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We investigate the electrohydrodynamics of an initially spherical droplet under the influence of an exter-

nal alternating electric field by conducting axisymmetric numerical simulations using a charge-conservative

volume-of-fluid based finite volume flow solver. The mean amplitude of shape oscillations of a droplet sub-

jected to an alternating electric field for leaky dielectric fluids is the same as the steady-state deformation under

an equivalent root mean squared direct electric field for all possible electrical conductivity ratio (Kr) and permit-

tivity ratio (S) of the droplet to the surrounding fluid. In contrast, our simulations for weakly conducting media

show that this equivalence between alternating and direct electric fields does not hold for Kr 6= S. Moreover, for

a range of parameters, the deformation obtained using the alternating and direct electric fields is qualitatively

different, i.e. for low Kr and high S, the droplet becomes prolate under alternating electric field but deforms to

an oblate shape in the case of the equivalent direct electric field. A parametric study is conducted by varying

the time period of the applied alternating electric field, the permittivity and the electrical conductivity ratios.

It is observed that while increasing Kr has a negligible effect on the deformation dynamics of the droplet for

Kr < S, it enhances the deformation of the droplet when Kr > S for both alternating and direct electric fields. We

believe that our results may be of immense consequence in explaining the morphological evolution of droplets

in a plethora of scenarios ranging from nature to biology.

1 Introduction

Electrically driven dynamics of a liquid droplet suspended in another medium has been a subject of intense research from

several decades due to its relevance in industrial applications [1], microfluidics [2–5], biological systems [6] and natural phe-

nomena such as electrification of rain, raindrops bursting in thunderstorms and electrification of the atmosphere [7–9]. Sig-

nificant research efforts, therefore, have been directed to address various facets of the coupling between electromechanics and

hydrodynamics over various spatial and temporal scales [10]. Despite a phenomenal advancement in the field over the years,

however, there remain many deficits in developing a generalised theoretical understanding of the parities and disparities of the

dynamical response of a droplet under alternating (AC) and direct (DC) electrical fields. This deficit stems from the complexi-

ties in capturing the underlying physics as well as the assumptions involved regarding the electrohydrodynamic properties of the

fluids.

Reported research has revealed that the main electrical parameters that govern the shape evolution of a droplet under direct

or alternating electric field are the electrical conductivity ratio and the permittivity ratio between the droplet and surrounding

fluid. The electrohydrodynamics (EHD) of a droplet under the action of an applied direct electric field have been investigated

by several researchers in the past considering perfect [11–13] and leaky dielectric media [3, 14]. While the underlying physics

under DC field have been addressed in details from deep-rooted theoretical [15], experimental [16] and numerical [3, 11–14, 17–

20] considerations, there is a compelling need to assess a possible straight forward extrapolation of identical inferences for

alternating electric field as well [21]. In a recent study, Esmaeeli and Halim [22] provided extensive two-dimensional numerical

simulations for leaky dielectric systems, to predict that a droplet in an alternating electric field undergoes shape oscillations about

the steady-state deformation observed under a root-mean-squared equivalent DC field, for all possible electrical conductivity

(Kr) and permittivity (S) ratios. However, this is not true for general class of fluids as reported in the experimental study of

Torza et al. [16]. This motivates us to re-examine this problem without the leaky dielectric assumption. We investigate the

electrohydrodynamics of an initially spherical droplet under the influence of an external alternating electric field by conducting

axisymmetric numerical simulations using a charge-conservative volume-of-fluid based finite volume flow solver without the

leaky dielectric assumption. In order to isolate the effect of the electric field, it is assumed that the droplet and surrounding

medium have the same density. The dynamic viscosity of the fluids are also assumed to be the same. We found that the
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FIG. 1: Schematic diagram (not to scale) of a droplet (fluid ‘i’) in another immiscible fluid (fluid ‘o’) under an alternating electric field (EAC)
or direct electric field (EDC) applied in the axial direction.

equivalence between the deformation observed under DC and AC fields exists for all values of Kr and S in the leaky dielectric

limit, as reported by the previous studies [22]. For weakly conducting systems, our results reveal that under the AC field,

the droplet becomes prolate (elongates in the direction of the electric field), whereas in the case of the equivalent DC electric

field, the droplet becomes oblate for high S and low Kr values. For some range of parameters, we found that the deformation

behaviour (oblate/prolate) predicted by the direct electric field theory [10] is different from that obtained by the simulations with

an equivalent alternating electric field.

