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SIMULTANEOUS BEHAVIOUR OF THE FOURIER
COEFFICIENTS OF TWO HILBERT MODULAR CUSP FORMS

SURJEET KAUSHIK AND NARASIMHA KUMAR

Abstract. In this article, we study the simultaneous sign changes of the Fourier
coefficients of two Hilbert cusp forms of different integral weights. We also study
the simultaneous non-vanishing of Fourier coefficients, of two distinct non-zero
primitive Hilbert cuspidal non-CM eigenforms of integral weights, at powers of a
fixed prime ideal.

1. Introduction

The sign changes of Fourier coefficients of modular forms over number fields has
been an interesting area of research in the recent years. In this article, we are
interested in the study of the simultaneous sign changes and simultaneous non-
vanishing of the Fourier coefficients of distinct Hilbert cusp forms.

In [4], the authors worked on simultaneous sign changes of Fourier coefficients of
two cusp forms of different weights with real algebraic Fourier coefficients. They
proved that, if f and g are two normalized cusp forms of the same level and different
weights with totally real algebraic Fourier coefficients, then there exist a Galois
automorphism σ such that fσ and gσ have infinitely many Fourier coefficients of
the opposite signs. Their proof uses Landau’s theorem on Dirichlet series with non-
negative coefficients, the properties of the Rankin-Selberg zeta function attached to
cusp forms, and the bounded denominators argument.

In [2], the authors, by using an elementary observation about real zeros of Dirich-
let series instead of bounded denominators argument, strengthen the results of [4],
by doing away with the Galois conjugacy condition and in fact, they extended the
result to cusp forms with arbitrary real Fourier coefficients.

In [1], the authors investigated simultaneous non-vanishing of the Fourier coeffi-
cients at prime powers of Fourier coefficients of two different Hecke eigenforms of
integral weight over Q. They proved that if f and g are two Hecke eigenforms of
integral weights and af(n) and ag(n) are Fourier coefficients of f and g, respectively,
then for all primes p, the set {m ∈ N|af (p

m)ag(p
m) 6= 0} has positive density.

This article is a modest attempt to extend some results of Gun, Kohnen and
Rath [2] and Gun, Kumar and Paul [1] to the Hilbert modular forms case. Firstly,
we show that two Hilbert cuspidal forms of different integral weights have infinitely
many Fourier coefficients of same sign (resp., of opposite sign). Secondly, we show
that the simultaneous non-vanishing of the Fourier coefficients, of two non-zero
distinct primitive Hilbert cuspidal non-CM eigenforms, at the powers of a fixed
prime ideal has a positive density.
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2. Preliminaries

We assume that k = (k1, . . . , kn) ∈ Zn
>0 throughout this section. For a non-

archimedean place p of F , F is a totally real field of degree n. Let Fp be a completion
of F . Let a and b be integral ideals of F , and define a subgroup Kp(a, b) of GL2(Fp)
as

Kp(a, b) =

{(

a b
c d

)

∈ GL2(Fp) :
a ∈ Op, b ∈ a−1

p D−1
p ,

c ∈ bpDp, d ∈ Op, |ad− bc|p = 1

}

where the subscript p means the p-parts of given ideals. Furthermore, we put

K0(a, b) = SO(2)n ·
∏

p<∞

Kp(a, b) and W (a, b) = GL+
2 (R)

nK0(a, b).

In particular, if a = OF , then we simply write Kp(b) := Kp(OF , b), W (b) :=
W (OF , b), etc. Then, we have the following disjoint decomposition of GL2(AF ):

GL2(AF ) = ∪h
ν=1GL2(F )x

−ι
ν W (b), (2.1)

where x−ι
ν =

(

t−1
ν

1

)

with {tν}
h
ν=1 taken to be a complete set of representatives

of the narrow class group of F . We note that such tν can be chosen so that the
infinity part tν,∞ is 1 for all ν. For each ν, we also put

Γν(b) = GL2(F ) ∩ xνW (b)x−1
ν

=

{(

a t−1
µ b

tνc d

)

∈ GL2(F ) :
a ∈ Op, b ∈ a−1

p D−1
p ,

c ∈ bpDp, d ∈ Op, |ad− bc|p = 1

}

.

