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Shapes and paths of an air bubble rising inside a liquid are investigated experimentally. About
three hundred experiments are conducted in order to generate a phase plot in the Galilei and
Eötvös numbers plane, which separates distinct regimes in terms of bubble behaviour. A wide range
of the Galilei and Eötvös numbers are obtained by using aqueous glycerol solutions of different
concentrations as the surrounding fluid, and by varying the bubble size. The dynamics is investigated
in terms of shapes, topological changes and trajectories of the bubbles. Direct numerical simulations
are conducted to study the bubble dynamics, which show excellent agreement with the experiments.
To the best of our knowledge, this is the first time an experimentally obtained phase plot showing
the distinct behaviour of an air bubble rising in a quiescent medium is reported for such a large
range of Galilei and Eötvös numbers.

I. INTRODUCTION

The dynamics of an air bubble rising in a liquid has been an active area of research due to its relevance in many
natural and industrial applications (see for instance [1–4]). In dimensionless formulation, a rising bubble can be
completely described by four dimensionless numbers: the Galilei number

(
Ga(≡ ρog

1/2R3/2/µo)
)
, Eötvös number,(

Eo(≡ ρogR
2/σ)

)
, density ratio (ρr(≡ ρi/ρo)) and viscosity ratio (µr(≡ µi/µo)). Here, R is the equivalent radius of

the bubble, σ is the interfacial tension, while ρo, µo, and ρi, µi are densities and viscosities of the continuous and
dispersed phases, respectively. An additional dimensionless parameter, Morton number (Mo) can also be defined as
Eo3/Ga4(≡ gµ4

0
/ρoσ

3), which is unique for a particular fluid as it depends on fluid properties alone.
Recently, Tripathi et al. [4] conducted three-dimensional numerical simulations by varying Ga and Eo for an air

bubble rising in liquid for ρr = 10−3 and µr = 10−2. They identified five different regions of distinct bubble behaviours
(namely, axisymmetric, skirted, zigzagging/spiralling, peripheral break-up and central breakup). A sketch of these
regions is shown in Fig. 1. They showed that an air bubble maintains its azimuthal symmetry (region I) for low Ga -
low Eo, and is either spherical, oblate or dimpled. For low Ga, and high Eo (region II), skirted bubbles are observed,
whereas for high Ga, and low Eo (region III), a bubble follows a spiral or zigzag path (wobbling motion). An air
bubble with high Ga and high Eo breaks to form satellite bubbles (region IV) or undergoes topological changes to
form a toroidal shape (region V; central breakup). In the present work, we complement the simulation results of
Tripathi et al. [4] by conducting extensive experiments over the entire range of Ga and Eo reported by them, and
provide an experimentally obtained phase plot in Ga-Eo plane.

FIG. 1: Modified phase plot of Tripathi et al. [4] showing different regions of bubble behaviours.
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In this context, it is important to discuss the classical region map provided by Bhaga & Weber [2] (also see Ref.
[5]), which has been used by several researchers, although Haberman & Morton [6] were probably the first to conduct
experiment on rising bubble in viscous liquids. Bhaga & Weber [2] and Clift et al. [5] conducted experiments on an
air bubble rising in aqueous sugar solutions of differing concentrations. They identified regimes of spherical, oblate,
wobbling and skirted bubbles in the Reynolds and Eötvös numbers plane based on the bubble shapes and motion.
This phase plot was prepared using three dimensionless parameters: the Reynolds, Eötvös and Morton numbers. The
Reynolds number was defined based on terminal velocity of the bubble, whereas in the present study, we use the Galilei
number, which is similar to Reynolds number, but uses

√
gR instead, as the velocity scale. Consequently, our phase

plot can include unsteady bubbles, for which there is no terminal velocity. The use of Galilei and Eötvös numbers (as
in our region map) gives another advantage. As an example, Landel et al. [7] showed that for the same volume of air
(i.e. constant Galilei and Eötvös numbers) spherical cap bubbles with a range of rise velocities (multiple Reynolds
numbers) and volume of satellite bubbles can be produced. Therefore, use of Reynolds and Eötvös numbers (as done
by Clift et al. [5]) may provide a multivalued nature to the phase-plot. Another consequence of this behaviour can
be observed in their region map. Clift et al. [5] provided only approximate boundaries for unbroken bubbles (i.e.,
for regions I, II and III). On the other hand, our phase plot provides distinct boundaries delineating all the regions,
including breakup bubbles. Thus, the phase plot presented in the present study is an useful extension to the classical
region map of Bhaga & Weber [2] or Clift et al. [5].

