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Single-cell transcriptomics and cell-specific
proteomics reveals molecular signatures of sleep
Pawan K. Jha1,2,5, Utham K. Valekunja1,2,5, Sandipan Ray1,2,3, Mathieu Nollet1,2,4 & Akhilesh B. Reddy 1,2✉

Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste

clearance, metabolism, and immune responses. The molecular mechanisms governing

sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and

cell-type-specific proteomics to interrogate the molecular underpinnings of sleep. Different

cell types in three important brain regions for sleep (brainstem, cortex, and hypothalamus)

exhibited diverse transcriptional responses to sleep need. Sleep restriction modulates

astrocyte-neuron crosstalk and sleep need enhances expression of specific sets of tran-

scription factors in different brain regions. In cortex, we also interrogated the proteome of

two major cell types: astrocytes and neurons. Sleep deprivation differentially alters the

expression of proteins in astrocytes and neurons. Similarly, phosphoproteomics revealed

large shifts in cell-type-specific protein phosphorylation. Our results indicate that

sleep need regulates transcriptional, translational, and post-translational responses in a

cell-specific manner.
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S
leep is an essential component of daily life. The explicit
function of sleep is still a mystery. Insufficient or disturbed
sleep is associated with the accumulation of brain waste,

cognitive impairments, increased risk of metabolic abnormalities,
and suppressed immune responses1–4. Restoration of many of
these abnormalities by sleep suggests that prolonged wakefulness
imposes a load on the system that is alleviated by sleep2,5–7. The
progressive rise of sleep need during wakefulness, and its dis-
sipation during sleep, maintain sleep homeostasis8,9.

Sleep homeostasis is an intrinsic process that regulates sleep
need by the cumulative and interactive action of multiple brain
regions and cells10–12. Sleep-wake cycles are regulated mainly in
the hypothalamus, brainstem, and cortex of the brain13,14.
Although prior work has described bulk transcriptional responses
of various brain regions following acute sleep restriction15–19,
cell-type-specific changes in gene and protein expression have not
been delineated. Thus, there is a gap in our knowledge concerning
the cell types that are responsible for transcriptional changes
during sleep deprivation, and whether different cell types are
affected in different ways by sleep deprivation. Here, we set out to
bridge this gap by determining the molecular changes within
individual brain cells across sleep-wake states.

We used single-cell RNA sequencing (scRNA-seq) to compare
the cellular composition and transcriptomic profiles of the
brainstem, cortex, and hypothalamus of mice going through
different sleep treatments. For all the major cell populations that
are responsive to sleep treatments, we provide a comprehensive
census of gene expression and analysis of molecular pathways
affected. We show that sleep need regulates the transcriptional
profiles of brain cells in the three brain regions differently. Given
that astrocyte-neuron signaling plays a crucial role in homeostatic
brain function20, we delineated ligand-receptor interactions that
are altered by sleep treatments within these cell types. Our
scRNA-seq data enabled us to identify uniquely enriched tran-
scription factors controlling changes in gene expression in the
brain cells from sleep-deprived animals. We also analyzed the
change in protein levels, and post-translational phosphorylation,
following sleep treatments in cortical astrocytes and neurons.
Taken together, this study substantially advances our under-
standing of the molecular changes in sleep homeostasis at the
individual brain cell level and serves as a foundation for further
cell-specific interrogation of sleep need.

Results
Sleep phenotyping and experimental design. We sleep-restricted
wild-type C57BL/6 J mice by prolonging their wakefulness into
the light phase of the light-dark cycle, from ZT0 to ZT12 (ZT;
zeitgeber time). This is when mice normally obtain 60–70% of
their daily sleep21. We recorded the electroencephalography
(EEG) throughout the experiment (Day 1: baseline, Day 2: sleep
deprivation and recovery, Day 3: recovery). To characterize sleep
loss due to sleep deprivation we analyzed the time spent in sleep
and wake, delta, and theta power throughout the time course of
the experiment (Fig. 1c, d and Supplementary Fig. 1). Animals
had 91% sleep loss in the first six hours of sleep restriction (ZT0-
6) and 86% in the later six hours (ZT6-12) (Fig. 1b). As expected,
the mice showed increased sleep need, as evidenced by elevated
slow-wave activity (SWA) and delta power (1–4 Hz) in their EEG
traces in the recovery period after sleep deprivation8,9 (Fig. 1d
and Supplementary Fig. 1d). Despite having a strong circadian
activity component during the recovery period (circadian night-
time), we reported a significant rise in NREM sleep from
ZT12–18 and NREM delta power from ZT12–14 compared to
their corresponding baseline hours (Fig. 1c, d and Supplementary
Data 1). Our sleep restriction protocol did not affect the plasma

corticosterone level of the experimental animals (Supplementary
Fig. 1e). This indicates accumulated sleep pressure during pro-
longed wakefulness is independent of stress.

We next divided the mice into three experimental groups: a
control normal sleep (NS) group, a 12 h sleep deprived (SD)
group, and a sleep deprivation followed by 24 h of recovery sleep
(RS) group (Fig. 1a). From each group, we collected samples from
three brain regions (brainstem, cortex, and hypothalamus) that
are pivotal for regulating sleep-wake cycles14,22. Importantly, we
controlled for variation due to time of day by harvesting brain
tissue at the same circadian phase (ZT12) (Fig. 1a). We then
performed single-cell RNA sequencing (scRNA-seq) on cell
suspensions from each brain region, in each sleep treatment
group (Fig. 2a).

Identification and transcriptional profiling of brain cells across
sleep-wake states. To understand how the change in sleep-wake
states affects gene expression patterns within the cells of all three
brain areas, we transcriptionally profiled cells and visualized them
using a nonlinear dimensionality-reduction method, uniform
manifold approximation and projection (UMAP) (Fig. 2b, c)23.
Considering all three experimental sleep groups and the three
brain regions together, we generated clusters from the quality
criteria passed 29,051 cells (Supplementary Fig. 2a–c). When we
analyzed each brain region individually, we found that individual
cells were distributed among distinct clusters for each brain
region, and there was no variation in these clusters for different
sleep treatments (Fig. 2c). This indicates there was no global shift
in the molecular identity of cells in each brain region during sleep
deprivation and recovery, which was as expected for terminally
differentiated cells in the brain.

We next used UMAP to subdivide the globally defined clusters
within the brain regions and used these subclusters to identify cell
types based on known markers derived from existing single-cell
data, and the available literature24–27 (Figs. 3a, b, 4a, b, 5a, b and
Supplementary Fig. 2d–f, and Supplementary Table 1). We
classified 10,521 cells into 18 clusters defining 12 cell types within
the brainstem, 8451 cells into 14 clusters defining 10 cell types
within the cortex, and 10,081 cells into 19 clusters defining 13 cell
types within the hypothalamus. Cell types included astrocytes,
endothelial cells, ependymocytes (EPC), hemoglobin-expressing
vascular cells (HbVC), macrophages, microglia, neurons (Gluta-
matergic, GABAergic, Inhibitory, and Other), oligodendrocytes
(Oligo), pericytes and vascular smooth muscle cells, arterial
(VSMCA) (Supplementary Fig. 2d–i).