2 Formulation

The dynamics of an initially spherical droplet of radius, R inside another immiscible fluid under the influence of an external

electric field is investigated via axisymmetric numerical simulations. The schematic diagram presented in Fig. 1 depicts an

axisymmetric computational domain of size (H ×L) = (8R×8R), with the droplet center at (0,4R). The droplet (fluid ‘i’) and

the surrounding liquid (fluid ‘o’) are assumed to be incompressible and Newtonian. In order to isolate the effect of electric

field from other forces (such as gravity) on the droplet dynamics, the fluids are also assumed to have the same density, ρ . The

viscosities (µ) of the fluids are also assumed to be the same. The interfacial surface tension is denoted by γ . An axisymmetric

cylindrical coordinate system (r,z) is used to model the flow dynamics. The electric field is applied at the top wall (z = H) by

connecting it to an alternating power source and the bottom wall at z = 0 is grounded. The alternating electric field is given by

EAC(t)≡
ψAC(t)

H
=

ψ0

H
sin

(
2πt

Tp

)
, (1)

where, t represents time, and EAC(t), Tp, ψAC(t) and ψ0 are the electric field, the time period of the alternating electric forcing,

the electric potential and its magnitude, respectively.

The droplet deformation in the presence of the AC field is compared against that observed in an equivalent DC field (EDC =
ψDC/H) with its magnitude equal to the root-mean-squared (rms) magnitude of the alternating electric field, such that

EDC = lim
t→∞

√
1

2Tp

∫ Tp

−Tp

(
E0sin

(
2πt

Tp

))2

dt =
E0√

2
, (2)

wherein E0 = (ψ0/H) and ψDC is the electric potential of the equivalent DC field.

Under the influence of electric field the initially spherical droplet deforms to an ellipsoid shape with a and b as the length and

breadth of the droplet in the directions parallel and perpendicular to the applied electric field. Thus, the degree of deformation,

D can be defined as (a−b)/(a+b), such that D > 0 and D < 0 correspond to a prolate shape and an oblate shape, respectively;

D = 0 represents a spherical droplet.

2.1 Governing equations

Under the influence of an electric field the droplet dynamics is governed by the continuity and the Navier-Stokes equations

with an additional body force term associated with the electric field. The dimensional governing equations are given by

∇ ·u = 0, (3)

ρ
[∂u

∂ t
+u ·∇u

]
= −∇p+∇ ·

[
µ(∇u+∇uT )

]
+δγκn+ fe. (4)
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Here, u = (u,w) is the velocity field, wherein u and w represent the velocity components in the r and z directions, respectively;

p is the pressure field; δ is a Dirac-delta function which is zero everywhere except at the interface; n is the unit normal to the

interface pointing towards fluid ‘o’. The body force term for the applied electric field, fe is given by

fe = ∇ ·M = ρeE − 1

2
E2

∇ε, (5)

where M = ε
[
E ⊗E − 1

2
(E ·E) I

]
is the Maxwell’s stress tensor, wherein I is the appropriate identity tensor, ε represents the

electric permittivity and E is the applied electric field strength (AC/DC). In the absence of magnetic field, the electric field can

be assumed to be irrotational, i.e. ∇×E = 0, and the electric field can be expressed in terms of the electric potential (ψ), such

that E =−∇ψ . Thus, the Gauss law of the volumetric free charge density (ρe) is given by

∇ · (ε∇ψ) =−ρe. (6)

The free charge density around a fluid particle decays with a time scale, te = ε/K (known as electric relaxation time), where K

is the electrical conductivity. The viscous time scale is given by tv = ρR2/µ . In case of a conducting fluid with te << tv, the

charge accumulates at the interface almost instantaneously, i.e the charge conservation in the bulk fluid can reach to a steady

state much faster than the fluid motion. When both fluids have low electrical conductivities, te >> tv, then the medium is known

as perfect dielectric. In this case, there are no free charge carriers, i.e. ρe = 0. Note that we do not make such an assumption and

solve the following bulk charge conservation equation [23]:

