Header menu link for other important links
X
Scalable, large-area synthesis of heteroatom-doped few-layer graphene-like microporous carbon nanosheets from biomass for high-capacitance supercapacitors
A. Gopalakrishnan, C.Y. Kong,
Published in Royal Society of Chemistry
2019
Volume: 43
   
Issue: 3
Pages: 1186 - 1194
Abstract
High-capacitance electrochemical supercapacitors are promising devices due to their long-term stability and simple device construction. Unlike available reports on biomass-derived carbon as supercapacitor electrodes, in this paper, we report novel few-layer graphene-like microporous carbon nanosheets obtained from a single biomass precursor, which yield very high specific capacitance. A simple, ultra-low cost, one-step activation-free approach yields few-layer graphene-like microporous carbon nanosheets in the presence of heteroatoms by using ginger root as a biomass precursor. Suitable heteroatom content combined with porous graphene-like carbon nanosheet structure enhances the specific capacitance. The as-prepared carbon nanosheets from ginger roots possessing few-layer graphene-like structures are confirmed by X-ray diffraction and transmission electron microscopy, and the presence of few heteroatoms is confirmed by energy dispersive spectroscopy. The electrochemical measurements reveal that the ginger root-derived carbon electrode exhibits very high specific capacitance of 390 F g-1 at 1 A g-1 of current density. The ginger-derived carbon electrode also has 93.3% capacitance retention until 3500 charge/discharge cycles. This approach indicates great potential to achieve sustainable, low-cost, simple and large-scale production of renewable biomass-derived carbon materials for efficient energy storage applications in the future. © 2019 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
About the journal
JournalData powered by TypesetNew Journal of Chemistry
PublisherData powered by TypesetRoyal Society of Chemistry
ISSN11440546
Open AccessNo