Next, to understand how the change in sleep need affects
transcriptional profiles of cells in the brainstem, cortex, and
hypothalamus, we performed differential gene expression analysis
of the three sleep treatment groups for each cell type we identified
(Figs. 3c–e, 4c–e, 5c–e). We found distinct patterns of transcrip-
tional response to sleep need in the astrocytes, neurons,
endothelial cells, and microglia of all three brain regions.
Pericytes, VSMCAs and EPCs of the brainstem and hypothala-
mus also showed similar changes. Interestingly, compared to
neurons, astrocytes showed larger alterations in the brainstem
and hypothalamus, despite higher proportions of cells identified
as neurons in the hypothalamus (Supplementary Table 2 and 3).
Of note, there was not a large change in gene expression patterns
of Oligo, HbVC, and macrophage cell types following sleep
treatments (Figs. 3c–e, 4c–e, 5c–e).

We then determined the overlap of sleep-related alterations
between previous bulk cell RNA-seq studies and our scRNA-seq
data to assign cell types for those genes28–30. We were thus able to
assign some expression changes found previously in bulk RNA
profiling to astrocytes, neurons, endothelial cells, and microglia in

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03800-3

2 COMMUNICATIONS BIOLOGY |           (2022) 5:846 | https://doi.org/10.1038/s42003-022-03800-3 | www.nature.com/commsbio

www.nature.com/commsbio


the cortex and hypothalamus using our novel single-cell data
(Supplementary Fig. 3a, b and Supplementary Table 4).

We next performed gene-annotation enrichment analysis of
genes differentially expressed across sleep treatments in the cells
of the brainstem, cortex, and hypothalamus (Supplementary
Figs. 4, 5). In astrocytes, we found significant alterations in genes
involved in ribosomal assembly, ribosomal RNA (rRNA)
processing, and transmembrane transporter activity. In contrast,
vesicle-mediated transport in synapses and nucleotide/nucleoside
phosphate metabolism were altered in neurons (Supplementary
Figs. 4a, b & 5a, b).

Cell types in different brain areas did not respond to sleep
deprivation in the same way. For example, cortical neurons
favored genes associated with kinesin binding (and thus
anterograde synaptic vesicle transport towards dendrites),
whereas hypothalamic neurons responded by altering syntaxin-
1 and calcium-dependent protein binding, consistent with their
role in vesicle exocytosis (Supplementary Fig. 4b). In contrast,
brainstem neurons displayed alterations in genes associated with
cytochrome c oxidase activity, suggesting that mitochondrial
energy balance is a key process altered in this area. These data
suggest distinct functions of sleep in each brain region.

Interestingly, even other “support” cells in the brain exhibited
region-specific functional changes. Endothelial cells showed
enrichment of protein folding, and epithelial cell proliferation
and migration terms, whereas microglia showed changes in genes
linked to neuroinflammatory responses and glial cell activation
(Supplementary Fig. 5c, d). We also found that EPCs, pericytes,
and VSMCAs exhibited significant alterations in annotations
associated with protein folding, cellular transition, metal ion
homeostasis, and amine metabolism (Supplementary Fig. 5e–g).
Some of these annotations (e.g., protein folding and neuroin-
flammatory response) have been reported in previous sleep
studies mapping bulk gene expression changes in the brain17,31,32.
Overall, these results show that alteration of sleep need causes
profound and functionally distinct gene expression changes

within individual cells residing in different brain regions. Our
results provide a resource to interrogate sleep-associated gene
expression changes in the cells of the brainstem, cortex, and
hypothalamus33,34.

Validation of transcriptional changes occurring during sleep
treatments. Next, we independently validated our sequencing
results by using RNAscope in situ hybridization assays (Fig. 6a).
We analyzed mRNA counts per cell in the cortex and hypotha-
lamus of mice brains subjected to sleep treatments. Both
sequencing and in situ hybridization results reveal that sleep
deprivation enhances the expression of metallothionein-1 (Mt1),
TSC22 domain family, member 3 (Tsc22d3), and gap junction
protein, beta 6 (Gjb6) in the cortex, and expression levels decrease
after recovery sleep (Fig. 6b–d). Similarly, in the hypothalamus,
sleep deprivation increases the expression of Mt1, but moderately
decreases ATPase, Na+/K+ transporting, beta 2 polypeptide
(Atp1b2), and these levels are further decreased following
recovery sleep (Fig. 6e, f). The similar gene expression patterns
across sleep treatments revealed by single-cell sequencing and
RNAscope thus validate the sequencing results (Fig. 6).

Sleep need alters astrocyte-neuron interactions. Astrocyte-
neuron signaling is a key player in the maintenance of homeo-
static brain function because of coupling between these cell
types20. This is likely to be highly relevant in the context of sleep
homeostasis35,36. We, therefore, used our single-cell tran-
scriptomics data to investigate sleep-related changes in astrocyte-
neuron communication. We built comprehensive interactive
networks of ligands from astrocytes, and receptors expressed in
neurons, and vice versa, across all sleep treatment groups in the
brainstem, cortex, and hypothalamus (Fig. 7a–f, and Supple-
mentary Fig. 6a–g). We found significant network interactions for
Apoe (Fig. 7a–f) and Pomc signaling (Fig. 7d, e), which are key
communication nodes in the hypothalamus. Apoe was also

Fig. 1 Study design and EEG validation of sleep phenotype during sleep deprivation experiment. a Experimental timeline and tissue collection schedule

(black bars represent darkness, white bars indicate periods of light). b Percentage of wakefulness during the first half (ZT0-6) and the second half (ZT6-12)

of sleep deprivation. c, d Ribbon plots showing the time course of 2 hourly binned values of (c) NREM state and (d) NREM delta (δ)-power percentage of

ZT8-12 from Day 1. Horizontal red bar represents the timeline of sleep deprivation (Day 2, ZT 0-12; 12 h duration). Pink and blue bars under the plots

denote significant increase and decrease, respectively, compared to Day 1 (P < 0.05). Data are mean ± s.e.m. n= 6 biological replicates. Paired t-test, two-

tailed (b). Repeated-measures two-way ANOVA followed by post-hoc Fisher’s Least Significant Difference (LSD) test (c and d). For sample sizes and

statistics, see Supplementary Data 1.
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upregulated in the brainstem following sleep deprivation (Sup-
plementary Fig. 6a). Interestingly, these genes are linked to sleep
consolidation, cognition, and Alzheimer’s disease37,38. We also
found that BDNF signaling is a mediator of crosstalk between
neurons and astrocytes in the cortex (Supplementary Fig. 6f, g).
Again, the role of Bdnf in sleep, insomnia, and stress-related
disorders has been documented39. Collectively, these results
suggest that specific routes of intercellular crosstalk between
astrocytes and neurons are important in sleep regulation.