Computational researchers (e.g. Refs. [8–13]), who used the previous experimental results (Refs. [2, 5]) to validate
their numerical solvers assumed the bubble behaviour presented by them to be true for all bubbles regardless of the
mass density and viscosity ratios. The present study shows that the viscosity and/or density ratios can affect the
bubble dynamics. The usage of the Reynolds and/or Weber numbers in previous studies (e.g. Refs. [10, 14]) poses an
additional limitation for unsteady bubbles because these parameters depend on the terminal velocity, which is not easy
to determine accurately in experiments and is also not known a priori in numerical simulations. Other experimental
and numerical studies (e.g. Refs. [14–18]) focused on individual regimes of bubble behaviour by considering limited
sets of parameters. Particularly, we find several papers focusing on the axisymmetric and zigzagging/spiralling regions,
and/or the boundary separating these two.
In this paper, we present results from an extensive experimental study of air bubbles rising in aqueous glycerol

solutions of different concentrations. A phase plot in Ga-Eo plane is presented that shows the distinct regions based on
shape and path of a rising bubble. The behaviour of an air bubble in these regions is investigated and compared with
the corresponding numerical simulations. The similarities and differences between the experimental and numerical
results are discussed in detail. To the best of our knowledge, none of the previous studies have shown an experimentally
obtained phase plot for such a large range of Galilei and Eötvös numbers.

II. EXPERIMENTAL SET-UP

The experimental set-up consists of (i) an acrylic tank of size 200 mm × 200 mm × 700 mm, (ii) a stainless
steel nozzle (inner diameter 0.6 mm) fitted at the center of the bottom wall of the tank and connected to a syringe
(50 mL capacity) at its other end, (iii) a hemispherical dumping cup mechanism, and (iv) a high-speed camera
(Photron FASTCAM SA1.1) along with back-lit illumination system and a computer. The schematic diagram of the
experimental setup is shown in Fig. 2. The acrylic tank is used to hold an aqueous solution of glycerol with ultra pure
millipore water (purity of 18.2MΩ), which acts as a surrounding fluid. A total of 19 different concentrations of glycerol
in water is used to obtain a wide range of Ga and Eo numbers. The viscosities of these solutions are measured using a
MCR 301 rheometer by Anton Paar equipped with a cone-and-plate geometry (diameter: 40 mm, angle: 0.034 radian)
at a controlled temperature of 303 K, whereas the other fluid properties, such as mass density and surface tension
are taken from the literature (http://www.aciscience.org/docs/physical-properties-of-glycerine-and-its-solutions.pdf).
The properties of these solutions are given in Table I. The fluid in the tank is kept at a constant height of 300 mm
(from the bottom of the tank) for all experiments. The cross-sectional dimensions of the tank are chosen such that
the distance from the bubble to tank wall is about 10 times the maximum bubble radius used in our experiments.
This minimises the wall effect on the bubble dynamics.
A stainless steel nozzle along with the dumping cup mechanism is used to create bubbles of different sizes inside

the tank. The top end of the nozzle extends to a height of about 30 mm from the bottom wall of the tank at its
center. The other end of the nozzle is connected to a syringe through a Poly-Tetra-Fluoro-Ethylene (PTFE) tubing.
In order to create the bubbles, air is filled inside the syringe and is released by pushing the plunger with the help
of a syringe pump. The air comes out through the nozzle opening inside the tank in the form of individual bubbles.
These bubbles are small, spherical in shape and consistent in size (∼ 1.4 mm radius). For creating bubbles of larger
sizes, a dumping cup mechanism is used. It consists of three components: (i) a cup shaped part with a hemispherical
dome in the end, (ii) a holder, which is connected to the bottom wall of the tank through a ball bearing, and (iii)
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FIG. 2: Schematic diagram (not to scale) showing the experimental set-up. The dimension of the acrylic tank is 200 mm ×

200 mm × 700 mm.

a rod connected to one end of the holder for rotating the cup. The dumping cup is turned manually with the help
of the rod, such that air is released and rises as a single bubble of a larger size. Note that rotating the dumping
cup creates a lateral thrust on the bubble. However, we control this effect by rotating the dumping cup very slowly.
It is also observed that the disturbances created by the dumping cup die down quickly as the bubble starts rising.
Although the individual bubbles leaving from the nozzle are small, when they are collected inside the dumping cup
they coalesce together to form a larger air bubble. The size of big bubble is calculated from the volume of air collected
in the dumping cup as a volume of a sphere of an equivalent volume. The maximum equivalent radius of the bubble
used in this experiment is 26.7 mm.

