
A

Run-time Performance and Power Optimization of Parallel Disparity
Estimation on Many-Core Platforms

Charles Leech, University of Southampton, UK

Charan Kumar, IIT Hyderabad, India

Amit Acharyya, IIT Hyderabad, India

Sheng Yang, University of Southampton, UK

Geoff V. Merrett, University of Southampton, UK

Bashir M. Al-Hashimi, University of Southampton, UK

This paper investigates the use of many-core systems to execute the disparity estimation algorithm, used

in stereo vision applications, as these systems can provide flexibility between performance scaling and

power consumption. We present a learning-based run-time management approach which achieves a required

performance threshold whilst minimizing power consumption through dynamic control of frequency and

core allocation. Experimental results are obtained from a 61-core Intel Xeon Phi platform for the above

investigation. The same performance can be achieved with an average reduction in power consumption of

27.8% and increased energy efficiency by 30.04% when compared to DVFS control alone without run-time

management.

CCS Concepts: rTheory of computation → Online learning algorithms; rComputing methodologies

→ Scene understanding; rComputer systems organization → Parallel architectures; Embedded systems;
rHardware → Power estimation and optimization; rSoftware and its engineering → Multithreading;

Power management;

ACM Reference Format:

Charles Leech, Charan Kumar, Amit Acharyya, Sheng Yang, Geoff V. Merrett and Bashir M. Al-Hashimi,
2017. Run-time Performance and Power Optimization of a Parallel Disparity Estimation Algorithm on
Many-Core Platforms. ACM Trans. Embedd. Comput. Syst. V, N, Article A (YYYY), 20 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Stereo vision has become more pervasive in embedded and physically-constrained sys-
tems. Disparity estimation (DE) algorithms are used in stereo vision to calculate the
depth of objects in a scene. They are used in such applications as video surveillance, au-
tonomous vehicles and mobile robots [Cyganek and Siebert 2009]. Algorithms need to
satisfy real-time performance demands, with high matching precision and low power
consumption. The choice of estimation algorithm and implementation platform are
both important factors to meet these constraints and produce a viable embedded stereo
matching system.

With the appearance of stereo vision algorithms in dynamic environments, where
constraints can change frequently, achieving run-time power scalability without sac-
rificing real-time performance has emerged as the next challenge in this domain.
For example, in autonomous vehicles the performance requirement may be driven

This work was supported in parts by the EPSRC Grant EP/L000563/1 and the PRiME Programme
Grant EP/K034448/1 (www.prime-project.org). Experimental data used in this paper can be found
at https://doi.org/10.5258/SOTON/D0221
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1539-9087/YYYY/-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:2 Charles Leech et al.

by the content in the scene as objects closer require a higher frame-rate to update
their depth faster [Paone et al. 2014]. We predict that software implementations on
many-core architectures will allow dynamic scaling of algorithms and platforms to
balance performance and power constraints. An adaptive run-time management ap-
proach has been developed which employs a regression-based learning method to find
power/performance trade-offs between frequency and core scaling, with the aim of in-
creasing energy efficiency and extending device battery life [Shafik et al. 2015]. To the
best of our knowledge, this is the first study that investigates a many-core implemen-
tation of the DE algorithm, employing run-time management to achieve a trade-off
between power and performance. This paper provides the following contributions:

— Evaluation of the performance and power characteristics of a parallel implementa-
tion of a leading DE algorithm within a many-core operating space.

— An adaptive run-time management approach for power and performance modeling
and optimization of dynamic applications on many-core systems.

— Experimental validation of the run-time management approach for the DE algorithm
using power and performance trade-offs on a many-core platform.

The rest of the paper is organized as follows: Section 2 discusses related work into
disparity estimation and run-time management. Section 3 details the underlining al-
gorithms for DE and their implementation. Section 4 describes profiling of the algo-
rithm on a many-core platform. Section 5 introduces the adaptive run-time manager
for optimizing the DE algorithm. Its validation and results follow in Section 6. Finally,
Section 7 concludes the paper.

2. RELATED WORKS

2.1. Disparity Estimation

Stereo Vision for depth estimation and 3D sensing has been used across many em-
bedded applications including person counting and tracking [Burbano et al. 2015], au-
tonomous navigation and obstacle avoidance [Mendes and Wolf 2013; Oleynikova et al.
2015] and mobile robotics [Karakaya et al. 2014; Solak and Bolat 2015].

At the highest level, DE can be categorized into global and local algorithms. Global
algorithms are formulated as an optimization across parts of the entire image. They
produce precise results, with low average error rates in the calculation of disparity val-
ues [Scharstein and Szeliski 2002]. However, they typically have complex implemen-
tations with high memory and hardware demands which have the potential to limit
scalability to higher resolution images. As a result, investigations have been made to
implement dedicated hardware architectures of more precise algorithms, such as Semi
Global Matching (SGM) [Gehrig et al. 2009; Banz et al. 2010] and Adaptive Support
Weight (ADSW) [Ding et al. 2011; Perri et al. 2013].