Sleep modulates gene regulatory processes. To examine how
sleep state controls gene expression changes, we used Single-cell
regulatory network inference and clustering (SCENIC) to deter-
mine regulons that might coordinate expression patterns38. We
first evaluated regulon activity scores to profile cells under normal

sleep and sleep-deprived conditions. We then used regulon target
information to sort transcription factors (TFs) with their sets of
co-expressed target genes (Fig. 7g–i). When we performed gene-
annotation enrichment analysis of co-expressed target genes
(Supplementary Table 5), we determined different functional
annotations predominated in each brain region. The brainstem
showed negative regulation of macromolecule biosynthesis
(mediated by Sox2) and RNA metabolic processes (Foxj1)
(Fig. 7g). In contrast, the cortex expresses TFs that regulate
biological rhythms (Hlf) and haemopoiesis (Cebpb) (Fig. 7h).
Interestingly, these functions have been reported in recent sleep
studies40,41. Unlike other brain areas, we identified hypothalamic
TFs that regulate calcium ion homeostasis (Atf3), cell death
(Fosb), and muscle system process (Mef2c) (Fig. 7i). Recent evi-
dence suggests that Mef2c plays a role in sleep regulation42.

Fig. 2 Transcriptional profile of brainstem, cortex, and hypothalamic cells across sleep-wake states. a Workflow for single-cell RNA-seq of cells from

brainstem, cortex, and hypothalamus, from microdissection to bioinformatics analysis. Dotted red line indicates areas of each brain region dissected for

single-cell sequencing. b, c UMAP visualization of 29,051 cells. Cells from Normal Sleep (NS), 12 h Sleep Deprivation (SD), and 12 h Sleep Deprivation

followed by 24 h Recovery Sleep (RS) treatment groups from all three brain regions are clustered together (b) and separately highlighted (c).
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Fig. 3 Sleep treatments alter the expression profile of cells in the brainstem. a UMAP visualization of brainstem cells clustered. Cell clusters were colour

coded and annotated based on their transcriptional profiles (See details in Methods). b Violin plots for each cluster show the expression level of selected

known cell-type enriched markers. Actb (beta-actin) is shown as a positive control in all cell types (see Supplementary Table 1). c–e Strip chart showing

changes in gene expression of Sleep Deprived (SD)/Normal Sleep (NS) (c), Sleep Deprived (SD)/Recovery Sleep (RS) (d), and (e) Recovery Sleep (RS)/

Normal Sleep (NS) comparisons. Wilcoxon rank-sum tests followed by false discovery rate (FDR) analysis were used to compare the groups. Significantly

upregulated and downregulated genes are colour coded with red and blue, respectively (Bonferroni adjusted P value < 0.1). Genes in grey are not

significantly changed after sleep deprivation (see Supplementary Table 2). EPC ependymocytes, HbVC hemoglobin-expressing vascular cells, Oligo

oligodendrocytes, VSMCA Vascular smooth muscle cells, arterial.
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Fig. 4 Sleep treatments alter the expression profile of cells in the cortex. a UMAP visualization of cortex cells clustered. Cell clusters were colour coded

and annotated based on their transcriptional profiles (See details in Methods). b Violin plots for each cluster show the expression level of selected known

cell-type enriched markers. Actb (beta-actin) is shown as a positive control in all cell types (see Supplementary Table 1). c–e Strip chart showing changes in

gene expression of Sleep Deprived (SD)/Normal Sleep (NS) (c), Sleep Deprived (SD)/Recovery Sleep (RS) (d), and (e) Recovery Sleep (RS)/Normal Sleep

(NS) comparisons. Wilcoxon rank-sum tests followed by false discovery rate (FDR) analysis were used to compare the groups. Significantly upregulated

and downregulated genes are colour coded with red and blue, respectively (Bonferroni adjusted P value < 0.1). Genes in grey are not significantly changed

after sleep deprivation (see Supplementary Table 2). HbVC hemoglobin-expressing vascular cells, Oligo oligodendrocytes, VSMCA Vascular smooth

muscle cells, arterial.
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Together, these results show that distinct TFs in each brain region
appear to regulate single-cell gene expression.

Sleep need regulates translational responses of cortical astro-
cytes and neurons. Multiple studies in several biological domains

have shown that there is a poor relationship between gene and
protein expression in global analyses43–48. Moreover, in the
context of sleep, no studies have been performed to investigate
sleep need regulation within specific cell types for proteome shifts
in the cortex (or any other brain region). Given that cortex has
two principal cell types that are likely to be key in sleep regulation
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(astrocytes and neurons), we next examined protein expression
in these cells. We purified astrocytes and neurons from the
cortex using magnetic cell separation (Fig. 8a, Methods) and then
performed quantitative global- and phospho-proteomics by
using multiplex tandem mass tag (TMT) labeling coupled with
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
(Fig. 8a, Methods).

We quantified 2454 proteins expressed in astrocytes and 1401
in neurons. To understand how sleep-wake states affect protein
abundance in astrocytes and neurons, we compared protein
expression in both cell types exposed to different sleep treatments
(Fig. 8b and Supplementary Fig. 7a, c). The proportion of altered
proteins was higher in neurons (318/1401, 22.7%; 1.5-fold cutoff,
FDR < 0.1) than in astrocytes (93/2454, 3.7%; 1.5-fold cutoff,
FDR < 0.1) following sleep treatments. We reported similar trends
when we compared mRNA expression in cortical astrocytes and
neurons (Supplementary Table 2). We hypothesized that this
similarity might be a manifestation of astrocyte-neuron commu-
nication to maintain synaptic and metabolic homeostasis, as
astrocytes bolster the structure and function of neurons. To test
this, we performed gene ontology (GO) analysis on differentially
expressed proteins in both cell types. In astrocytes, we found
prominent alterations of actin filament organization, regulation of
cellular component size, synapse organization, and regulation of
synapse structure or activity. In contrast, vesicle-mediated
transport in synapse, regulation of neurotransmitter levels, and
signal release from synapse were enriched in neurons (Fig. 8d, e).
Next, we determined these differences are due to sleep treatments,
not due to a global difference in protein abundance between the
cell types, for this we analyzed the gene annotations of all proteins
expressed versus differentially expressed proteins within these cell
types (Supplementary Tables 6 and 7).

We also analyzed protein-protein interaction (PPI) networks
using STRING to identify biological pathways altered by sleep
treatments in astrocytes and neurons49 (Fig. 8f, g). Sleep-
regulated astrocyte proteins segregated into clusters enriched
for the spliceosome, fatty acid degradation, and endocytosis
(Fig. 8f). Neurons, however, were focused on various networks
including the synaptic vesicle cycle, glucose metabolism (glyco-
lysis, gluconeogenesis, TCA cycle), and branched-chain amino
acid (valine, leucine, isoleucine) degradation (Fig. 8g). Thus,
neurons display prominent responses of vesicular machinery and
energy production, in contrast, to support function responses of
astrocytes. Interestingly, proteins associated with the endoplasmic
reticulum and regulation of actin cytoskeleton function were
enriched in both cell types, suggesting a concerted role in sleep.

Sleep need regulates post-translational responses of cortical
astrocytes and neurons. Protein phosphorylation modulates
protein function in a reversible manner50. Recent evidence sug-
gests that sleep need modulates protein phosphorylation
cycles51,52, but cell type contributions to these are unknown. We,
therefore, performed phosphoproteomics on neuron and astro-
cyte lysates (Fig. 8a, Methods) and compared protein phos-
phorylation profiles of sleep treatment groups in both cell types

(Fig. 8c and Supplementary Fig. 7b, d). We identified 1591
phosphorylation sites in astrocytes and 1159 in neurons. Sleep
treatments altered 134 phosphorylation sites in astrocytes and
263 in neurons (Fig. 8c, Supplementary Fig. 7b, d). These phos-
phorylation sites were from 92 and 156 unique proteins from
astrocytes and neurons, respectively.