Almost all the experimental techniques in bubble dynamics uses the differences in refractive indices of water and air
to visualize the bubble. In our set-up, the bubbles are recorded by using the high-speed camera (Photron FASTCAM
SA1.1), which is capable of capturing 675000 frames/second (fps) at reduced resolutions. In all our experiments, a
resolution of 448 × 800 pixels and a frame rate of 3000 fps are used. This camera is connected through a LAN port
to a computer with Photron FASTCAM Viewer (PFV) application installed in it. The camera can be controlled
by using this PFV software. Two LED lighting systems along with the controller (Videoflood Controller by Visual
Instrumentation Corporations) were installed opposite to the camera. These provide illumination using a diffused
back-lighting method (using a tracing paper), which allows a clear visualization of the bubble boundaries on a light
background.

III. NUMERICAL METHOD

Three-dimensional simulations are conducted to understand the dynamics of a rising air bubble, fluid ‘i’, in a far
denser and more viscous fluid, fluid ‘o’, under the action of buoyancy. The schematic diagram of the computational
domain is shown in Figure 3. An open-source fluid flow solver, Gerris created by Popinet [19] is used in the present
study. The present numerical solver is also the same as the one used by Tripathi et al. [4]. However, for the sake of
completeness, a brief description of the numerical method is outlined below.
A Cartesian coordinate system (x, y, z) is used to model the flow dynamics. Initially, the air bubble and the

surrounding fluid are stationary, with the air bubble placed at z = zi = 15R. Gravity acts in the negative z direction.
Free-slip and no-penetration conditions are imposed on all the boundaries of the computational domain. In our
experiments, an air bubble undergoes an increase in volume as it rises. For the maximum distance travelled by a
bubble in the numerical simulations (i.e. height of the computational domain), we have estimated a volume change of
< 0.5% in the experiments. Thus, we assume the flow to be incompressible in the present numerical study. However,
it is to be noted that this exercise is done only for spherical or oblate bubbles.
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Sample % of µ0 ρ0 σ Mo

number Glycerol (mPa·s) (Kg/m3) (mN/m)

1 100 1657 1260 62.1 230.314
2 99.8 1524 1259 62.2 163.38
3 98.2 1115 1256 62.3 46.48
4 97 967.8 1254 62.4 28.259
5 96 797 1249 62.6 12.9
6 94.8 681 1246 62.8 6.83
7 93.7 581 1243 63.0 3.6
8 92.2 478 1241 63.1 1.6
9 90.8 319.7 1235 63.4 0.3256
10 88.5 258 1230 63.6 0.1372
11 85 170 1222 64.2 0.0253
12 80 96.9 1209 64.8 0.00263
13 70 57.8 1182 65.8 0.000324
14 60 26 1154 66.6 1.315× 10−5

15 50 15.1 1127 67.5 1.5× 10−6

16 40 9.6 1100 68.4 2.4× 10−7

17 25 7 1061 69.5 6.57× 10−8

18 10 4.3 1023 69.8 9.56× 10−9

19 Pure water 1 1000 72.8 2.52× 10−11

TABLE I: Properties of different aqueous solution of glycerol.

FIG. 3: Schematic diagram showing the initial configuration of an air bubble (fluid ‘i’) rising in a liquid (fluid ‘o’). Initially
the bubble is located at z = zi = 15R; R being the radius of the bubble. H = 30R is the width and breadth, and L = 90R is
the height of the rectangular computational domain. The gravity, g is acting in the negative z direction.

The governing equations, which describe the dynamics of a rising bubble in a surrounding medium are the equations
of mass and momentum conservation:

∇ · u = 0, (1)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+∇ ·

[
µ(∇u+∇uT )

]
+ δσκn− ρgj, (2)

where u = (u, v, w) denotes the velocity field in which u, v and w represent the velocity components in the x, y
and z directions, respectively. The interface separating the air and liquid phases is obtained by solving an advection
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equation for the volume fraction of the liquid phase, c (c = 0 and 1 for the air and liquid phases, respectively):