In contrast, local stereo matching algorithms have reduced computational complex-
ity and more localized memory requirements, relying on simpler aggregation strategies
[Ttofis et al. 2016; L. Nalpantidis and Gasteratos 2008]. However, these algorithms are
prone to disparity errors at depth discontinuity regions due to the use of a fixed local
window shape and size [Yoon and Kweon 2006]. To improve matching accuracy, a few
attempts have been made by combining or modifying existing algorithms and trans-
forms [Ambrosch and Kubinger 2010; Baha and Larabi 2012; Zhang et al. 2009], the
most recent Adaptive Support Weight (ADSW) methods are currently the most accu-
rate [Gehrig et al. 2009; Ding et al. 2011; Perri et al. 2013]. They work by assigning
different weights to the pixels in the support window based on their color or proximity
to the central pixel. In this way, they aggregate only those pixels that lie at the same
disparity, leading to improved quality at depth borders [Yoon and Kweon 2006].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:3

Recently, the use of a Guided Image Filter (GIF) [He et al. 2013] in local ADSW
algorithms has been proposed to reduce the complexity of cost aggregation, leading
to a high-quality, fast and simple local DE algorithm [Hosni et al. 2011]. Due to the
reduced complexity of this type of filter, the algorithm can operate at real-time frame-
rates for HD images when implemented in a parallel structure [Ttofis et al. 2016]. This
has resulted in the migration of software implementations entirely into the hardware
domain on FPGAs [Gehrig et al. 2009; Banz et al. 2010; Ttofis et al. 2016].

We highlight the fact that these fixed hardware designs lack the ability to perform
adaptations at run-time and that power-performance scalability is a key attribute for
any application operating on an embedded system. We chose a local algorithm for our
experimentation because it has scalability when implemented in software due to im-
plicit parallelism and low data dependence properties. ADSW and GIF enhancements
ensure a high quality disparity map in terms of bad pixel errors without sacrificing
the algorithm’s parallelism. Scalability enables operation across a range of power-
performance points, depending on system constraints. Furthermore, the memory and
computational resource requirements of embedded systems prevent the implementa-
tion of Global and SGM algorithms due to their irregular data access patterns and
high complexity algorithms [Banz et al. 2010].

The approach considered in this work can be categorized as a passive stereo vision
method, relying on correspondence in a stereoscopic image pair. Alternatively, active
stereo vision approaches use a projector-camera setup with a single light source, such
as infrared in the case of the Microsoft Kinect [Usachokcharoen et al. 2015; Stowers
et al. 2011], or a structured light array [Park et al. 2015; Tahara et al. 2015] to perform
depth estimation. The two approaches are not comparable as they operate on different
data sources.

2.2. Run-time Power and Performance Optimization

Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Concurrency Throt-
tling (DCT) are both run-time power optimization approaches that have received sig-
nificant attention over recent years [Shafik et al. 2015; Cochran et al. 2011]. DVFS is
used to reduce energy consumption by lowering the operating voltage and frequency
whilst causing acceptable performance degradation [Etinski et al. 2012]. DCT selects
the number of concurrent processing cores and threads during run-time to manage
application parallelism and exchange performance for energy [Porterfield et al. 2013;
Shafik et al. 2015]. Both DVFS and DCT control have been used in conjunction as
run-time control approaches to achieve minimized energy consumption and a required
performance target [Curtis-Maury et al. 2008; Hwang and Chung 2013]. These ap-
proaches are based on offline training to learn the system architecture followed by
online performance prediction to guide run-time optimization and adaptation.

Existing energy minimization approaches for parallel applications have the follow-
ing limitations. Firstly, existing approaches [Porterfield et al. 2013] and [Curtis-Maury
et al. 2008] ignore energy minimization in the sequential part of the application, which
can be significant. Secondly, these approaches [Curtis-Maury et al. 2008; Hwang and
Chung 2013] use offline training processes to learn the system architecture and control
DVFS and/or DCT. As a result, their models are limited to single use-cases and their
scalability is poor for different many-core architectural allocations of the same appli-
cation. To address these limitations, our approach encompasses the entire application
execution period and uses scalable adaptation based on online model training and an
iterative control process to achieve optimized frequency and core settings.

Stereo matching algorithms have been implemented as use-case applications for
runtime resource management, with parameters exported that allow dynamic tuning
of the trade-off between performance and result quality [Paone et al. 2014; Mariani

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:4 Charles Leech et al.