Next, we determined the overlap between sleep-related changes
in protein phosphorylation from whole brain proteome data from
Wang et al. (2018) and our cortical astrocyte and neuron data and
were able to assign cell types to some of the differentially
expressed phosphosites found previously51 (Supplementary
Fig. 8a, and Supplementary Table 8). Comparative GO analysis
between total versus differentially altered phosphorylated proteins
revealed that sleep treatments alter phosphorylation of proteins
associated with the regulation of cellular component size, protein
complex assembly, and neurotransmitter secretion in astrocytes.
By contrast, phosphorylation affects the synaptic vesicle cycle,
vesicle-mediated transport in synapses, and calcium-mediated
signaling proteins in neurons (Supplementary Tables 9 and 10).
Thus, like single-cell transcriptomics, global proteomics and
phosphoproteomics demonstrate that sleep need regulates cellular
functions in astrocytes and neurons in a cell-specific manner.

Discussion
In this study, we provide a comprehensive single-cell tran-
scriptome profiling of the cell types within three brain areas
(brainstem, cortex, and hypothalamus) of mice in different sleep
stages. We found sleep need modulates transcriptional patterning
of astrocytes, neurons, endothelial cells, and microglia in all three
brain regions. We also utilized our single-cell gene expression
information to interrogate remodeling of astrocyte-neuron sig-
naling during sleep and determined expression changes in tran-
scription factors that may mediate these effects. Cell-specific
proteomics reveals that sleep need regulate translational and post-
translational responses of astrocytes and neurons in the cortex
differently.

Previous bulk RNA quantification methods could not reveal
the cell-specific differential expression changes that we found in
this study. Our differential gene expression analysis within indi-
vidual cell types did not show a universal sleep-related changes,
but rather a distinct pattern of transcriptional responses of sleep
need in each cell type. Moreover, this was not the same for dif-
ferent brain regions, further highlighting those cells in their local
milieu respond to the same stimulus (sleep deprivation and
recovery) in different ways. The transcriptional responses of sleep
need also vary between the cortex and hypothalamus when RNA
is quantified in bulk RNA-seq28–30. Indeed, in our analyses, we
were able to retrospectively assign gene expression changes seen
in these bulk microarray or sequencing studies to specific cell
types, enhancing the utility of these studies further.

Single-cell RNA-seq analysis has also advanced our under-
standing of the functional pathways affected by sleep perturba-
tions. Pathway analysis revealed different patterns of sleep-driven
changes across cell types and brain areas. For example, we found
that sleep need alters gene expression associated with ribosomal

Fig. 5 Sleep treatments alter the expression profile of cells in the hypothalamus. a UMAP visualization of hypothalamus cells clustered. Cell clusters

were colour coded and annotated based on their transcriptional profiles (See details in Methods). b Violin plots for each cluster show the expression level

of selected known cell-type enriched markers. Actb (beta-actin) is shown as a positive control in all cell types (see Supplementary Table 1). c–e Strip chart

showing changes in gene expression of Sleep Deprived (SD)/Normal Sleep (NS) (c), Sleep Deprived (SD)/Recovery Sleep (RS) (d), and (e) Recovery Sleep

(RS)/Normal Sleep (NS) comparisons. Wilcoxon rank-sum tests followed by false discovery rate (FDR) analysis were used to compare the groups.

Significantly upregulated and downregulated genes are colour coded with red and blue, respectively (Bonferroni adjusted P value < 0.1). Genes in grey are

not significantly changed after sleep deprivation (see Supplementary Table 2). EPC ependymocytes, HbVC hemoglobin-expressing vascular cells, VSMCA

Vascular smooth muscle cells, arterial.
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Fig. 6 In situ hybridisation validation of transcriptional changes following sleep treatments. a Regions of interests (ROIs) for RNAscope analysis are

shown on the coronal micrograph, scale bar, 1 mm (from Allen Brain Atlas). b–f Comparison of RNAscope single cell in situ hybridization and sequencing of

(b) Mt1, (c) Tsc22d3, (d) Gjb6 expression in cortex, and (e) Mt1, (f) Atp1b2 expression in hypothalamus across sleep treatment groups. Micrographs of

mouse cortices and hypothalamic shown. mRNA molecules are brown dots as revealed by Diaminobenzidine (DAB), and nuclei are counterstained blue

(with haematoxylin). Scale bar, 20 µm. mRNA were counted from cells of n= 3 biological replicate brains per group. Kruskal–Wallis test followed by post-

hoc Dunn test. Boxplots represent lower bases as minimum, upper top as maximum, and dark horizontal lines within boxes as median. *P < 0.01. NS normal

sleep, SD sleep deprived, RS recovery sleep. For sample sizes and statistics, see Supplementary Data 1.
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Fig. 7 Sleep need modulates cell-cell communication and gene regulatory networks. a–f Interactions between differentially expressed ligands of

astrocytes and receptors of neurons for (a) NS versus SD, (b) SD versus RS, and (c) NS versus RS comparisons, and ligands of neurons and receptors of

astrocytes for (d) NS versus SD, (e) SD versus RS, and (f) NS versus RS comparisons in the hypothalamus. Nodes represent ligands or receptors in

astrocytes and neurons, respectively. Node outline thickness indicates the level of significance (Benjamini-Hochberg adjusted P-value). Colour of nodes and

edges represents the magnitude of alteration in expression (log fold-change, logFC) (see Methods). g–i Uniquely expressed transcription factors (rows)

in sleep-deprived cells and their co-expressed gene sets (columns) in (g) brainstem, (h) cortex, and (i) hypothalamus. For specific GO terms of the co-

expressed genes, see Supplementary Table 5. NS normal sleep, SD sleep deprived, RS recovery sleep.
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Fig. 8 Sleep deprivation regulates the global and phosphoproteome of astrocytes and neurons in the cerebral cortex. a Schematic of proteomics

workflow. Dotted red line indicates the area of the cortex dissected for magnetic cell separation (see Methods). b, c Strip charts showing changes in (b)

global and (c) phosphoproteome for Sleep Deprived (SD)/Normal Sleep (NS) comparisons in astrocytes and neurons. Unpaired t-tests followed by false

discovery rate (FDR) analysis were used to compare groups. Significantly upregulated and downregulated protein expression is colour coded with red and

blue, respectively (Benjamini-Hochberg adjusted P value < 0.1). Proteins in grey are not significantly changed after sleep deprivation. d, e Dot plots showing

significantly enriched top functional annotations from global proteomes of (d) astrocytes and (e) neurons. Circle size is proportional to protein count and

level of significance (Benjamini-Hochberg adjusted P value < 0.05) is colour coded (see Supplementary Tables 6 and 7). f, g Interaction networks of

significantly altered (FDR < 0.1) global proteins in (f) astrocytes and (g) neurons across sleep treatments. Functional enrichment of proteins (KEGG

pathways) in the network is colour coded. The networks were generated using STRING Version 11.0 database (PPI enrichment P value < 0.001).
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biogenesis in astrocytes, but vesicle-mediated transport in
synapses and nucleotide/nucleoside phosphate metabolism in
neurons. Endothelial cells exhibit changes in protein folding
pathways, whereas microglia show neuroinflammatory responses.
Interestingly, protein folding and neuroinflammatory responses
have been documented in previous sleep studies17,31,32,53. To the
best of our knowledge, these results provide cell specificity to
these sleep-related responses for the first time. Furthermore, the
same cell type in different brain areas performed variable mole-
cular functions to regulate diverse biological processes, indicating
brain region-specific molecular responses of sleep need. Collec-
tively, these data indicate that the transcriptional response of
sleep loss is not identical in all cell types and brain areas, rather
this response is cell type, and brain region-specific.