∂c

∂t
+ u · ∇c = 0, (3)

where p is the pressure field, t denotes time, j denotes the unit vector along the vertical direction, σ and g represent
the (constant) interfacial tension for the pair of fluids considered and gravitational acceleration, respectively, δ is the
Dirac delta function (given by |∇c|), whose value is one at the interface and zero otherwise. κ = ∇·n is the interfacial
curvature, in which n is the outward-pointing unit normal to the interface.
The mass density, ρ, and the dynamic viscosity, µ, are assumed to depend on c as

ρ = cρo + (1− c)ρi, (4)

µ = cµo + (1− c)µi, (5)

where ρi, µi and ρo, µo are the density and dynamic viscosity of the dispersed (air) and the continuous (liquid) phases,
respectively.
The following scaling is used to non-dimensionalise the above governing equations:

(x, y, z) = R (x̃, ỹ, z̃) , t =
R

V
t̃, u = V ũ, p = ρoV

2p̃, µ = µoµ̃, ρ = ρoρ̃, δ = δ̃/R, (6)

where the velocity scale is V =
√
gR, and the tildes designate dimensionless quantities. After dropping tildes from all

nondimensional variables, the governing dimensionless equations are given by

∇ · u = 0, (7)

∂u

∂t
+ u · ∇u = −∇p+

1

Ga
∇ ·

[
µ(∇u+∇uT )

]
+ δ

∇ · n
Eo

n− ρj, (8)

∂c

∂t
+ u · ∇c = 0, (9)

where the dimensionless density and dynamic viscosity are given by

ρ = c+ (1− c)ρr, (10)

µ = c+ (1− c)µr. (11)

A Volume-of-Fluid (VOF) method that incorporates a height-function based balanced force continuum surface force
formulation for the inclusion of the surface force term in the Navier-Stokes equation is used. In order to ensure the
accuracy of the results, a dynamic adaptive grid refinement is incorporated based on the vorticity magnitude and
bubble interface. This solver minimizes the amplitude of spurious currents, scaled with

√
2R/σ, to less than 10−12.

This solver was also validated extensively by comparing with the previous numerical and experimental results (see
Tripathi et al. [4]).

IV. RESULTS AND DISCUSSION

The dynamics of a total of 300 bubbles are analysed in terms of shapes, trajectories, break-ups and topological
changes and a Ga-Eo phase plot (Fig. 4) is obtained. The phase-plot was obtained experimentally by observing the
rising behaviour of bubbles visually, and a minimum of 3 runs were performed for each parameter combination. Fig.
4 shows that although regions I, II and III in the phase plot look qualitatively similar to those obtained numerically
by Tripathi et al. [4] (see their Fig. 1), quantitatively there are differences.
One major difference is that unlike five different regions of bubble behaviour in the numerical phase plot, we see

only four regions in Fig. 4, i.e. in our experiments central breakup (region V) is not observed. The term ‘central
breakup’ has been used by the authors for the kind of breakup which results in a toroidal structure without any other
significant gaseous regions forming just after the breakup. This unstable toroidal bubble further disintegrates into
several smaller bubbles. This is possibly due to the difference in the initial shape of the bubble between simulations
and experiments. The initial shape of the bubble used by Tripathi et al. [4] was perfectly spherical, whereas in the
experiments it is not possible to inject a spherical bubble into the tank, particularly while dealing with big bubbles, i.e.
for high Ga and high Eo. The effect of initial shape of the bubble was also investigated by Ohta et al. [9]. The reader
may also note that none of the experimental studies so far have reported central breakup for an air bubble rising in
a liquid. Another possible reason for this discrepancy could be the difference in viscosity and density ratios. In the
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FIG. 4: Different regions of bubble shape and behaviour obtained from our experiments. Circles, triangles and squares represent
the axisymmetric (region I), skirted (region II), oscillatory (region III) and breakup (region IV) regions, respectively. In region
I, black, red and violet circles represent spherical, oblate and dimpled bubbles, respectively. In region IV, three types of breakup
bubbles are observed, namely, skirted breakup (brown filled squares), satellite and toroidal breakups (magenta squares). The
red dash-dotted line represents Mo = 10−3, which separates region II and region III. The green and magenta lines represent
Mo = 2.52× 10−11 (pure water) and Mo = 230.3 (pure glycerol).

numerical simulations of Tripathi et al. [4]), ρr = 10−3 and µr = 10−2. However, in our experiments the viscosity
of the solutions used varies from 1 mPa·s (pure water) to 1657 mPa·s (pure glycerol), while the density varies from
1000 kg/m3 (pure water) to 1260 kg/m3 (100% glycerol). By varying the viscosity and density of the surrounding
medium in our experiments, we could vary the Morton number, Mo from 230.314 (for pure Glycerol) to 2.52× 10−11