Grayscale &

Gradient

Post

Processing

Left

Image

Right

Image

Depth

Map

Cost Volume

Construction

Cost Volume

Construction

Grayscale &

Gradient

Cost Volume

Filtering

Cost Volume

Filtering

Disparity

Selection

Disparity

Selection

(1), (2) & (3) (4) & (5) (6)Corresponding Equations:

Fig. 1: Block diagram of the DE algorithm. The shaded regions are the enhanced par-
allel stages which offer opportunity for run-time adaptation.

et al. 2010]. To evaluate the runtime management approach, a dynamic workload is
mimicked by randomly seeding start time, input data size and frame-rate parame-
ters for multiple application instances. As in our work, comparison is often made to a
baseline Linux configuration [Curtis-Maury et al. 2008] or a range of specific runtime
manager (RTM) configurations [Paone et al. 2014].

3. DISPARITY ESTIMATION: ALGORITHM, IMPLEMENTATION AND VERIFICATION

Disparity estimation is a stereo matching process which can extract depth information
from a pair of rectified, disparate images in a stereoscopic configuration. The corre-
spondence of a pixel at coordinate (x, y) of the reference image, can be found at the
same vertical coordinate y, within a maximum horizontal bound called the disparity
range [0, D) in the target image [Son et al. 2012]. The location difference of corre-
sponding pixels in both images is called disparity and is used to calculate the depth
in meters. DE algorithms mostly follow four high-level steps: cost computation, cost
aggregation, disparity computation and disparity refinement, illustrated by Figure 1.

3.1. Algorithm

The algorithm is composed of four key stages. In addition, one stage of pre-processing
is required to create an x-gradient version of the input image and via gray-scale con-
version. Cost Volume Construction (CVC) is the comparison of pixels between the two
images over a range of disparities d. A cost value is assigned to each pixel p in the left
image based on the dissimilarity between it and a pixel in the right image. A truncated
absolute difference of colors (M(p, d), equation (1)) and gradients (G(p, d), equation (2))
are the cost contributions, at pixel p and disparity d [Hosni et al. 2011]. I is the value
of each pixel color channel in equation (1) and the luminance in equation (2). ∇x is the
gradient in the x direction of the luminance of the image.

M(p, d) =

3∑

i=1

|Iileft(p)− Iiright(p− d)| (1)

G(p, d) = |∇x(Ileft(p))−∇x(Iright(p− d))| (2)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:5

A cost function (3) is used to balance the contribution from the color difference or gra-
dient difference using a weighting variable α. Tc and Tg are bounding threshold values
for the color and gradient cost contributions respectively for forming the overall cost.
These variables are derived from the same literature as the algorithm and are set to
the constant values: {α, Tc, Tg} = {0.9, 0.028, 0.008}[Hosni et al. 2011]. The parameters
were found empirically by those authors who do not provide further information on
how they were derived. They are the same for every frame.

C(p, d) = α.min(Tc,M(p, d)) + (1− α).min(Tg, G(p, d)) (3)

Cost Volume Filtering (CVF), equation (4), is applied to each slice of the built cost
volume. Filtering is performed using the Guided Image Filtering (GIF) method, using
the original color image as the guidance image. q(p, d) is the filtered cost value at pixel
p and disparity d. A weighting function Wi,j is used in the filter which favors pixels in
the kernel that have similar color to that of the central pixel (see [He et al. 2013] for
further details).

q(p, d) =
∑

Wi,j(I)C(p, d) (4)

Disparity selection (equation 5) reduces the cost volume down to a 2D disparity
map through a winner-takes-all selection strategy. Selection finds the best disparity
dp value for each pixel p from the lowest cost value in the cost volume. D represents
the upper bound of the disparity range (0 ≤ d < D), within which the best disparity
value must lie. The lowest cost represents the most likely distance of the same point
in space between the two images. The disparity value not the cost value is encoded in
the disparity map.

dp = argmin
dǫD

q(p, d) (5)

Lastly, post processing is applied to the disparity map. A left-right consistency check,
made possible because a disparity map is computed both from left to right and right
to left, is used to identify and fill mismatched pixels between the two maps with the
closest consistent pixel. A bilateral filter removes any remaining artifacts in the output
disparity map by operating selectively only on the corrected pixel locations.

3.2. Parallelism

The four key stages of the algorithm, from CVC to Post Processing, are where par-
allelism has been introduced through multi-threading in order to create a number of
independent threads. The algorithm is written in C++ with parallelism introduced us-
ing the POSIX threads library [Lewis and Berg 1998]. The parallel thread creation
process is outlined in Algorithm 1, with the function called from pthread create (line
12) containing the executed code. Lines 3 to 8 and line 19 describe how levels thread
blocks are created, each with block size threads. Each thread in the block is allocated
to a separate core therefore block size determines the number of active cores. The first
inner loop creates block size threads, which execute simultaneously, then the second
inner loop joins them before the next thread block is created. The threads tuning pa-
rameter enables dynamic adaptation of the parallelism structure for each frame.