How are the specific transcriptional changes brought about?
We were able to identify transcription factors (TF) that mediate
gene expression changes in each cell type in sleep-deprived cells
from the brainstem, cortex, and hypothalamus. Interestingly, we
found no common TF in any two brain areas. This analysis
revealed that the key TFs in the brainstem are Sox2, Nfe2l1, Mafb,
Foxj1, Zic1, and Lef1, whereas in the cortex they were Tef1, Hlf1,
Cebpb, and Sox9, and in hypothalamus Mef2c, Fosb and Atf3.
Future studies will explore directly (e.g., using loss-of-function
approaches) the roles of these TFs in sleep homeostasis.

Astrocytes and neurons are major cell types of the brain that
are likely to be important in sleep. Since we were able to delineate
transcriptional changes in each of these cell types, this enabled us
to determine new relationships between the two cell types in
sleep. We generated networks of receptor-ligand interactions to
decipher sleep-driven astrocyte-neuron communications in all
three brain regions. The significance of these interactive networks
is of high importance as some recent findings show that astro-
cytes interact with neurons to modulate sleep circuitry, and
metabolic coupling between them, across the sleep-wake
cycle35,36,54. Thus, the discovery of these factors, and their
source and target, is a fruitful avenue to define therapeutic
interventions of sleep abnormalities. We found Apoe, Pomc and
Bdnf signaling were modulated by sleep in the different brain
regions. Of note, the role of these genes in sleep-related pathol-
ogies have been described37,39,55. Our study advances our
understanding by showing the cell types involved, and the
directionality of changes in intercellular ligand-receptor signaling.
Such insights will enable further mechanistic studies targeting
these ligands and receptors to modulate sleep, and potentially
develop therapeutic agents that manipulate these pathways.

To gain further insights into the functional implication of sleep
need in astrocytes and neurons, we performed proteomics and
phosphoproteomics. We found that 22% of neuronal proteins
responded to sleep perturbation compared to only 3% in astro-
cytes. This suggests that astrocytes are less responsive to acute
sleep pressure than neurons. Interestingly, a previous sleep study
using a 6 h sleep deprivation paradigm concluded that the whole
brain proteome remains globally stable following sleep
treatments51. There are some possible explanations of the dis-
parity between those findings and ours. First, differences could be
due to reciprocal changes in different brain areas and/or cell types
that may have been “masked” by bulk cell proteomics, particu-
larly in whole brain samples; our study used cortex only. Second,
6 h of sleep deprivation (compared to 12 h used here) may not
have been sufficient time for transcriptional changes to become
apparent at the protein level. We propose that astrocytes show
relative resistance to sleep need and may thereby provide stable
support to rapidly changing neurons via metabolic coupling36.
The biological functions of sleep-mediated alterations include
actin filament bundle organization, positive regulation of ion
transport, synapse organization, and fatty acid degradation in

astrocytes, and vesicle-mediated transport in synapse, regulation
of neurotransmitter levels, and glucose metabolism in neurons.
These functions support the proposed importance of synapse and
energy homoeostasis as functions of sleep-wake cycles5,6. Our
results now provide cell-specific compartmentalization of these
functions.

Sleep need influences the circadian pacemaker. However, the
molecular mechanism of this interaction is largely unknown9.
Sleep deprivation does not affect clock gene expression within the
mammalian central pacemaker, the suprachiasmatic nucleus
(SCN), but does modulate extra-SCN clock gene
expression40,56,57. This indicates sleep need could influence daily
gene expression rhythms in brain areas outside of the SCN. Sleep
deprivation completely abrogates the daily oscillation of forebrain
synaptic proteins and their phosphorylation15,52. This is not
confined to the brain, as Lu and colleagues reported the loss of
daily rhythms of 87% of oscillating transcripts within the lungs in
response to sleep loss. Interestingly, clock gene expression in the
lung remained rhythmic after sleep deprivation58. Although our
study focuses on the unimodal changes of the transcription,
translation, and post-translation at the one time of day (ZT12),
information about cell-specific alterations in gene and protein
expression will be useful to design targeted time course experi-
ments to understand how sleep need affects molecular oscillations
in a cell-specific manner.

We reported diverse functional annotations of gene and pro-
tein (and phosphoprotein) expression in the cells from all three
brain regions. This indicates that sleep is regulated differentially
at transcriptional, translational, and post-translational levels
within individual cell types. The ensemble of cellular processes
regulated at these levels include synapse organization, synaptic
vesicle recycling, protein folding, ribosome function, and glucose
metabolism. As such, we propose that prolonged wakefulness
during sleep deprivation leads not only to sleepiness, but could
also impair cognition, physiology, and metabolism via the diverse
molecular responses we identified in individual brain cells.
Moreover, we suggest that sleep need could be a compensatory
mechanism to reverse such molecular changes in the brain.
Overall, these results will help to advance a variety of efforts
towards understanding the cellular and molecular mechanisms of
sleep and wake and provide a critical path to dissect sleep
functions.

Methods
Animals. All animal studies were carried out in concordance with an approved
protocol from the Institutional Animal Care and Use Committee (IACUC) at
Perelman School of Medicine at the University of Pennsylvania or under license by
the United Kingdom Home Office under the Animals (Scientific Procedures) Act
1986, with Local Ethical Review by the Francis Crick Institute Animal Welfare &
Ethical Review Body Standing Committee (AWERB). Wild type, male C57BL/6 J
mice were purchased from Charles River and allowed to acclimatize in the animal
unit for at least 2 weeks prior to experiments. Mice were selected such that, at the
time of experiments, they were aged between 9–11 weeks. Before sleep deprivation,
mice were singly housed in automated sleep fragmentation chambers (Model
#80391, Campden/Lafayette Instrument Lafayette, IN, USA) for habituation with
ad libitum access to food and water under standard humidity and temperature
(21 ± 1 °C) on a 12-h light: 12-h dark cycle59.