(pure water). In addition, contamination in the tank can also alter the dynamics particularly for smaller bubbles
[20–22]. However, we have taken care to minimise this problem by changing the liquid frequently, and minimising
the time taken to carry out each experiment while allowing sufficient time for the flow to subside after pouring the
liquid. All these variations contribute to the differences observed between Fig. 4 and numerically obtained phase plot
by Tripathi et al. [4].
In addition, we also observe some quantitative differences in terms of the actual position of the boundaries between

regions. In our experimental phase plot, it is observed that region I extends upto Ga ≈ 25 for Eo = 0.1, but Tripathi
et al. [4] observed region I upto Ga ≈ 38 for the same value of Eo. Similarly for 200 . Ga . 500 and 1 . Eo . 10,
we observe oscillatory behaviour (region III), whereas, this is reported as a break-up region in Tripathi et al. [4].

Next, we present the bubble behaviours in each region at different dimensionless times, normalised with
√
R/g,

and compare the dynamics with that obtained from the numerical simulations.

A. Region I bubbles

Three types of terminal bubble shapes: spherical, oblate and dimpled can be observed in region I (axisymmetric
region). Temporal evolutions of typical spherical, oblate and dimple shaped bubbles obtained from numerical simula-
tions and experiment are shown in Fig. 5. The differences in shape are evident by visual examination. We found that
for low Eo, the bubble remains spherical, and increasing the value of Eo, the bubble becomes oblate. As the Ga is
kept constant in Fig. 5, increasing Eo (which mean decreasing the effect of surface tension) promotes deformation, as
expected, which in turn changes spherical to oblate and then to dimpled bubbles. Our observations mostly agree with
that of Clift et al. [5], who also observed spherical bubbles for Eo below 0.2 (approximately). This region obtained
from our experiment qualitatively agrees with that of Tripathi et al. [4].
Fig. 6 shows the temporal variation of bubble-tip position normalised with the equivalent radius of the bubble

(ztip) obtained from the experiments (symbols) and numerical simulations (lines). It is observed that in region I, the
rise velocity of the bubble decreases with increase in Eo, i.e. a spherical (dimpled) bubble has the highest (lowest)
rising velocity. This is to be expected as the drag force experienced by a spherical bubble is lower than that of an
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(a)
(b)

(c)

FIG. 5: Evolutions of region I bubbles: (a) spherical, (b) oblate and (c) dimple shaped bubbles obtained from numerical
simulations (first column in each panel) and experiment (second column in each panel). The surrounding fluid in (a), (b) and
(c) are 40% of glycerol in water (i.e µr = 1.04 × 10−3, ρr = 9.09 × 10−4, Ga = 8.58 and Eo = 0.109), 85% of glycerol in
water (i.e µr = 5.9× 10−5, ρr = 8.2× 10−4, Ga = 8.52 and Eo = 5.11), and 90.8% of glycerol in water (i.e µr = 3.13× 10−5,
ρr = 8.1 × 10−4, Ga = 8.36 and Eo = 11.7), respectively. The radii of the bubble in panels (a), (b) and (c) are 0.83 mm, 5.2
mm and 7.8 mm, respectively.

FIG. 6: Temporal variations of normalised bubble-tip position, ztip obtained experimentally (symbols) and numerically (lines).
The surrounding fluids are: 40% of glycerol in water (i.e. µr = 1.04× 10−3, ρr = 9.09× 10−4, Ga = 8.58 and Eo = 0.109) for
spherical, 85% of glycerol in water (i.e. µr = 5.9 × 10−5, ρr = 8.2 × 10−4, Ga = 8.52 and Eo = 5.11) for oblate and 90.8% of
glycerol in water (i.e. µr = 3.13 × 10−5, ρr = 8.1 × 10−4, Ga = 8.36 and Eo = 11.7) for dimpled bubbles. The radii of the
spherical, oblate and dimpled bubbles are 0.83 mm, 5.2 mm and 7.8 mm, respectively.

oblate bubble even if the volume remains constant. The radii of the spherical, oblate and dimpled considered in Figs.
6 and 5 are 0.83 mm, 5.2 mm and 7.8 mm, respectively. As the drag force increases with the increase in the size
of the bubble, the drag force experienced by these bubble increases in an order from spherical to oblate to dimpled
bubbles. It can also be noticed in Fig. 6 that the temporal variations of ztip obtained from the experiments matched
with those of numerical simulations within the limit of experimental error.