∂ρe

∂ t
+∇ · (ρeu) = ∇ · (K∇ψ) . (7)

The permittivity (ε) and the electrical conductivity (K) are assumed to depend on the volume fraction, c of fluid ‘i’ as

ε = (1− c)εo + cεi, K = (1− c)Ko + cKi, (8)

where εi, εo and Ki, Ko are the electrical permittivities and conductivities of the droplet and surrounding fluid, respectively.

2.2 Nondimensionalisation

The following scaling is used to non-dimensionalise the governing equations:

(x,z) = R(x̃, z̃) , (t,Tp) = R/Vs(̃t, T̃p), u =Vsũ, p = ρV 2
s p̃,

ε = εoε̃, K = KoK̃, δ = δ̃/R, ρe =
(
ρV 2

s /EsR
)

ρ̃e,

E = EsẼ, (ψ,ψ0) = REs(ψ̃, ψ̃0), (9)

where Vs ≡
√

γ/ρR is the reference velocity and Es ≡
√

γ/Rε0 is the characteristic electric field strength. The tildes designate

dimensionless quantities. After dropping tildes from all nondimensional variables, the governing dimensionless equations are

given by

∇ ·u = 0, (10)

∂u

∂ t
+u ·∇u = −∇p+

1

Re
∇ ·

[
µ(∇u+∇uT )

]
+δ

∇ ·n
We

n

+

(
ρeE − E2

∇ε

2χ

)
, (11)

∇ · (ε∇ψ) = −χρe, (12)

E = −∇ψ. (13)

∂ρe

∂ t
+∇ · (ρeu) =

1

χOc

∇ · (K∇ψ) . (14)

We solve the following advection equation for the volume fraction, c of fluid ‘i’ in order to track the interface separating the

droplet (c = 1) and the surrounding fluid (c = 0):

∂c

∂ t
+u ·∇c = 0. (15)
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FIG. 2: (A) The variations of Ds with the electrical conductivity ratio, Kr for Re = 0.746, Oc = 2.68, EDC = 0.428 and S = 10. (B) The

temporal variations of D obtained using three different grids under an alternating electric field with E0 = 0.5 (ψ0 = 4) and Tp = 2. The

remaining parameter values are Re = 1, Oc = 10, S = 10 and Kr = 2. The inset is a magnified view showing the oscillations of D at 10 ≤ t ≤ 13.

The dimensionless permittivity and electrical conductivity are given by

ε = (1− c)+ cS, K = (1− c)+ cKr. (16)

The various dimensionless numbers are the Reynolds number (Re(≡ ρVsR/µ)), the electrical conductivity ratio (Kr(≡ Ki/Ko)),
the permittivity ratio (S(≡ εi/εo)), and the dimensionless number associated with Ohmic charge conduction, Oc is Vsεo/KoR.

In addition to these dimensionless numbers, there are two more dimensionless numbers, namely the Weber number (We(≡
ρV 2

s R/γ)) and the electro-gravitational number (χ(≡ ρVs
2/εoE2

s )), which are equal to one due to the present choice of the

scales. Note that for a leaky dielectric system, OcRe, which is equivalent to the electric Reynolds number [22], is ≪ 1.

2.3 Boundary conditions

The no-slip and no-penetration conditions are imposed at the top and bottom boundaries (electrodes), the free-slip boundary

condition is applied at the side boundary, and the symmetry boundary condition is imposed at the centerline of the computational

domain. The temporal variations of the degree of deformation, D of the droplet due to the application of an applied electric field

(AC/DC) is investigated. Previously, several researchers have investigated shape oscillations of a droplet without any external

electric field [24–27].