3.3. Verification and Accuracy

Correct algorithmic function must be observed in order to verify that a demanding
workload is being presented to the system. In addition, functional correctness was

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:6 Charles Leech et al.

ALGORITHM 1: Thread creation process for each frame of the disparity estimation algorithm.

Input: number of threads: threads, disparity range: maxDis = 64
1 for CVC, CVF, Disparity Selection and Post Processing do
2 level = 0
3 repeat
4 if level < maxDis/threads then
5 block size = threads;
6 else
7 block size = maxDis (mod threads);
8 end
9 iter = 0

10 repeat
11 d = level ∗ threads+ iter;
12 pthread create(thread[d]);
13 until iter = block size;
14 until levels = maxDis/threads;
15 end

Table I: Comparison of the accuracy of related stereo matching algorithms using stan-
dard image pairs from the Middlebury database.

Algorithm Platform
Tsukuba Venus Teddy Cones % bad

pixelnonocc all2 disc3 nonocc all disc nonocc all disc nonocc all disc

[Mei et al. 2011] GPU 1.07 1.48 5.73 0.09 0.25 1.15 4.10 6.22 10.9 2.42 7.25 6.95 3.97

[Bleyer and Rhemann 2011] CPU 2.09 2.33 9.31 0.21 0.39 2.62 2.99 8.16 9.62 2.47 7.80 7.11 4.59

[Wang et al. 2013] FPGA 2.39 3.27 8.87 0.38 0.89 1.92 6.08 12.1 15.4 2.12 7.74 6.19 5.61

[Jin and Maruyama 2014] FPGA 1.66 2.17 7.64 0.40 0.60 1.95 6.79 12.4 17.1 3.34 8.97 9.62 6.05

[Ttofis et al. 2016] FPGA 2.38 3.01 9.38 0.40 0.7 3.62 7.23 12.7 17.2 2.87 8.59 8.27 6.36

Proposed Xeon Phi 3 4.48 9.1 1.5 2.54 6.41 6 9.8 12.7 4.2 8.5 8.72 6.41

[Banz et al. 2010] FPGA 4.1 - - 2.7 - - 11.4 - - 8.4 - - 6.7

[Hirschmuller 2008] CPU 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90 7.50

[Zhang et al. 2009] CPU 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 7.60

[Shan et al. 2014] FPGA 3.62 4.15 14.0 0.48 0.87 2.79 7.54 14.7 19.4 3.51 11.1 9.64 7.65

[Zhang et al. 2011] FPGA 3.84 4.34 14.2 1.20 1.68 5.62 7.17 12.6 17.4 5.41 11.0 13.9 8.20

[Jin and Maruyama 2012] FPGA 1.43 2.51 6.60 2.37 2.97 13.1 8.11 13.6 15.5 8.12 13.8 16.4 8.71

used to prove the successful introduction of parallelism and show that it does not ad-
versely affect data accuracy. Table I shows that our algorithm is comparable, in terms
of pixel errors per frame, to other works. Pixel error numbers are calculated for stan-
dard measures (nonocc, all, disc) across the four different image pairs of Tsukuba,
Venus, Teddy and Cones, the later two of which are shown in Figure 2. The four in-
put images (Figure 2a) and ground truth references (Figure 2c) were chosen from the
widely-used Middlebury Stereo Vision dataset which provides a collection of stereo
image resources for experimental purposes [Scharstein and Szeliski 2002]. The depth
maps output from our algorithm are shown in Figure 2b for two test images for visual
analysis of correct algorithmic function.

To analyse the effects of multi-threading and core scaling on the platform, experi-
mentation with the algorithm described above is presented in the following section.

4. EXPERIMENTAL CHARACTERIZATION OF MANY-CORE PERFORMANCE AND POWER

CONSUMPTION

State-of-the-art commercial embedded platforms do not feature high core counts, es-
pecially in architectures where cores are individually configurable, therefore in emu-
lation of future embedded many-core systems, the 61-core Intel Xeon Phi coprocessor

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:7

(a) Left Input Image (b) Output Disparity Map (c) Ground Truth

Fig. 2: Comparison of the depth map output from our algorithm and the ground truth
depth map provided with the dataset.

is used as a demonstrative platform for core scaling [Intel 2015]. Although it is not
strictly an embedded platform from an energy efficiency perspective, it is characteristic
of the many-core parallel architectures that may feature in future embedded platforms
which is why it is used in this experimentation.