B. Region II bubbles

A bubble in region II rises in a straight path, but forms a skirt-like structure along the periphery. The skirted
bubbles have been investigated by a few researchers numerically (e.g. [4, 14, 23]) and experimentally (e.g. [2]) in the
past. Fig. 7(a) shows a typical region II bubble obtained from experiment (right panel) and numerical simulation
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(a) (b)

FIG. 7: (a) Evolution of shapes of a typical skirted (region II) bubble. The left and right panels show the bubble shapes obtained
from numerical simulation and experiment, respectively. (b) The temporal variation of ztip obtained from the experiment
(symbols) and numerical simulation (solid line). The surrounding fluid is 97% of glycerol in water (µr = 1.03 × 10−5, ρr =
7.97× 10−4, Ga = 10.86 and Eo = 73.28). The radius of the bubble is 19.27 mm.

(left panel). The experiment shows that as the bubble rises, a dimple forms at an early time (t = 3). The dimple
evolves into a skirt (see the translucent part of the bubble at the bottom), which grows as the bubble rises (t ≥ 4).
For this set of parameters, the skirt does not develop holes, but we see oscillations at the edge of the skirt (see t = 8).
The corresponding numerical simulation also shows very similar bubble dynamics. Both experiment and numerical
simulation show an initial continuous elongation of the skirt, slight oscillation in the shape of the bubble and local
oscillations at the edge of the skirt. In our experiment, we found an excellent agreement on the time evolution of
a skirted bubble (through high speed imaging) and the corresponding numerical simulation. Fig. 7(b) presents the
temporal variation of ztip obtained from the experiment and numerical simulation, which also shows a good agreement.

C. Region III bubbles

Region III bubbles show extensive unsteady behaviour in the paths as well as bubble shapes. A trajectory of an air
bubble (R ≈ 2mm) rising in 25% of glycerol in water solution obtained from the experiment is shown in Fig. 8(a).
The shapes at different time instants (shown in zoomed view in the left panel) are overlapped to show the trajectory
(right panel of Fig. 8(a)). In this particular view, the trajectory shows a total deviation of six times the bubble
radius about the axis of symmetry (vertical dashed line). The path of the bubble in this case is found to be spiralling
(Multimedia view). In a recent paper, Cano-Lozano et al. [24] demonstrate that the unsteady shape deformations
are related to the rotation of the bubble along the zigzag path. It has been well known that the path oscillation
of a region III bubble can be a result of either shape asymmetries, or unsteady vortex shedding, or both. However,
recently, Vries [20] found a regime of path instability where no vortex shedding was expected. Thus, without making
an argument about the cause and effect of path instability, we only say that there is an intimate connection between
loss of symmetry and loss of a straight trajectory. This intuition is due to the fact that any asymmetrical deformation
of the bubble in the plane perpendicular to gravity would result in an imbalance of planar forces, which in turn would
drive the bubble away from the axis of the domain, and vice versa.

Fig. 8(b) shows the temporal evolution of the shape of another region III bubble of size, R ≈ 4.57 mm, obtained
from the experiment (right panel) and the numerical simulation (left panel). Note that this bubble (with Ga = 230.8
and Eo = 3) lies in region IV of Tripathi et al. [4]) (satellite breakup). This bubble falls into region IV based on their
numerical simulations with ρr = 10−3 and µr = 10−2. The experimental results for this case are obtained for an air
bubble rising in a solution of 10% glycerol in water with ρr = 9.78 × 10−4 and µr = 2.33 × 10−3. In the numerical
simulation, when we consider the modified viscosity and density ratios, i.e. µr = 2.33×10−3, ρr = 9.78×10−4 instead
of µr = 10−2, ρr = 10−3 as considered by Tripathi et al. [4], it is observed that the bubble now does not break
and behaves like a region III bubble, which agrees with experiment qualitatively. These results also possibly explain



9

(a) (b)

FIG. 8: Evolution of paths and shapes of two region III bubbles. (a) The left panel shows zoomed view of the shapes of the
bubbles at different times and the right panel shows the trajectory of the bubble (multimedia view). The initial bubble radius
is 2 mm and the surrounding fluid is 25% of glycerol in water (µr = 1.43×10−3, ρr = 9.43×10−4, Ga = 44.06 and Eo = 0.63).
(b) Evolution of bubble shapes at four time instances for an air bubble of initial radius 4.57 mm and a surrounding fluid of 10%
of glycerol in water (µr = 2.33 × 10−3, ρr = 9.78 × 10−4, Ga = 230.8 and Eo = 3). The left and right panels show numerical
and experimental results, respectively.