3 Numerical method and validation

A volume-of-fluid (VoF) method based on a finite volume framework is used to simulate the electrohydrodynamics of a droplet

in a conducting medium. An open source fluid flow solver, Basilisk (http://basilisk.fr) [28] is used that employs a height-function

based balanced force continuum surface force (CSF) formulation for the computation of the surface tension force. This flow

solver was used in our previous studies to study the dynamics of bubbles and droplets [26, 29–31]. A charge-conservative

approach is implemented by including the electric force into the Navier-Stokes equations [23] considering both convection and

conduction of the free charges. The numerical method used in the present study is similar to that of López-Herrera et al. [23],

where several validation exercises were performed.

Further in order to validate our flow solver, the deformation of the droplet under the application of a DC electric field has been

compared against the previous computational [14] and theoretical [32] studies in Fig. 2A. Here, the system is assumed to be

neutrally buoyant and the simulations are performed till the steady state is reached. The parameters considered are Re = 0.746,

Oc = 2.68, EDC = 0.428 and S = 10. Taylor [32] conducted a linearised asymptotic analysis by assuming both the fluids to be
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conducting and highly viscous (low Re), and derived an expression for Ds, which is given by (in the dimensionless form)

Ds =
9E0

2

16(2+Kr)2

[
1+Kr

2 −2S+
3

5
(Kr −S)

2+3µr

1+µr

]
, (17)

where µr is the ratio of viscosity of the droplet and the surrounding fluid, which is set to one in the present study. The numerical

simulations are performed for different values of Kr. It can be seen in Fig. 2A that the droplet exhibits an oblate shape at low

values of Kr, and upon increasing the value of Kr the droplet deforms to a prolate shape via a spherical shape at an intermediate

value of Kr. It can be seen that the present result agrees well with the previous studies.

As the main focus of the present study is to investigate the droplet deformation dynamics under the influence of an alternating

electric field, in Fig. 2B, we have conducted a grid convergence test for a typical set of parameters under the influence of an

alternating field. The parameters considered for these simulations are E0 = 0.5 (corresponds to ψ0 = 4 in this case) and Tp = 2

with the remaining parameter values being Re = 1, Oc = 10, S = 10 and Kr = 2. The simulations are performed using three

meshes with dimensionless cell sizes, ∆ = 0.016, 0.008 and 0.004. It can be seen that degree of deformation, D undergoes an

oscillatory variation in this case. Inspection of Fig. 2B reveals that we get acceptable grid-converged results for ∆ ≤ 0.008, but

the result obtained using ∆ = 0.016 under-predicts the degree of deformation of the droplet. Thus, ∆ = 0.008 is used to generate

the rest of the results presented in this study.

4 Results and discussion
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FIG. 3: The deformation-circulation map of a droplet under an alternating electric field [16]. The dashed and solid lines correspond to S = Kr

(the zero-circulation line) and K2
r +Kr +1−3S = 0 (the zero-deformation curve). The red filled square symbols represent the values of S and

Kr considered in the present study.

The pioneering work of Torza et al. [16] provided a deformation-circulation map in the electrical conductivity ratio (Kr) and

the permittivity ratio (S) plane, which has been used to study EHD of a droplet under the influence of an alternating electric

field. This map (shown in Fig. 3) delineates three different regions classified in terms of droplet deformation and flow field

separated by the so-called the zero-circulation line (S = Kr) along which the mean velocity field is zero and the zero-deformation

curve (K2
r +Kr + 1− 3S = 0). In region I, droplet deforms to a prolate and oblate shapes if 2π/Tp > ωcr and 2π/Tp < ωcr,

respectively.; for 2π/Tp = ωcr, droplet remains spherical. Here, ωcr is given by
√

3S−1−Kr −Kr
2/(Oc|S−1|). In regions II

and III, droplet deforms to a prolate shape with a flow from poles to the equator and equator to the poles, respectively. They

derived an expression for the degree of deformation, D for a droplet in an unbounded axisymmetric domain in the creeping flow

regime under the influence of an alternating electric field (Eq. (1)). They also verified the results experimentally. They reported

that D can be expressed as a sum of the mean (Dm) and the oscillatory (Do) parts, i.e. D = Dm +Do. The mean deformation

(Dm) was found to be the same as the steady state deformation (Ds) in case of an equivalent DC electric field (Eq. (2)) when

S = Kr (i.e. along the zero circulation line as shown in Fig. 3). We begin the presentation by highlighting that this is indeed the

case in Fig. 4.