To highlight the importance of system optimization for highly (but not embarrass-
ingly) parallel algorithms, Figure 3 shows the power and performance trade-offs for
running the DE algorithm on the Xeon Phi. Performance is defined as the Frames-Per-
Second (fps) computed by the algorithm. Each point shows the performance and power
consumption when executing the algorithm at each core count and frequency, sweep-
ing active core number in intervals of 4 and frequency from 619 MHz through nine
intervals to 1238 MHz. The labels attached to points show the number of active cores
used at those operating points. Figure 3 shows that there is a 46W range in power
consumption and over 15x range in performance that is attainable by operating at dif-
ferent frequency or core allocation points. Above 32 cores, speed-up of the algorithm
from core scaling decreases and absolute performance drops towards 60 cores. Limita-
tions in the scalability of the algorithm must be considered as well as the memory and
interconnect subsystem of the MIC architecture, which is in a ring-main configura-
tion. The implementation of the algorithm means that the entire cost volume must be
accessed from main memory and stored again between each of the four stages. When
60 cores attempt to access this data at once, the memory subsystem, rather than the
number of cores, is the limiting factor. This problem may be alleviated by reprogram-
ming the application. In lieu of this, a run-time modeling approach can be used to find
the optimal operating point.

Four example operating points are shown in Table II. Going from p1 to p2 can
achieved similar performance (0.287 to 0.327) but with a 22% reduction in power con-
sumption. Similarly, moving from p3 to p4 can yield a 3.1 times improvement in per-
formance at approximately the same power consumption. For this application, using
the maximum number of cores at maximum frequency (60 cores at 1238 MHz) does not
yield the highest performance, yet it does consume the highest power. Therefore, DVFS
alone is not sufficient to optimize power and performance. The next section introduces,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:8 Charles Leech et al.

10 20 30 40 50 60
Average Power per Frame (W)

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 P

e
rf

o
rm

a
n
ce

 (
FP

S
)

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

4

8

16

32

60

Core Frequency

619 MHz

667 MHz

714 MHz

762 MHz

857 MHz

952 MHz

1048 MHz

1143 MHz

1238 MHz

Fig. 3: Power and performance trade-offs for the possible range of cores and operating
frequencies when executing the DE algorithm.

Table II: Normalized power and performance trade-offs.

Operating Point p1 p2 p3 p4
Frequency (MHz) 1238 857 1238 667
Cores 8 16 4 32
Performance (fps) 0.287 0.327 0.149 0.456
Power (W) 30.10 23.35 24.93 23.01

adaptive run-time management which controls both frequency and core count to meet
a target performance set by the DE algorithm.

5. PROPOSED ADAPTIVE RUN-TIME MANAGEMENT

Figure 4 shows the block diagram for the run-time optimization approach, highlight-
ing the interactions between the application, run-time and hardware. The performance
target of the application and power constraint of the system are communicated to the
run-time layer through the application and system monitors framework. Adaptation
of the core number and frequency is provided through the system and application con-
trols framework. The run-time manager (RTM) consists of two components: a learning-
based power/performance model and a run-time controller. These two components are
explained in more detail in Sections 5.1 and 5.2.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:9

Fig. 4: Block diagram of the proposed run-time optimization approach.

5.1. Run-time Power and Performance Model

The run-time model emulates the current application and hardware configuration of
the system (i.e. the DE algorithm on the Xeon Phi platform). Statically generated mod-
els can provide better accuracy and a more detailed operating space, but involve ex-
tensive offline profiling of individual applications, as in [Paone et al. 2014]. A run-time
model enables flexibility in the application-system configuration as it can be relearned
with a lower overhead than offline profiling, this benefit grows as the search space in-
creases [Curtis-Maury et al. 2008]. In addition, a run-time model can be relearned if
new applications begin executing or existing applications are updated. Through care-
ful design of the run-time models, high accuracy can be achieved with low overhead
(Section 5.2 and Section 6.2). Hence, our approach uses a run-time model as a critical
component for energy-efficient adaptation [Yang et al. 2015]. Such a run-time model
enables the prediction of power-performance trade-offs under different operating con-
ditions. The model is learned using run-time measurements from power sensors and
application performance measurements.

Figure 5 shows how the model is learned using linear regression in 4 steps. The
modeling starts by varying the operating frequencies and number of active cores (step
1). For every frame, current and latency measurements are captured from the power
sensors and the application (step 2). The measurements are used to test the hypotheses
of the regression process until the learning interval is complete (Section 5.2 justifies
the choice of the learning interval). After this interval, current and latency models are
generated for the given application running on the platform (step 3). These models are
combined to derive the power and performance models (step 4).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:10 Charles Leech et al.