Let ψ be a Hecke character of A×
F whose conductor divides b and ψ∞ is of the

form
ψ∞(x) = sgn(x∞)k|x∞|iµ,

with µ ∈ Rn and
∑n

j=1 µj = 0. We let Mk(Γν(b), ψb, µ) denote the space of all
functions fν that are holomorphic on hn and at cusps, satisfying

fν ||kγ = ψb(γ) det γ
iµ/2fν

for all γ in Γν(b). We note that such a function fν has a Fourier expansion

fν(z) =
∑

ξ∈F

aν(ξ) exp(2πiξz)

where ξ runs over all the totally positive elements in t−1
ν OF and ξ = 0. A Hilbert

modular form is a cusp form, if for all γ ∈ GL+
2 (F ), the constant term of f ||kγ in its

Fourier expansion is 0, and the space of cusp forms with respect to Γν(b) is denoted
by Mk(Γν(b), ψb, µ).

Now, put f := (f1, . . . , fn) where fν belongs Mk(Γν(b), ψb, µ) for each ν, and
define f to be a function on GL2(AF ) as

f(g) = f(γx−ι
ν w) := ψb(w

ι) detwiµ/2
∞ (fν ||kw∞)(ii)

where γx−ι
ν w ∈ GL2(F )x

−ι
ν W (b) as in (2.1), and wι := ω0(

tw)ω−1
0 with ω0 =

(

1
−1

)

. The space of such f is denoted as Mk(ψb, µ) =
∏

ν Mk(Γν(b), ψb, µ).

Furthermore, the space consisting of all f = (f1, . . . , fn) ∈Mk(ψb, µ) satisfying

f(sg) = ψ(s)f(g) for any s ∈ A×
F and x ∈ GL2(AF )
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is denoted as Mk(b, ψ). If fν ∈ Sk(Γν(b), ψb, µ) for each ν, then the space of such f
is denoted by Sk(b, ψ)

Let m be an integral ideal of F and write m = ξt−1
ν OF with a totally positive

element ξ in F . Then, we define the Fourier coefficients of f as

C(m, f) :=

{

N(m)k0/2aν(ξ)ξ
−(k+iµ)/2 if m = ξt−1

ν OF ⊂ OF

0 if m is not integral
(2.2)

where k0 = max{k1, . . . , kn}.

3. Statements of the main results

In this section, we shall state the main results of this article. Firstly, we prove
a result on the simultaneous sign changes of the Fourier coefficients of two Hilbert
cuspidal forms of different integral weights. More precisely, we prove:

Theorem 3.1. Let f and g be non-zero Hilbert cusp forms over F of level c and
different integral weights k = (k1, . . . , kn), l = (l1, . . . , ln), respectively. For each
integral ideal m ⊆ OF , let C(m, f) and C(m, g) denote the Fourier coefficients (as
defined in (2.2)) of f and g, respectively. Further, assume that C(m, f), C(m, g)
are real numbers. If C(OF , f)C(OF , g) 6= 0, then there exist infinitely many ideals
m ⊆ OF such that C(m, f)C(m, g) > 0 and infinitely many ideals m ⊆ OF such that
C(m, f)C(m, g) < 0.

The second result is about the simultaneous non-vanishing of the Fourier coef-
ficients, of two non-zero distinct primitive Hilbert cuspidal eigenforms, at prime
powers of a fixed prime ideal has a positive density. More precisely, we prove:

Theorem 3.2. Let f and g be distinct primitive Hilbert cuspidal non-CM eigen-
forms over F with trivial nebentypus and of levels c1, c2 and with integral weights
k = (k1, . . . , kn), l = (l1, . . . , ln), respectively. We further assume that k1 ≡ · · · ≡
kn ≡ l1 ≡ · · · ≡ ln ≡ 0 (mod 2) and each kj, lj ≥ 2.