Sleep deprivation. Sleep deprivations were performed as previously demonstrated
and adapted to a newer device model (80391), which enables a much faster sweep
time60. Briefly, this device acts by applying tactile stimulus with a horizontal bar
sweeping just above the cage floor (bedding) from one side to the other side of the
cage. Once the sweeper is on, animals need to step over approaching the sweeper to
resume their unrestrained behaviors. Sleep deprivation was initiated at lights on
[Zeitgeber Time 0 (ZT0)] by switching on the motors, choosing the continuous
sweeping mode (approximately 7.5 s cycle time), and stopped after 12 h at lights off
(ZT12). In addition to the sweeping bar, additional attempts were made to
maintain wakefulness mostly during the second 6 h of sleep deprivation by occa-
sionally tapping on the cage or gentle touches with a brush. We opted for a 12-h
long sleep deprivation timeline with the aim to observe the transcriptional changes
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in protein abundance, as we performed both transcriptomics and proteomics
assays. To assess how 12-h of sleep deprivation affected the sleep/wake behaviors,
3 days baseline EEG/EMG were recorded after mice were acclimated for a week.
Mice were recorded for the next 3–4 days (which encompassed sleep deprivation
and recovery phases). Post sleep deprivation, animals were allowed to recover for
24-h. Baseline recording 1-day before sleep deprivation was used as the control
condition (normal sleep). Following sacrifice by cervical dislocation, whole brains
were isolated at ZT12 (i.e. lights off) for ad libitum Normal Sleep (NS, ZT0-12),
Sleep Deprivation (SD, ZT0-12), and 12-h sleep deprivation followed by 24-h of
Recovery Sleep (RS, ZT12-12) groups. Isolated whole brains were placed in ice-cold
Hibernate EB (BrainBits LLC, HEB) media, and brainstem, cortex, and hypotha-
lamus were quickly dissected as these areas are involved in the regulation of sleep-
wake states13,14, and tissue collected from three animals per sleep treatment group
per brain area pooled for the preparation of single-cell suspensions.

Sleep phenotyping. Mice aged between 9–11 weeks were implanted with a tele-
metry transmitter (HD-X02, Data Sciences International, St. Paul, MN, USA)
connected to electrodes for continuous EEG (Electroencephalography)/EMG
(Electromyography) recording. Under anaesthesia (isoflurane; induction 3–4%,
maintenance 2–2.5%), two stainless steel EEG electrodes (length of screw shaft:
2.4 mm; head diameter: 2.16 mm; shaft diameter: 1.19 mm; Plastics One, Roanoke,
VA, USA) were implanted epidurally over the right frontal and parietal cortices, as
previously described61. The electrodes were connected to the telemetry transmitter
via medical-grade stainless steel wires. The EEG electrodes were covered with
dental cement (Kemdent, Purton, Swindon, UK). Two EMG stainless-steel leads
were inserted into the neck muscles ∼5 mm apart and sutured into place. The
telemetry transmitter was placed in a subcutaneous pocket and positioned along
the left dorsal flank. Analgesia was administered at the onset of the surgery
(subcutaneous injection of buprenorphine (Vetergesic) at 0.1 mg/kg and melox-
icam (Metacam) at 10 mg/kg). Animals were allowed to recover for a minimum of
10 days before being subjected to experimental protocols. EEG/EMG signals were
recorded continuously for 6–7 days using Data Sciences International hardware
and Dataquest ART software (Data Sciences International, St. Paul, MN, USA).
The EEG/EMG data were transmitted at 455 kHz to an RPC-1 receiver (Data
Science International) and sampled at 250 Hz.

Single-cell suspensions and library preparation. The protocol for obtaining
single-cell suspensions for all three brain regions was adapted from that used by
Holt and colleagues62. Briefly, tissue dissections were dissociated with Papain
(BrainBits LLC, PAP/HE) following the manufacturer’s instruction followed by
manual trituration using fire-polished Silanized Pasteur pipette and filtration
through 70 µm cell strainer (Miltenyi Biotec, 130-095-823). Cells were pelleted at
300 × g, 10 min, the supernatant carefully removed, and cells resuspended in a
minimal volume of PBS with 0.5% of BSA (Sigma-Aldrich, A7906). To reduce
debris, we incubated the cell suspensions with myelin removal beads (Miltenyi
Biotec, 130-096-733) and passed this through a LS Column (Miltenyi Biotec,
130-042-401) with 70 µm pre-separation filter. Flow-through contained unlabelled
cells, which were collected and counted (Countess II Automated Cell Counter; Cat
# AMQAX1000) estimate yield and viability. Library preparation was carried out
with a 10X Genomics Chromium Single Cell Kit Version 2. Suspensions were
prepared as described above and diluted in PBS with 0.5% of BSA to concentration
~350 cells/ µl and added to 10X Chromium RT mix to achieve a loading target
between 7000–12,000 cells. After cell capture, downstream cDNA synthesis, library
preparation, and sequencing were performed according to the manufacturer’s
instructions (10X Genomics).

Astrocyte and neuron separation from cortical single cell suspension. To
perform cell type-specific proteomics and phosphoproteomics, astrocytes and
neurons were separated from cortical single-cell suspensions as previously
described62 with slight modifications. Single-cell suspensions were incubated with
FcR Blocking Reagent (Miltenyi Biotec, 130-092-575) and Anti-ACSA-2
MicroBeads (Miltenyi Biotec, 130-097-678) for 10–15 min at 2–8 °C. Cells were
spun down for 10 min at 300 × g at room temperature and resuspended in a
minimal volume of PBS with 0.5% of BSA before passing through a LS Column.
Flow-through was collected for further neuron separation, the LS Column that
retained astrocytes was removed from the magnetic field and the ACSA-2 labeled
astrocytes were eluted. Cells were pelleted from flow-through at 300 × g, 8 min, the
supernatant carefully removed, and resuspended in a minimal volume of PBS with
0.5% of BSA. Suspensions were incubated with Non-Neuronal Cell Biotin-Ab
cocktail (Miltenyi Biotec, 130-115-389) for 5 min and Anti-Biotin MicroBeads
(Miltenyi Biotec, 130-090-485) for 10 min at 2–8 °C, respectively. Following
incubation, suspensions were passed through a LS Column placed in a magnetic
field and non-labeled neuronal cells were collected in flow-through.

TMT-based quantitative proteomics and phosphoproteomics. Cell lysis and
protein extraction were performed in the presence of protease and phosphatase
inhibitors. Protein precipitation was performed with 1:6 volume of pre-chilled
(−20 °C) acetone for overnight at 4 °C. After overnight incubation, lysates were
centrifuged at 14,000 g for 15 min at 4 °C. Supernatants were discarded without

disturbing pellets, and pellets were air-dried for 2–3 min to remove residual acet-
one. Then pellets were dissolved in 300 µL 100 mM TEAB buffer. Sample pro-
cessing for TMT-based quantitative proteomics and phosphoproteomics was
performed following the same protocol as described previously63. In brief, protein
concentration in each sample was determined by using the Pierce™ BCA Protein
Assay Kit (Thermo Fisher Scientific, 23225). 75 µg protein per condition was
transferred into new microcentrifuge tubes and 5 µL of the 200 mM TCEP was
added to reduce the cysteine residues and the samples were then incubated at 55 °C
for 1h. Subsequently, the reduced proteins were alkylated with 375 mM iodoace-
tamide (freshly prepared in 100 mM TEAB) for 30 min in the dark at room
temperature. Then, trypsin (Trypsin Gold, Mass Spectrometry Grade; Promega,
V5280) was added at a 1:40 (trypsin: protein) ratio and samples were incubated at
37 °C for 12-h for proteolytic digestion. After in-solution digestion, peptide sam-
ples were labelled with 10-plex TMT Isobaric Label Reagents (Thermo Fisher
Scientific, 90113) following the manufacturer’s instructions. The reactions were
quenched using 5 µL of 5% hydroxylamine for 30 min. Proteins from astrocytes or
neurons for the three experimental conditions, i.e. NS, SD, and RS (3 biological
replicates for each) were labeled with the nine TMT reagents within a TMT 10-plex
reagent set, while the 10th reagent was used for labeling an internal pool containing
an equal amount of proteins from each sample. Application of multiplexed TMT
reagents allowed comparison of NS, SD, and RS samples within the same MS run,
which eliminated the possibility of run-to-run (or batch) variations.