Fig. 5: Flowchart of the run-time energy/performance model generation.

Table III: Modeling Hypotheses.

Model Hypothesis hθ(x)
Latency (τ) θ0 + θ1 ·

1
f
+ θ2 ·

1
f ·c

+ θ3 · c

Current (i) θ0 + θ1 · v + θ2 · v · f · c
Performance Fperf (f) = 1/τ
Power Fpow(f) = v · i

Linear regression is used to establish a relationship between the dependent vari-
ables of the system (power and performance) and their associated independent predic-
tor variables (i.e. number of cores, VF levels, etc.) [Cohen et al. 2013]. The relationship
is defined by a hypothesis function as:

hθ(x) =
n∑

i=0

θixi = ΘTX (6)

where xi is a predictor, n is the number of predictors, θi is a fitting coefficient, X and
ΘTX are the matrix representations of xi and θi. The Θ values need to be chosen to
minimize the mean-squared prediction error (J(θ)) of the hypothesis in (6), which is
given by:

J(θ) =
m∑

j=1

(hθ(x
(j))− y(j))2 = (ΘTX −−→y)T (ΘTX −−→y) (7)

where y is the measured value, m is number of learning samples. J(θ) is minimum
when its gradient becomes 0. Hence, from (7) the gradient of J(θ) can be defined as:

∇J(θ) = ∇(ΘTX −−→y)T (ΘTX −−→y) = XTXΘ−XT−→y (8)

From (8), the fitting coefficients Θ of the hypothesis in (6) can then be computed as:

Θ = (XTX)−1XT−→y (9)

From (9), the computation complexity of the regression-based modeling is O(n2×m),
where n is the number of predictors and m is the number of learning samples. Hence,
to achieve a fast run-time model both n and m need to be small. In this work, two
predictors are used: number of cores (c) and frequency (f), together with the intercept;
hence, n=3.

Performance and power are not linear functions of frequency and the number of
cores, therefore we first generate models for output current (i) and latency (τ), then
build performance and power models from these. Table III shows the different hy-
potheses used to generate the models. Column 1 shows the target model and column 2
shows the hypothesis used. These models and their hypotheses are explained further
as follows:

(1) Latency (τ) is expressed as a sum of four terms: first a constant (θ0) delay con-
tributed by factors independent of multi-threading and frequency (such as memory

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:11

contention, I/O setup, etc); the second term (θ1 ·
1
f

) is proportional to the CPU clock

period representing the time spend by the sequential part of the application; the
third term (θ2 · 1

f ·c
) is proportional to both the clock period and number of cores,

representing the time spent by the parallel part of the application; the last term
(θ3 · c) shows the latency related to the effects of multi-threading.

(2) Current (i) is expressed as a sum of three terms: θ0+θ1 ·v approximates the leakage
current, while θ2 · v · f · c signifies the dynamic current.

(3) Performance in Frames-Per-Second (fps) is inversely proportional to latency.
(4) Power is a product of the instantaneous current (i) and supply voltage (v).

The supply voltage used in these hypotheses (Table III) is derived as a direct func-
tion of the operating frequency as it is fixed by the frequency controller based on the
selected frequency. The regression-based learning of the power/performance trade-offs
and their validations are further detailed in Section 5.2 where we demonstrate the
impact that the number of learning samples has on the model prediction accuracy and
associated run-time overheads.

5.2. Run-time Model Validation

Validation of the run-time model is carried out in two stages. In the first stage, the
hypotheses of Table III are established as linear models. The models are then used at
run-time in the second stage.

Figure 6a and 6b show plots of the measured power and performance of the DE algo-
rithm executing on the platform. Testing across all different frequencies and number
of cores would be necessary for a full design-space exploration. However, our run-time
model has the advantage that only a subset of these operating points, highlighted in
red, are required as training samples to generate the power and performance models
of Figure 6c and 6d through the hypotheses of Table III. The models show predicted
power and performance values across the full range of operating conditions. During
application execution, the run-time models are used if the application or system con-
straints change to determine the new predicted optimal operating point.

The modeled values exhibit a high degree of correlation with the measured values.
This is because the run-time model is generated using realistic component models of
current (I) and latency (τ) from measured data. The accuracy of this model depends
on a number of factors; the number of samples acquired, the number of predictors,
and the underlying relationships between current, latency, performance and power.
Figure 7 shows how many training points (frequency and core number) is required to
achieve error convergence and low absolute power (Figure 7(a)) and performance (Fig-
ure 7(b)) modeling errors. The x-axis shows the number of core training points and
the bars show the different number of frequency training points. The total number
of training points is the product of the core and frequency training points. Modeling
error is calculated using a comparison between the predicted power and performance
values and measured data under the same conditions. The validation data set is ex-
clusive of the training samples used to generate the models. The modeling error in
terms of miss-prediction reduces with an increase in the number of training points.
Convergence of the modeling error is significant after four core and three frequency
training points. This is deemed as when the reduction in power and performance mod-
eling error is less than 0.5% between training samples. The absolute performance and
power model errors at this point are 5.95% and 4.25% respectively. This result shows
that the run-time models require a low convergence interval of only 12 training points.
This is because regression with a small number of predictors is rigid and the variance
in the model is small [Draper and Smith 1998]. The high modeling accuracy helps the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:12 Charles Leech et al.