(a) (b)

FIG. 9: (a) Trajectory and (b) iso-surfaces of the vorticity component in the z direction (magnitude ±0.8) at time t = 25
(obtained from numerical simulation). The parameters are the same as those used in Fig. 8(b).
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(a) (b) (c) (d)

FIG. 10: Effect of viscosity ratio on the evolution of shapes: (a) µr = 10−1, (b) µr = 10−2, (c) µr = 10−3 and (d) µr = 10−4.
The rest of the parameters are ρr = 10−3, Ga = 230.8 and Eo = 3. The locations of center of gravity, zCG of the bubble at
different times are also shown. The shapes shown in panel (b) correspond to a region V bubble (central breakup) in Tripathi
et al. [4].

(a) (b) (c) (d)

FIG. 11: Effect of density ratio on the evolution of shapes: (a) ρr = 10−1, (b) ρr = 2× 10−3, (c) ρr = 10−3 and (d) ρr = 10−4.
The rest of the parameters are µr = 10−2, Ga = 230.8 and Eo = 3. The locations of center of gravity, zCG of the bubble at
different times are also shown. The shapes shown in panel (c) correspond to a region V bubble (central breakup) in Tripathi
et al. [4].

the discrepancy observed in the boundary separating region III and breakup (regions IV and V) (i.e., Ga > 110 and
1 < Eo < 10) between our experimentally obtained phase diagram (Fig. 4) with that of Tripathi et al. [4].

Numerical simulation shows that this bubble follows a wobbling motion as shown in Fig. 9(a). It is observed that
although the shape deformation happens at a very early time (t = 4.6) (see Fig. 8(b)), the bubble travels in a straight
path till t ≈ 15. This is in accordance with the finding of Cano-Lozano et al. [24], as discussed above. The iso-surfaces
of the vorticity component in the z direction at t = 25 are shown in Fig. 9(b). The pair of streamwise vortices result
in a lift force, which is responsible for the nonzero horizontal velocity component of the bubble. It is also found that
the occurrence of streamwise vorticity in the wake coincides with the path instability.
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(a) (b)

FIG. 12: Trajectories of the bubble for (a) µr = 10−4, ρr = 10−3, Ga = 230.8, Eo = 3, and (b) µr = 10−2, ρr = 10−4,
Ga = 230.8, Eo = 3.

1. Effect of viscosity and density ratios

The result presented above (Fig. 8(b)) also reveals that a change in viscosity ratio (with a negligible change in
density) can change the bubble region from central breakup (region V) to oscillatory region (region III). This motivated
us to investigate the effect of changing the viscosity and density ratios on bubble behaviour. Numerical simulations
were conducted by separately varying µr and ρr while keeping the rest of the parameters constant. However, it is to
be noted that the parameters considered in this section may not be feasible in experiments.
In Fig. 10, µr is varied from 10−1 to 10−4 while the rest of the parameters are kept fixed at ρr = 10−3, Ga = 230.8

and Eo = 3. It can be seen that for µr ≥ 10−3 (Fig. 10(a), (b) and (c)), the bubble undergoes central breakup to
form a doughnut-like or toroidal shape, which becomes unstable at later times and breaks down into smaller bubbles
(not shown). It is found that bubbles in Fig. 10(a), (b) and (c) travel in a straight path. This is consistent with
the finding of Tripathi et al. [4] for an air-water system (µr = 10−2 and ρr = 10−3) for Ga = 230.8 and Eo = 3.
Decreasing the viscosity further to µr = 10−4, the bubble behaves like a region III (oscillatory/wobbling) bubble (see
Fig. 10(d)). The trajectory of the bubble for µr = 10−4 is shown in Fig. 12(a). We found that vortex shedding behind
the bubble (which occurs for µr = 10−4 for this set of parameters) promotes this oscillatory motion by adjusting its
shape without allowing it to break.