For each ideal m ⊆ OF , let C(m, f) and C(m, g) denote the Fourier coefficients
(as defined in (2.2)) of f and g, respectively. Then, for any prime ideal p ⊆ OF

such that p ∤ c1c2DF , the set

{m ∈ N|C(pm, f)C(pm, g) 6= 0}

has positive density.

Corollary 3.3. Assume that the hypothesis of the above theorem holds. Then, for
any prime ideal p ∤ c1c2DF , there exists infinitelym ∈ N such that C(pm, f)C(pm, g) 6=
0.

4. Proof of Theorem 3.1

For the proof of Theorem 3.1, we need the following basic results.

Lemma 4.1. Let s ∈ C and

R(s) =
∑

n≥1

a(n)

ns

be a Dirichlet series with real coefficients a(n)(n ∈ N). Assume that a(n) ≥ 0 or
a(n) ≤ 0 for all n ≥ 1. If R(s) has a real zero α in the region of convergence, then
R(s) is identical zero.
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Proof. Without loss of generality, we can assume that a(n) ≥ 0 for all n ≥ 1. Denote

the sequence of partial sums of R(α) by si =
∑i

n=1
a(n)
nα , for i ≥ 1. Since a(n) ≥ 0,

the sequence {si} is a monotonically increasing sequence. Hence, the sequence {si}
converges to it’s least upper bound. Since, R(α) = 0, we get that, for i ≥ 1, si is
zero. We can deduce that each a(i) = 0 for each i. Hence, R(s) is identical zero.

Now, if a(n) ≤ 0 for all n ≥ 1, then we get the required result by applying above
argument with −R(s). �

Lemma 4.2. ([2, Lemma 6]) Let s ∈ C and a(n) ∈ R. For m ≥ 1, consider the
Dirichlet polynomial

R(s) :=
∑

1≤n≤m

a(n)

ns
.

If R(s) has infinitely many real zeros, then R(s) is identically zero.

Proposition 4.3. ([6, Proposition 2.3]) For any integral ideal q ⊆ OF and every
f ∈ Sk(c, ψ), there exists an unique element of Sk(qc, ψ), written as f |q, such that

C(m, f |q) = C(q−1m, f) (4.1)

Proposition 4.4. ([5, Page 124]) For any integral ideal q ⊆ OF and every f ∈
Sk(c, ψ), there exists an unique element of Sk(qc, ψ), written as f |U(q), such that

C(m, f |U(q)) = C(qm, f) (4.2)

We need the following proposition in the proof Theorem 3.1.

Proposition 4.5. Let f ∈ Sk(c, ψ) and q be an integral ideal of OF . Then g =
f − (f |U(q))|q is a Hilbert cusp form of weight k and level q2c. Further, it has the
property that C(mq, g) = 0 and C(m, g) = C(m, f), if (m, q) = 1.

Proof. Observe that C(mq, g) = C(mq, f−(f |U(q))|q) = C(mq, f)−C(mq, (f |U(q))|q).
Now, let us compute C(mq, f |U(q)|q) = C(m, f |U(q)) = C(mq, f). Hence, C(mq, g) =
0.

Now, let us look at the expression when (m, q) = 1.

C(m, g) = C(m, f − (f |U(q))|q) = C(m, f)− C(m, (f |U(q))|q).

However, C(m, f |U(q)|q) = C(q−1m, f |U(q)) = 0, since q−1m is not an integral ideal.
Hence, C(m, g) = C(m, f), if (m, q) = 1.

�

Now, we are in a position to prove Theorem 3.1.

Proof. By hypothesis, we have C(OF , f)C(OF , g) 6= 0. First, we will show that
there exist infinitely many m ⊆ OF such that

C(m, f)C(m, g)

C(OF , f)C(OF , g)
< 0 (4.3)

Without loss of generality, we can assume that C(OF , f)C(OF , g) > 0 as otherwise
we replace g by −g.