4 8 16 32 64
Cores

10

20

30

40

50

60

P
o
w

e
r

(W
)

Core Frequency

619 MHz

667 MHz

714 MHz

762 MHz

857 MHz

952 MHz

1048 MHz

1143 MHz

1238 MHz

(a) Measured Power

4 8 16 32 64
Cores

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

 (
FP

S
)

Core Frequency

619 MHz

667 MHz

714 MHz

762 MHz

857 MHz

952 MHz

1048 MHz

1143 MHz

1238 MHz

(b) Measured performance

(c) Power model (d) Performance model

Fig. 6: Plots of measured power (a) and performance (b) with training data highlighted
in red, and run-time models for power (c) and performance (d) generated from training
data.

run-time manager to achieve near-optimal operational conditions. A demonstration of
this is presented in Section 6.

5.3. Run-time Optimization

The run-time model enables optimization of power and performance at run-time
through DVFS and core controls. Using the model coefficients, the run-time controller
uses a gradient-descent based search in the optimization space to predict the number
of cores and frequency given a power or performance constraint. Algorithm 2 shows
example pseudo-code for the gradient-descent process when a performance target is
used as the input. The objective is to find the minimum power point, frequency and
core number. The operating frequencies (fn) and number of cores (cn) are initialized
(line 1). These are updated by a gradient descent (line 3-4). The learning rate (α) in
the algorithm is also initialized to a high value to ensure a fast convergence. While
the updated Fperf exceeds the specified performance target (line 5), the learning rate
is reduced (line 6) and fn and cn are updated by another gradient descent (line 7-8).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:13

0

2

4

3 4 6
Core training points

P
o
w

e
r

m
o
d
e
lin

g
 e

rr
o
r

(%
)

Frequency training points 2 3 4

(a) Power modeling error

0

2

4

6

8

3 4 6
Core training points

P
e
rf

o
rm

a
n
c
e
 m

o
d
e
lin

g
 e

rr
o
r

(%
)

Frequency training points 2 3 4

(b) Performance modeling error

Fig. 7: Evaluation of how increasing the number of training samples for both core count
and frequency reduces the power and performance modeling error.

Predictions and updates are continued until the minimum performance target is met.
The operating frequency and number of cores that provides the minimum power con-
sumption while meeting the specified performance target are returned (fn, cn).

ALGORITHM 2: Gradient descent based performance constrained power optimization through
DVFS and core control.

Input: Performance Requirement: Perfreq
Output: Minimum power point: Pwrmin, operating freq: f and number of cores: c

1 Initialize:fn, cn and learning rate: α
2 repeat

3 fn+1 := fn − α ∂
∂f

Fperf (fn, cn)

4 cn+1 := cn − α ∂
∂c
Fperf (fn, cn)

5 while Fperf (fn+1, cn+1) > Perfreq do
6 α := 0.5× α

7 fn+1 := fn − α ∂
∂f

Fperf (fn, cn)

8 cn+1 := cn − α ∂
∂c
Fperf (fn, cn)

9 end
10 fn−1 := fn, fn := fn+1

11 cn−1 := cn, cn := cn+1

12 until fn = fn+1 & cn = cn+1;
13 return Fperf (fn, cn) as Perfmax

An example of DVFS and core controls through Algorithm 2 is shown in Figure 8a
and illustrates how the gradient descent algorithm finds the optimum operating point.
Power consumption is shown using an overlaid color map and the performance level is
shown with contour lines. To determine the optimal DVFS controls and core allocation,
the power and performance are predicted using the lowest operating frequencies (fi)
and core allocation (ci) initially. For each next operating frequency during the search,
the step size is reduced with the gradient. The gradient-descent heuristic search starts
at one core with an operating frequency of 619MHz, giving 0.017 predicted fps and
11W , followed by 8 cores at 619MHz giving 0.12fps and 13W . The process continues
until it converges at 41 cores with a closest operating frequency of 1238MHz giving

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:14 Charles Leech et al.