The effect of density ratio (varying from 10−1 to 10−4) on bubble shapes for µr = 10−2, Ga = 230.8 and Eo = 3 is
presented in Fig. 11. It can be seen that for ρr ≥ 10−3 (Fig. 11(a), (b), (c)) the bubble undergoes topological change
to form a doughnut-like shape (region V of Tripathi et al. [4]), but behaves like an oscillatory bubble (region III) for
ρr = 10−4 (see Fig. 11(d)). The oscillatory path of this bubble is shown in Fig. 12(b). On a separate note, it is
mentioned here that a liquid drop falling in air (µr = 57 and ρr = 1000) never does wobbling motion [25].
The mechanisms behind the central breakup observed for large liquid-to-gas density and viscosity ratios are discussed

below. In the literature, two types of mechanisms were suggested for the toroidal breakups: (i) inertial upward jet
mechanism [26] and (ii) downward jet pinch-off mechanism [27, 28]. In the inertia dominated regime, as the bubble
rises, it deforms by the additional pressure generated due to the hydrostatic pressure head equivalent to 2ρogR between
the top and bottom poles of the bubble. This in turn creates an upward liquid jet which squeezes the bubble in the
vertical direction. This deformation is counteracted by the surface tension force, in general. In this competition
between the inertia and surface tension forces, if inertia wins, then the bubble breaks from the centre to form a
toroidal bubble. The downward jet pinch-off could be explained as follows. The rise in pressure at the front pole of
the bubble is balanced by the capillary pressure and the normal viscous stress. However, if the capillary effects are
small (high Eo) and if the viscous forces are also small as compared to the inertial forces (high Ga), the pressure
excess at the front pole causes a downward jet to destabilize the interface [28].

We observe a third kind of toroidal breakup which occurs for a much higher value of surface tension although it
resembles the downward jet mechanism. It can be seen in Figs. 10 and 11 that the bubble attains a disc-like shape and
keeps on expanding its circumference, eventually resulting in a breakup from the center. It is to be noted that a large
fraction of air accumulates in the peripheral regions rather than the central part, thus making the bubble increasingly
thinner at the center. This could be explained as follows. The formation of counter-rotating vortices in the wake,
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(a) (b)

FIG. 13: Evolution of breakup bubbles (region IV): (a) 70% of glycerol in water and 22.8 mm bubble radius (µr = 1.73×10−4,
ρr = 8.46× 10−4, Ga = 221.5 and Eo = 92.1), and (b) 80% of glycerol in water and 26.7 mm bubble radius (µr = 5.9× 10−5,
ρr = 8.27× 10−4, Ga = 171, Eo = 131).

move the fluid outwards from the center of the bubble. This action causes the bubble to form an increasingly thinner
core which punctures at a later time. Moreover, the bubble remains flat in these cases due to high inertia.

D. Breaking-up bubbles: bubbles in region IV

The numerical phase diagram of Tripathi et al. [4] indicates that there are two types of breakups for bubbles,
namely peripheral (region IV) and central (region V) breakups. However, in the experimental phase diagram (Fig.
4) the central breakup is not observed. Within the region classified as breakup, we only observed peripheral-type
breakups, which we have further classified as skirted, satellite and toroidal breakups. In the skirted breakup region, a
thin skirt forms on the periphery of the bubble which breaks to form small satellite bubbles rising in the wake region
following the main bubble. The satellite and toroidal breakups seem to happen arbitrarily and there is no specific
boundary between them. Two recorded cases of each of these breakups are shown in Fig. 13(a) and (b), respectively.
In case of the satellite breakup (Fig. 13(a)), the bubble breaks near the center to form satellite bubbles (at the wake)
and a spherical cap bubble. For toroidal breakup (Fig. 13(b)), a ring-like structure is detached from the main body
of the bubble. Walters & Davidson [26] have predicted this kind of breakup for an initially spherical bubble rising in
an inviscid liquid. They found the toroidal bubble to be stable, but we see that the presence of unsteadiness in the
wake of the bubble makes the system of bubbles unstable.

V. CONCLUDING REMARKS

The dynamics of a rising air bubble inside aqueous solutions of glycerol is investigated resulting in a phase
plot in the Galilei and Eötvös numbers plane, which separates four distinct regions in terms of bubble behaviour,
namely axisymmetric, skirted, spiralling and break-up regions. The experimental results are compared with those of
numerical simulations to show the similarities and differences. The differences observed in the breakup region are
attributed to the difficulty in creating a perfectly spherical bubble in experiment, particularly when the size of the
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bubble is large, i.e. for high Ga and high Eo. Apart from Reynolds and Eötvös numbers, which were thought to be
the only important governing parameters for rising bubbles in air-liquid systems, our results show that the actual
density and viscosity ratios are also required to describe the bubble dynamics accurately, especially in the parameter
space close to the region boundaries in the phase-plot.
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