Figs. 4(A,C) and (B,D) present the comparison of temporal variations of D obtained from our axisymmetric simulations using

alternating and direct electric fields for Oc = 0.01 (leaky dielectric system) and Oc = 10 (weakly conducting system). In Figs.

4(A,B), we consider a point slightly away from the S = Kr line (S = 10 and Kr = 6; point 1 located in region II of Fig. 3). It

can be seen that in the leaky dielectric system (Fig. 4A), the mean degree of deformation (Ds) obtained under the AC field is the

same as the steady state deformation obtained in the case of the equivalent DC field. In contrast, in Fig. 4B (weakly conducting

system), this equivalence does not exist. Figs. 4(C,D) show the variations of D for S =Kr (S = 10 and Kr = 10; point 2 located on

the S = Kr line of Fig. 3). In these cases, it can be observed that for both the leaky dielectric and weakly conducting systems, the

mean degree of deformation obtained under the AC field and the steady state deformation obtained in the case of the equivalent

DC field are the same. The theoretical prediction of Ds obtained using Eq. (17) for S = 10,Kr = 6 and S = 10,Kr = 10 are

0.012 and 0.04, respectively. From the results presented in Fig. 4, we can conclude that, in weakly conducting systems, there
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FIG. 4: The temporal variations of D obtained from our axisymmetric simulations for Re = 1: (A,C) Oc = 0.01 and (B,D) Oc = 10. The panels

(A,B) and (C,D) are for (S = 10 and Kr = 6) and (S = 10 and Kr = 10), respectively. The values of potential in the alternating and direct

electric fields are ψ0 = 4 and ψDC = 4/
√

2, respectively. Tp = 2 is considered for all the alternating electric field cases.

is no similarity between the dynamics of a droplet under alternating and direct electric fields when S 6= Kr. This has also been

observed experimentally [16]. On the other hand, as discussed in the introduction, the similarity exists in the leaky dielectric

systems irrespective of the combination of S and Kr [22, 33, 34]. Thus, in the current work, we investigate the deformation of a

droplet subjected to an AC electric field and the equivalent DC electric field for weakly conducting systems.

We perform a parametric study by varying the permittivity ratio, S for Kr = 1 and the electrical conductivity ratio, Kr for

S = 10. The remaining parameters are Re = 1 and Oc = 10. In Figs. 5A and B, the temporal variations of D for different values

of S for the alternating electric field with E0 = 0.5 and Tp = 2 (which corresponds to a dimensional value of the frequency equal

to 60 Hz), and the equivalent direct electric field with EDC = E0/
√

2 are presented, respectively. Nine values of S are considered

which are associated with points 4 (S = 0.1), 5 (S = 0.3), 6 (S = 5), 7 (S = 20), 8 (S = 100), 10 (S = 10), 14 (S = 0.5), 15

(S = 1.5) and 16 (S = 2.5) in Fig. 3. It can be seen in Fig. 5A that under the action of alternating electric field, the droplet

becomes prolate (elongates in the direction of electric field) and oscillates about a mean value of D for all values of S considered.

For S = 0.1 and 0.3, the droplet slightly deforms and reaches to a prolate shape (with mean degree of deformation, Ds) with

small amplitude shape oscillations. The steady mean degree of deformation, Ds of the droplet shows a non-monotonic trend with

a minimum value for S = 1 for this set of parameters. Increasing the permittivity ratio further (i.e. S ≥ 1) increases the value of

Ds (see Fig. 5C). The amplitude of oscillations about the mean value of D also increases with increasing S. However, the time

period of oscillations is constant for all values of S, which is found to be half of the time period of the applied electric field, Tp.

The dynamics of the droplet under the application of the equivalent DC electric field with EDC = E0/
√

2 is significantly

different from that observed in the case of alternating electric field. The temporal variations of D for different values of S in the

DC case is shown in Fig. 5B. In this case, for low values of S (= 0.1 and 0.3, at points 4 and 5 in region III of Fig. 3), the droplet

deforms to a steady prolate shape; however, the value of Ds decreases with increasing the value of S. For points in region I of Fig.

