h2h2, h1h2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
1
χ

2
→ h1h1, h2h2, h1h2, Zh1, Zh2, ZBLh1, ZBLh2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
1
χ

3
→ h1h1, h2h2, h1h2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
2
χ

1
→ h1h1, h2h2, h1h2, Zh1, Zh2, ZBLh1, ZBLh2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
2
χ

2
→ h1h1, h2h2, h1h2, Zh1, Zh2, ZBLh1, ZBLh2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
2
χ

3
→ h1h1, h2h2, h1h2, Zh1, Zh2, ZBLh1, ZBLh2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
3
χ

1
→ h1h1, h2h2, h1h2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
3
χ

2
→ h1h1, h2h2, h1h2, Zh1, Zh2, ZBLh1, ZBLh2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
3
χ

3
→ h1h1, h2h2, h1h2,W

+W−, ZZ, ZBLZBL, ZZBL, f f̄ , NR2/3
NR2/3

, NR2/3
ν̄e/µ/τ

χ
1
ψ± →W±γ,W±h1,W

±h1,W
±Z,W±ZBL, f

′f

χ
2
ψ± →W±γ,W±h1,W

±h1,W
±Z,W±ZBL, f

′f

χ
3
ψ± →W±γ,W±h1,W

±h1,W
±Z,W±ZBL, f

′f

ψ±ψ∓ →W±W∓, Zh1, Zh2, ZBLh1, ZBLh2, γZ, γγ, ZZ,ZBLZBL, ZZBL, f f̄
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