In order to perform phosphoproteome analysis, TMT labelled peptides were
subjected to TiO2-based phosphopeptide enrichment according to the
manufacturer’s instructions (High-Select™ TiO2 Phosphopeptide Enrichment Kit,
Thermo Fisher Scientific, A32993). The flow-through and washes from the TiO2

enrichment step were combined, evaporated to dryness and subjected to Fe-NTA-
based phosphopeptide enrichment according to the manufacturer’s instructions
(High-Select™ Fe-NTA Phosphopeptide Enrichment Kit, Thermo Fisher Scientific,
A32992). Phosphopeptides enriched using TiO2- and Fe-NTA-based methods were
combined, evaporated to dryness.

TMT-labelled samples (both for global and phosphoproteomics analysis) was
resuspended in 5% formic acid and then desalted using a SepPak cartridge
according to the manufacturer’s instructions (Waters, Milford, Massachusetts,
USA). Eluate from the SepPak cartridge was evaporated to dryness and
resuspended in buffer A (20 mM ammonium hydroxide, pH 10) prior to
fractionation by high pH reversed-phase (RP) chromatography using an Ultimate
3000 liquid chromatography system (Thermo Scientific). In brief, the sample was
loaded onto an XBridge BEH C18 Column (130 Å, 3.5 µm, 2.1 mm × 150 mm,
Waters, UK) in buffer A and peptides eluted with an increasing gradient of buffer B
(20 mM Ammonium Hydroxide in acetonitrile, pH 10) from 0–95% over 60 min.
The resulting fractions (8 fractions per sample) were evaporated to dryness and
resuspended in 1% formic acid prior to analysis by nano-LC MSMS using an
Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific).

Nano-LC Mass Spectrometry. High pH RP fractions were further fractionated
using an Ultimate 3000 nano-LC system in line with an Orbitrap Fusion Lumos
mass spectrometer (Thermo Scientific). In brief, peptides in 1% (vol/vol) formic
acid were injected onto an Acclaim PepMap C18 nano-trap column (Thermo
Scientific). After washing with 0.5% (vol/vol) acetonitrile 0.1% (vol/vol) formic acid
peptides were resolved on a 250 mm × 75 μm Acclaim PepMap C18 reverse phase
analytical column (Thermo Scientific) over a 150 min organic gradient, using 7
gradient segments (1–6% solvent B over 1 min, 6–15% B over 58 min, 15–32%B
over 58 min, 32–40%B over 5 min, 40–90%B over 1 min, held at 90%B for 6 min
and then reduced to 1%B over 1 min) with a flow rate of 300nL min−1. Solvent A
was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1% formic
acid. Peptides were ionized by nano-electrospray ionization at 2.0 kV using a
stainless-steel emitter with an internal diameter of 30 μm (Thermo Scientific) and a
capillary temperature of 275 °C. All spectra were acquired using an Orbitrap Fusion
Tribrid mass spectrometer controlled by Xcalibur 4.1 software (Thermo Scientific)
and operated in data-dependent acquisition mode using an SPS-MS3 workflow.
FTMS1 spectra were collected at a resolution of 120,000, with an automatic gain
control (AGC) target of 200,000 and a max injection time of 50 ms. Precursors
were filtered with an intensity threshold of 5000, according to charge state (to
include charge states 2–7) and with monoisotopic peak determination set to
Peptide. Previously interrogated precursors were excluded using a dynamic win-
dow (60 s +/−10ppm). The MS2 precursors were isolated with a quadrupole
isolation window of 0.7 m/z. ITMS2 spectra were collected with an AGC target of
10,000, max injection time of 70 ms and CID collision energy of 35%. For FTMS3
analysis, the Orbitrap was operated at 50,000 resolutions with an AGC target of
50,000 and a max injection time of 105 ms. Precursors were fragmented by high
energy collision dissociation (HCD) at a normalized collision energy of 60% to
ensure maximal TMT reporter ion yield. Synchronous Precursor Selection (SPS)
was enabled to include up to 5 MS2 fragment ions in the FTMS3 scan.

RNAscope in situ hybridization. Brains were quickly isolated and fixed in 10%
neutral‐buffered formalin (NBF) for 24-h, followed by ethanol gradient dehydra-
tion and infiltration with melted paraffin in an automated processor. An array of
4 µm coronal sections of whole-brain was prepared, to collect different regions of
the cortex, and RNAscope in situ hybridization was performed according to the
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manufacturer’s reference guide, using the single‐plex RNAscope® assay kit-
BROWN (Advanced Cell Diagnostics) on a Leica Biosystems BOND RX platform,
as described previously64. Brain slices were baked and deparaffinized on the
instrument, followed by target retrieval and protease treatment. Hybridization was
performed by using probe Mt1 (ACD, 547711), Tsc22d3 (ACD, 448341), Gjb6
(ACD, 458811) and Atp1b2 (ACD, 417131) followed by amplification as these
genes were among our top hits (based on FDR and fold changes), DAB chromo-
genic detection and counterstain with haematoxylin. Imaging of sections was
carried out on a Leica Biosystems Aperio AT2 Digital Pathology Scanner and
analysis performed using Visiopharm software.

Sleep scoring and spectral analysis. Vigilance states for consecutive 4-sec epochs
were classified by visual inspection of the EEG and EMG signals, according to
standard criteria, as follows: wakefulness (high and variable EMG activity and a low
amplitude EEG signal), non-rapid eye movement sleep (NREMS; high EEG
amplitude, dominated by slow waves and low amplitude EMG), and rapid eye
movement sleep (REMS; low EEG amplitude, theta oscillations of 5–9 Hz, and loss
of EMG muscle tone). EEG power spectra were computed for consecutive 4-sec
epochs using Welch’s method in Matlab 2017a (MathWorks, Natick, MA, USA;
frequency range, 0.25–25 Hz; resolution, 0.25 Hz; Hanning window function).
Epochs containing EEG artefacts were discarded from EEG spectral analyses (% of
recording time: 7.9 ± 0.8%). EEG power spectra were determined for NREMS,
REMS, and wakefulness during the 12-h light-dark periods of the 3 recording days.
EEG power spectra are expressed as a percentage of total EEG power (frequency
range: 1–25 Hz; resolution: 1 Hz). EEG delta power total and during NREMS were
computed by adding the EEG power in the frequencies ranging from 1 to 4.5 Hz.
Averaged over consecutive intervals to which an equal number of 4-s NREM sleep
epochs contribute, and then expressed as a percentage of levels reached between
ZT8-12 during the day 1 (baseline).