If (4.3) is not true, then there exist an ideal m′ ⊆ OF such that

C(m, f)C(m, g) ≥ 0 (4.4)

for all m ⊆ OF with N(m) ≥ N(m′). Set n :=
∏

N(p)≤N(m′) p, where p are prime
ideals of OF .
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Suppose f1 and g1 are Hilbert modular cusp forms obtained from f and g respec-
tively, by applying the Proposition 4.5 to f and g with the ideal n. Clearly, f1 and
g1 are also Hilbert cusp forms of level k and l respectively, and of level c1. We just
say that the level is c1, because as such we do not need the explicit level in the
further calculations.

For s ∈ C with Re(s) ≫ 1, the Rankin-Selberg L-function of f1 and g1 is defined
by

Rf1,g1
(s) :=

∑

m⊆OF ,(m,n)=1

C(m, f)C(m, g)

N(m)s
. (4.5)

In above summation C(m, f)C(m, g) ≥ 0, since, if N(m) ≤ N(m′) then m =
∏

pi|n
peii

implies (m, n) 6= 1. For Re(s) ≫ 1, we set

Lf1,g1
(s) := ζ c1F (2s− (k0 + l0) + 2)Rf1,g1

(s),

where ζ c1F (s) =
∏

p|c1,p:prime(1 − N(p)−s)ζF (s), where ζF (s) =
∑

m⊆OF
N(m)−s is

Dedekind zeta function of F . By the Euler expansion of Dedekind zeta function of
F , we get that

ζ c1F (s) =
∏

p|c1,p:prime

(1−N(p)−s)
∏

p:prime

(1−N(p)−s)−1

=
∑

m⊆OF ,(m,c1)=1

1

N(m)s
=

∞
∑

n=1

an(c1)

ns
,

where an(c1) is the number of integral ideals of norm n that are co-prime to c1.
Hence, we can write

Lf1,g1
(s) =

∞
∑

n=1

an(c1)n
(k0+l0)−2

n2s

∑

m⊆OF ,(m,n)=1

C(m, f)C(m, g)

N(m)s
.

Now, we can re-write

Lf1,g1
(s) =

∞
∑

m=1

bc1m(f1, g1)

ms
,

where

bc1m(f1, g1) =
∑

n2|m



an(c1)n
(k0+l0)−2

∑

(m,n)=1,N(m)=m/n2

C(m, f)C(m, g)



 .

In the above summation bc1m(f1, g1) ≥ 0 for all m because C(m, f)C(m, g) ≥ 0, for
all (m, n) = 1, by (4.4). Observe that bc11 (f1, g1) = C(OF , f)C(OF , g).

Denote k0 := max{k1, k2, . . . , kn} and l0 := max{l1, l2, . . . , ln}. Define, for any j,
k′j := k0 − kj, and similarly, define l′j.

Now, look at the complete L-function, defined by the product

Λf1,g1
(s) =

n
∏

j=1

Γ

(

s + 1 +
kj − lj − k0 − l0

2

)

Γ

(

s−
k′j + l′j

2

)

Lf1,g1
(s)

can be continued to a holomorphic function on the whole plane, since the weights
are different (cf. [6, Proposition 4.13]). As the Γ-function is extended by analytic
continuation to all complex numbers except the non-positive integers, where the
function has simple poles, we get that that function Lf1,g1

(s) is also entire.
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By Landau’s Theorem it follows that the Dirichlet series Lf1,g1
(s) converges ev-

erywhere. Observe that the function Lf1,g1
(s) has real zeros because the Γ-factors

have poles at non-positive integers. By Lemma 4.1, we have that bc1m(f1, g1) = 0 for
all m. This contradicts the assumption that C(OF , f)C(OF , g) 6= 0 This completes
the proof of (4.3).