3, i.e. for S = 5, 20 and 100 in Fig. 5B, it can be seen that the droplet initially deforms to a prolate shape (elongation) reaches

to a maximum value, followed by a contraction in the direction of electric field and eventually reaches to a steady oblate shape

(Fig. 5C). The times taken by the droplet to reach to its maximum prolate and the final steady state increase with increasing the

value of S.

The temporal variations of D for Kr = 0.1 (point 9), 10 (point 2), 100 (point 11), 200 (point 12) and 500 (point 13) under the

action of the alternating electric field with E0 = 0.5 and Tp = 2 are presented in Fig. 6A. For the range of Kr values considered,

the droplet deforms to a prolate shape and exhibits periodic oscillations with a time period half of that of the applied electric

field. It can be observed that below the S = Kr line (the zero-circulation line) in Fig. 3, increasing Kr has a negligible effect on

the deformation dynamics of the droplet for the set of parameters considered in the present study. Above S = Kr line, increasing

Kr increases the steady/mean degree of deformation of the droplet, Ds (Fig. 6C). The amplitude of oscillations about the mean

value of D; however with a constant time period, is found to be increased with the increase in the value of Kr. On the other

hand, under the action of an equivalent DC electric field (EDC = E0/
√

2), it can be seen in Fig. 6B that, in region I of Fig.

3, the droplet deforms to a steady oblate shape after deforming to an early prolate shape (see the results for Kr = 0.1 (point

9) and Kr = 1 (point 10)). Above the zero-deformation curve, the droplet deforms as the time progresses and reaches a steady

prolate shape (see the results of Kr = 6 (point 1), Kr = 10 (point 2) and Kr = 100 (point 11)). Close inspection of Fig. 6B also

reveals that for Kr < S, the droplet always reaches to an intermediate prolate shape, followed by a decrease in the degree of
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FIG. 5: The temporal variations of D for different values of S for Kr = 1. (A) Alternating electric field (E0 = 0.5, Tp = 2) and (B) direct electric

field (EDC = E0/
√

2). (C) The variation of steady mean degree of deformation, Ds of the droplet with S for the alternating and direct electric

fields. The remaining parameter values are Re = 1 and Oc = 10.

deformation, and finally the droplet obtains its final steady shape. The time scale for the charge relaxation from the surrounding

fluid to the interface is given by τ = ε/K. Thus, the ratio of charge relaxation times of the inner fluid to surrounding fluid is

S/Kr. For S > Kr, the free charges in the inner fluid take longer time to relax to the interface as compared to the free charges in

the surrounding fluid. Thus at the early time less than the Maxwell-Wagner relaxation timescale the drop behaves similar to a

perfect dielectric and is prolate. Subsequently, as the charges relax in the inner fluid, the steady state charge distribution governs

the final shape of the droplet. It can be observed in Figs. 5C and 6C that the values of Ds are equal in the alternating and direct

electric fields when Kr = S, as observed by Torza et al. [16]. They also experimentally observed that for high permittivity and

low electrical conductivity ratios, the droplet eventually obtains a prolate shape and an oblate shape under the application of

alternating and equivalent direct electric fields, respectively.

Next, in Fig. 7, we demonstrate the effect of the time period (Tp) of the applied AC field with ψ0 = 4 on the deformation of

the droplet at point 3 (S = 10 and Kr = 2) in Fig. 3. Note that point 3 in Fig. 3 lies in region I; away from the zero circulation

(S=Kr) line. The remaining parameter values are Re= 1 and Oc = 10. It can be seen that an initially spherical droplet undergoes

periodic shape oscillations under the application of AC electric field. Increasing the value of Tp increases the amplitude and time

period of oscillations of the droplet. We observe that for low values of Tp, the droplet deforms to a prolate shape (D > 0) and

undergoes shape oscillations about a mean degree of deformation, Ds (see Tp ≤ 10 in Fig. 7). For a high value of Tp (see for

instance, Tp = 50 in Fig. 7), the droplet undergoes periodic oscillations, but during the oscillations it deforms between a slight

oblate shape to a large prolate shape. The shape oscillations of the droplet become complex for high values of Tp (see Tp ≥ 10).
Close inspection of Fig. 7 also reveals that the time period of shape oscillations of the droplet is about Tp/2 as also observed in

earlier studies[22].

