Header menu link for other important links
X
Sensitivity Issues in Finite-Difference Large-Eddy Simulations of the Atmospheric Boundary Layer with Dynamic Subgrid-Scale Models
S. Xie, , C.L. Archer
Published in Kluwer Academic Publishers
2015
Volume: 157
   
Issue: 3
Pages: 421 - 445
Abstract
The neutral atmospheric boundary layer (ABL) is simulated by finite-difference large-eddy simulations (LES) with various dynamic subgrid-scale (SGS) models. The goal is to understand the sensitivity of the results to several aspects of the simulation set-up: SGS model, numerical scheme for the convective term, resolution, and filter type. Three dynamic SGS models are tested: two scale-invariant models and the Lagrangian-averaged scale-dependent (LASD) model. The results show that the LASD model has the best performance in capturing the law-of-the-wall, because the scale invariance hypothesis is violated in finite-difference LES. Two forms of the convective term are tested, the skew-symmetric and the divergence forms. The choice of the convective term is more important when the LASD model is used and the skew-symmetric scheme leads to better simulations in general. However, at fine resolutions both in space and time, the sensitivity to the convective scheme is reduced. Increasing the resolution improves the performance in general, but does not better capture the law of the wall. The box and Gaussian filters are tested and it is found that, combined with the LASD model, the Gaussian filter is not sufficient to dissipate the small numerical noises, which in turn affects the large-scale motions. In conclusion, to get the most benefits of the LASD model within the finite-difference framework, the simulations need to be set up properly by choosing the right combination of numerical scheme, resolution, and filter type. © 2015, Springer Science+Business Media Dordrecht.
About the journal
JournalBoundary-Layer Meteorology
PublisherKluwer Academic Publishers
ISSN00068314