In order to complete the proof of the Theorem 3.1, we need to show that there
exist infinitely many m ⊆ OF such that

C(m, f)C(m, g)

C(OF , f)C(OF , g)
> 0.

It is sufficient to assume that C(OF , f)C(OF , g) > 0. We then have to show
that there exist infinitely many m such that C(m, f)C(m, g) > 0. If not, then
C(m, f)C(m, g) ≤ 0 for all idealsm ⊆ OF withN(m) ≫ 0. Note that, C(m, f)C(m, g)

cannot be equal to zero for almost all idealsm ⊆ OF . For in this case
∑

m⊆OF

C(m,f)C(m,g)
N(m)s

is a Dirichlet polynomial and

Λf ,g(s) =

n
∏

j=1

Γ(s+ 1 +
kj − lj − k0 − l0

2
)Γ(s−

k′j + l′j
2

)Lf ,g(s)

is entire. The presence of the multiple Γ-factors ensures that
∑

m⊆OF

C(m,f)C(m,g)
N(m)s

has

infinitely many zeros. Hence, by Lemma 4.2, we get that C(OF , f)C(OF , g) = 0,
which is a contradiction. Hence, there exists an integral ideal d ⊆ OF such that
C(d, f)C(d, g) < 0.

Now, by Proposition 4.4, f |U(d) and g|U(d) are Hilbert cusp forms of weights
k1, k2, respectively and weight dc. Observe that

C(OF , f |U(d))C(OF , g|U(d)) = C(d, f)C(d, g) < 0.

Now, by (4.3), we have C(m, f |U(d))C(m, g|U(d)) > 0 for infinitely many m ⊆ OF .
This proves our claim.

�

5. Proof of Theorem 3.2

In this section, we shall prove Theorem 3.2. By [6, (2.23)], the Fourier coefficients
C(m, f) of f satisfy the following Hecke relations

C(m, f)C(n, f) =
∑

m+n⊂a

N(a)k0−1C(a−2mn),

where k0 = max{k1, . . . , kn}. In particular, for any m ≥ 1, the following relation
holds:

C(pm+1, f) = C(p, f)C(pm, f)−N(p)k0−1C(pm−1, f). (5.1)

For any integral ideal a ⊆ OF , define

β(a, f) :=
C(a, f)

N(a)
k0−1

2

.

For any prime ideal p ⊆ OF , by (5.1), we have the following

β(pm+1, f) = β(p, f)β(pm, f)− β(pm−1, f). (5.2)
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It is well-known that for a primitive Hilbert cuspidal eigenform f over F , there
is an irreducible cuspidal automorphic representation Π = Πf of GL2(AF ) corre-
sponding to it. For any place p of F such that Πp is unramified, let λp(f) denote
the eigenvalue of the Hecke operator

GL2(Op)

(

̟p

1

)

GL2(Op) (5.3)

on Π
GL2(Op)
p , where ̟p is a uniformizer of Op. For such a prime p, by [3, Lemma

3.2], we see that the eigenvalues λp(f) and the Fourier coefficient C(p, f) are related
by

λp(f) =
C(p, f)

N(p)
k0−2

2

.

For any fixed prime ideal p ∤ c1c2DF , by [3, Theorem 3.3], we have

β(p, f) :=
λp(f)

N(p)
1

2

=
C(p, f)

N(p)
k0−1

2

∈ [−2, 2]. (5.4)

Since β(p, f) ∈ [−2, 2], we can write β(p, f) = 2 cosαp, for some 0 ≤ αp ≤ π. Before
getting into the proof of Theorem 3.2, we need the following proposition.

Proposition 5.1. For any fixed prime ideal p ∤ c1c2DF and for any m ≥ 1, we have

β(pm, f) =











(−1)m(m+ 1) if αp = π;

m+ 1 if αp = 0;
sin(m+1)αp

sinαp
if 0 < αp < π.