Finally, we have performed simulations for two sets of parameters (see system 16 in Table 1 of Torza et al. [16]) for the

alternating and direct electric fields. The droplet and the surrounding medium are silicone oil and castor oil, respectively. The
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FIG. 6: The temporal variations of D for different values of Kr for S = 10. (A) Alternating electric field (E0 = 0.5, Tp = 2) and (B) direct

electric field (EDC = E0/
√

2). (C) The variation of steady mean degree of deformation, Ds of the droplet with Kr for the alternating and direct

electric fields. The remaining parameter values are Re = 1 and Oc = 10.
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FIG. 7: The temporal variations of D under the influence of an alternating electric field for ψ0 = 4 with different values of Tp. The remaining

parameter values are Re = 1, Oc = 10, S = 10 and Kr = 2. The inset represents a magnified view.

densities of both the fluids are equal to 980 kg/m3. The values of the viscosity of the silicone oil and castor oil are 54 P and 65 P

(nearly the same). Thus, we assume that the density and the viscosity ratios to be 1 in our simulations. The interfacial tension for

this pair of fluids is 5.5×10−3 N/m. The initial radius of the droplet is 0.6 mm. Two values of the DC voltage, namely, 1.5 kV

and 3.5 kV are considered. The values of the associated dimensionless numbers used in our simulations are Kr = 0.03, S = 0.44,

Re = 8.84× 10−3 and Oc = 8.9. The dimensionless time period of the applied electric field, Tp is 2.66, which corresponds to

a dimensional frequency of 60 Hz as taken by Torza et al. [16]. The temporal variations of D for the alternating and direct

electric fields are shown in Figure 8. As the times at which the shapes of the droplet are shown have not been given in Ref.
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[16], it is not possible to compare the droplet shapes directly. Nevertheless, it can be seen in Figure 8 that the droplet elongates

along and orthogonal to the direction of the applied alternating and direct electric fields, respectively. It can also be seen that the

deformation increases with the increase in the applied electric forcing. This deformation behaviour can be clearly seen Figure 7

of Ref. [16].

5 Concluding remarks

The electrohydrodynamics of an initially spherical droplet under the influence of an external alternating electric field is in-

vestigated via axisymmetric numerical simulations. In order to isolate the effect of the electric field, the system is considered

to be neutrally buoyant. The dynamic viscosity of the droplet and the surrounding medium are also assumed to be the same. A

charge-conservative volume-of-fluid (VoF) based finite volume flow solver is used. The governing equations are solved without

making the leaky dielectric assumption. The present work is motivated from the results reported in the earlier studies on a droplet

suspended in a surrounding medium and subjected to an alternating electric field using the leaky dielectric assumption. These

studies show shape oscillations about the steady-state deformation under an equivalent root mean squared direct electric field,

irrespective of the electrical conductivity ratio (Kr) and permittivity ratio (S), but experimentally, this can be observed only when

Kr = S for a general class of fluids where the leaky dielectric assumption may not be valid [16]. Our simulations using weakly

conducting media show that the equivalence between alternating and direct electric fields does not hold for Kr 6= S, thereby

confirming the experimental behaviour reported by Torza et al. [16]. A parametric study is conducted by varying the time period

of the applied alternating electric field, the permittivity and the electrical conductivity ratios. Our results have revealed that for

Kr < S, under the application of the DC electric field, the droplet deforms to a steady oblate shape after deforming to an early

prolate shape. Above the Kr = S line, the droplet continues to deform monotonically and attains a steady prolate shape. On

the other hand, in the case of the alternating electric field, the droplet oscillates about a prolate shape. It is also observed that

while increasing Kr has a negligible effect on the deformation dynamics of the droplet below the zero-circulation line (S = Kr),
it enhances the deformation of the droplet above the S = Kr line for both alternating and direct electric fields. The findings from

current numerical simulations may help in explaining the complex behaviour of droplets in a multitude of applications ranging

from digital microfluidics to medical technology.
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