Analysis of single-cell RNA-seq data. FASTQ files containing sequence reads were
mapped to the mouse reference genome GRCm38 using Cell Ranger Version 2.2.0 on
a Linux high-performance computing system. The output of the Cell Ranger pipeline
(filtered counts) was parsed into R version 4.0.0 to perform downstream analysis with
the various R packages – Seurat version 3.1.565, Monocle version 2.10.166 and
SCENIC version 1.1.2.238. The data were first normalized and log-transformed using
Seurat function NormalizeData. Differential gene expression was computed by
Wilcoxon rank sum test method available in the Seurat function FindMarkers
(recommended). Cluster analysis on the first 13 principal components was performed
after calculating the JackStraw. Clusters were visualized with uniform manifold
approximation and projection (UMAP) in Seurat with default settings. Seurat
functions UMAPPlot, VlnPlot, FeaturePlot, DotPlot, and DoHeatmap were adapted
for visualization of gene expression. All Monocle and SCENIC analyses were per-
formed on a Linux computing system using 256 GB RAM spread across 32 compute
cores. The expression matrix from the Seurat data object was then used to perform
Single Cell regulatory Network Inference and Clustering analysis with SCENIC. The
species-specific RcisTarget database of motif rankings were downloaded from https://
resources.aertslab.org/cistarget/databases/mus_musculus/mm10/refseq_r80/mc9nr/.
The standard SCENIC workflow was run on each dataset individually or on a merged
data together as described at http://scenic.aertslab.org.

Determination of cell identity clusters. To determine the cell-type identity of
each cluster from the brainstem, cortex, and hypothalamus, we used multiple cell-
type-specific/enriched markers genes that have been previously described in the
single-cell transcriptomics of the mouse brain in the literature24–27. Each cluster
showing the high expression level of known markers specific to a particular cell was
considered as a cluster of that cell type (Supplementary Table 1). In general, we
selected the threshold of average fold change above 2-3 and false discovery rate
(FDR) <0.001. We also cross-validated the other clusters from the same brain area
for the absence of these markers. We found the available markers were sufficient to
define all major cell types in all three brain regions, with one “unknown”
(unclassifiable) cell type in the brainstem.

Astrocyte-neuron communication networks. Astrocyte-neuron communication
networks were predicted by previously described intercellular communication
networks67,68. The cell interactomes for differentially expressed genes were created
based on ligand-receptor interactions. In the networks, nodes represent ligands and
receptors expressed in astrocytes and neurons and, vice-versa. The border of nodes
represents the level of significance (FDR). Edges represent interactions between them,
and the color of nodes and edges represents the magnitude of differential expression.

Database search and statistical analysis of quantitative proteomics data.
Quantitative proteomics and phosphoproteomics raw data files were analysed using
the MaxQuant computational platform (version 1.5.2.8) with the Andromeda
search engine69. MS2/MS3 spectra were searched against UniProt database speci-
fying Mus musculus (Mouse) taxonomy (Proteome ID: UP000000589; Organism
ID: 10090; Protein count: 52026). All searches were performed using “Reporter ion
MS3” with “10-plex TMT” as isobaric labels with a static modification for cysteine

alkylation (carbamidomethylation), and oxidation of methionine (M) and protein
N-terminal acetylation as the variable modifications. Phospho (STY) was included
as an additional variable modification for the phosphopeptide enrichment analyses.
Trypsin digestion with maximum two missed cleavages, minimum peptide length
as seven amino acids, precursor ion mass tolerance of 5 ppm and fragment mass
tolerance of 0.02 Da were specified in all analyses. The false discovery rate (FDR)
was specified at 0.01 or 0.05 for peptide spectrum match (PSM), protein and site
decoy fraction. TMT signals were corrected for isotope impurities based on the
manufacturer’s instructions. Subsequent processing and statistical analysis of
quantitative proteomics and phosphoproteomics datasets were performed using
Perseus (version 1.5.5.3)70. During data processing, reverse and contaminant
database hits and candidates identified only by site were filtered out. For differ-
ential quantitative proteomics analyses, categorical annotation (NS/SD/RS) was
applied to group reporter ion intensities, values were Log2 transformed, and were
normalized by “subtract mean (column-wise)” in each TMT reporter ion channel.
Proteins groups were filtered for valid values (at least 80% in each group). Unpaired
t-tests followed by false discovery rate (FDR) analysis was performed to compare
sleep treatments groups.

Gene ontology (GO) analysis. Significantly and differentially expressed tran-
scripts and proteins across sleep treatment groups were subjected to GO analysis.
We performed an overrepresentation analysis71 that was implemented in
clusterProfiler72. Significantly enriched GO terms were visualized as dot plots and
enrichment maps.

Network analysis. To investigate the association between significant and differ-
entially expressed global proteins in sleep treatment groups from astrocytes and
neurons we extracted protein associations from the Search Tool for the Retrieval of
Interacting Genes or Proteins (STRING) database49. STRING identified 462/
463 significant proteins and returned 863 interactions in astrocytes (protein-pro-
tein interaction (PPI) enrichment P-value < 0.001), 695/701 significant proteins
and 1702 interactions in neurons (PPI enrichment P-value < 0.001) at a confidence
cut-off value 0.9 (the highest confidence level in STRING).

Analysis of RNAscope in situ hybridization images. RNA markers were quan-
tified based on dots quantified within cortical and hypothalamic areas. We counted
the cells from three brains per sleep treatment group68. We counted the almost
entire cortex (1500 × 800 μm, 1200 × 800 μm and 900 × 800 μm) and hypothalamus
by defined region of interests (ROIs) (Fig. 6a). The number of transcripts per cell
was determined by using Visiopharm’s image analysis algorithm.

Plasma corticosterone analysis. Blood samples were collected in tubes on ice
containing EDTA and later centrifuged at 4 °C. Plasma concentrations of corti-
costerone were measured employing radioimmunoassay kits (Millipore,
Billerica, USA).

Statistics and reproducibility. All experimental subjects are biological replicates.
For single-cell sequencing, dissections of the same anatomical region were pooled
from three animals for the preparation of single-cell suspensions for each group.
GraphPad Prism 8 or R software was used to perform statistical tests.
Kruskal–Wallis tests were performed to compare sleep treatments groups. Fol-
lowing two-way analysis of variance (ANOVA), Fisher’s LSD tests were performed
for comparisons. Repeated measures tests were performed for same-subject com-
parisons. P < 0.05 was considered as significant. For transcriptomics and pro-
teomics analyses, we used FDR < 0.1, unless indicated otherwise. Detailed sample
sizes, statistical tests, and results are reported in the figure legends and Supple-
mentary Data 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single cell RNA-Seq datasets generated for this study have been deposited in the in
the Gene Expression Omnibus (accession number: GSE137665). This dataset is accessible
via: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137665 (please enter token
to access: urepqsyorravfml). The mass spectrometry proteomics and phosphoproteomics
data described in this article are deposited to the ProteomeXchange Consortium via the
PRIDE partner repository with the dataset identifier PXD018334. Reviewer account
details are: Username: reviewer55333@ebi.ac.uk, Password: mAKgsWFP. The source data
values underlying Figs. 1b, 3b–e, 4b–e, 5b–e, 6b–f, and 8b, c can be found in
Supplementary Data 2.
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