(5.5)

Proof. The first two cases are easy to prove by induction. So WLOG assume that
0 < αp < π. When m = 1, we have β(p, f) = sin 2αp

sinαp
= 2 sinαp cosαp

sinαp
= 2 cosαp.

Assume that β(pm, f) = sin(m+1)αp

sinαp
for some m ≥ 1. By (5.2), we have

β(pm+1, f) = β(p, f)β(pm, f)− β(pm−1, f)

= 2 cosαp

sin(m+ 1)αp

sinαp

−
sinmαp

sinαp

=
2 sin(m+ 1)αp cosαp − sinmαp

sinαp

=
sin(m+ 2)αp + sinmαp − sinmαp

sinαp

=
sin(m+ 2)αp

sinαp

.

�

Now, we are in a position to prove Theorem 3.2. Let p ∤ c1c2DF be a prime ideal.
By (5.4), one can write

β(p, f) = 2 cos αp and β(p, g) = 2 cos βp

with 0 ≤ αp, βp ≤ π. Now, the proof of Theorem 3.2 follows from following cases.
Case(1): When αp = 0 or π and βp = 0 or π, then by Proposition 5.1, we see

that
{m ∈ N|C(pm, f)C(pm, g) 6= 0} = N.
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In this case all elements of the sequence {C(pm, f)C(pm, g)}m∈N are non-zero.
Case (2): Suppose that at least one of αp, βp is 0 or π, say αp = 0 or π and

βp ∈ (0, π). If βp/π /∈ Q, there is nothing to prove. If βp/π ∈ Q, say βp =
r
s
, where

r, s ∈ N and (r, s) = 1, then we have sin mαp = 0 if and only if m is an integer
multiple of s, then we have

#{m ≤ x|C(pm, f)C(pm, g) 6= 0} = #{m ≤ x|C(pm, g) 6= 0} = [x]−
[x

s

]

.

Hence the set {m ∈ N|C(pm, f)C(pm, g) 6= 0} has positive density.
Case (3): Suppose that αp = βp ∈ (0, π), i.e., αp/π = βp/π ∈ (0, 1). If αp/π /∈ Q,

then C(pm, f)C(pm, g) 6= 0 for all m ∈ N as sin mαp 6= 0 for all m ∈ N. If αp/π /∈ Q,
say αp =

r
s
, where r, s ∈ N and (r, s) = 1, then we have sin mαp = 0 if and only if

m is an integer multiple of s and hence

#{m ≤ x|C(pm, f)C(pm, g) 6= 0} = [x]−
[x

s

]

.

Hence the set {m ∈ N|C(pm, f)C(pm, g) 6= 0} has positive density.
Case (4): Suppose that αp, βp ∈ (0, π) with αp 6= βp. If both αp/π, βp/π /∈ Q,

then there is nothing to prove. Next suppose that one of them, say αp/π = r
s
with

(r, s) = 1 and βp /∈ Q. Then we have

#{m ≤ x|C(pm, f)C(pm, g) 6= 0} = #{m ≤ x|C(pm, f) 6= 0} = [x]−
[x

s

]

.

Hence the set {m ∈ N|C(pm, f)C(pm, g) 6= 0} has positive density.
Now let both αp/π, βp/π ∈ Q. If αp/π = r1

s1
and βp/π = r2

s2
with (ri, si) = 1, for

1 ≤ i ≤ 2, then

#{m ≤ x|C(pm, f)C(pm, g) 6= 0} = #[{m ≤ x|C(pm, f) 6= 0}∩{m ≤ x|C(pm, g) 6= 0}].

Since

#{m ≤ x|C(pm, f)C(pm, g) = 0} = #[{m ≤ x|C(pm, f) = 0} ∪ {m ≤ x|C(pm, g) = 0}]

≤

[

x

s1

]

+

[

x

s2

]

.

Hence the set {m ∈ N|C(pm, f)C(pm, g) 6= 0} has positive density. This completes
the proof of Theorem 3.2.
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