10 20 30 40 50 60

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

Cores

F
re

q
u

e
n

c
y
 (

G
H

z
)

 0
.1

 0
.2

 0
.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) No Performance Constraint

10 20 30 40 50 60

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

Cores

F
re

q
u

e
n

c
y
 (

G
H

z
)

 0
.1

 0
.2

 0
.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

● ●
●

●

●

●

●

●

●

●

●

(b) Performance Constraint

Fig. 8: Run-time optimization examples (a) without performance constraint and (b)
with performance constraint.

the highest performance of 0.99fps and an average power consumption of 57W . Fig-
ure 8b demonstrates another example of the same algorithm applied with a perfor-
mance target. This time the search only continues until the performance constraint is
met, at which point the corresponding operating frequency and core allocation is se-
lected (40 cores at 952MHz). The effectiveness of run-time optimization of core number
and DVFS controls is further validated in Section 6.

6. EXPERIMENTAL RESULTS - ADAPTIVE RUN-TIME MANAGEMENT

This section examines the effectiveness of the proposed approach, its overheads and
verifies the accuracy of the DE algorithm’s output. The proposed run-time approach is
engineered into a prototype run-time manager and framework as part of a complete
system; implementing application, run-time and hardware, on the Xeon Phi platform.
The platform uses the same voltage-frequency island for all the cores. The operating
frequency can be varied from 619MHz to 1238MHz in 9 steps, and the corresponding
voltage varies from 0.995V to 1.060V . The relationship between the supply voltage v
and operation frequency f has been found empirically and can be approximated as
v(V) = 0.93+ 0.11f where frequency is in GHz. Core allocation and DVFS is controlled
through the run-time manager using the run-time power/performance model.

6.1. Online Adaptation of the Disparity Estimation Algorithm

In section 4, the algorithm’s power-performance operating space was characterized.
This section demonstrates the online adaptation process that the RTM operates as
part of a complete system. After run-time modeling of the algorithm’s power and per-
formance trade-offs is completed, the proposed approach can adapt to changes in the
performance target through selection of the most energy-efficient core allocation and
DVFS control settings. These properties are demonstrated in the three time series
graphs of Figure 9. Furthermore, a comparison is made to the default Linux frequency
governor and scheduler. These experiments are shown as dashed lines.

Changes in target performance are driven by external factors and depend on the
particular application. In our case, a higher performance may be required to enable
the system to calculate the depth of objects in the scene moving at a higher speed.
Adaptation to changes in the performance target can be seen in the top series of Fig-
ure 9 where the measured performance tracks the target as it changes over time. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
ce

 (
FP

S
)

Tracking of measured to target performance
Performance Type

RTM Measured

Linux Measured

Target

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (s)

500

600

700

800

900

1000

1100

1200

1300

Fr
e
q
u
e
n
cy

 (
M

H
z)

Adaptation of System Controls
Frequency
Controller

RTM

Linux

10

20

30

40

50

60

N
u
m

b
e
r

o
f

C
o
re

s
E
n
a
b
le

d

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (s)

50

60

70

80

90

100

110

120

130

E
n
e
rg

y
 (

m
J)

Energy and Average Power Consumed per Frame
Frequency
Controller

RTM

Linux

15

20

25

30

35

40

45

50

55

60

A
v
e
ra

g
e
 P

o
w

e
r

(W
)

Fig. 9: Time series analysis of the RTM performing online adaptations of core number
and frequency to optimize power and energy whilst meeting a target performance.

average absolute error in measured performance is 5.56%. Excluding occasions when
the measured performance exceeds the target performance, which is not considered a
penalty, this error drops to 1.16%. Performance of the application under Linux is man-
ually matched to the target to allow the governor to make DVFS changes once frame
processing is complete, as a result, the measured performance tracks the target.

The online adaptation of the number of active cores and their frequency is shown in
the second series of Figure 9. The RTM uses the power/performance model to predict

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:16 Charles Leech et al.

Table IV: Comparison of the power and energy savings for the proposed approach to
recently reported RTM approaches.

RTM Modeling Method Online/
Offline

DPM % Power
Saving

% Energy
Saving

Porterfield et al. [2013] Qthreads PMC Online DCT - 3

Hwang and Chung [2013] Heuristic Online DCT 18.12 -

Cochran et al. [2011] Multinomial Logistic Regression Online DCT + DVFS 21 15.6

Curtis-Maury et al. [2008] Multivariate Linear Regression Offline DCT + DVFS 6 19

Bellasi et al. [2015] Profiling Offline DCT - 25

Fu and Wang [2011] Profiling + Feedback Control Offline DCT + DVFS 45 -

Proposed Linear Regression Online DCT + DVFS 27.8 30.04

- no value reported

which operating point will give the target performance with the lowest power con-
sumption. Fluctuations in the core number and frequency are due to the selection of
overlapping of operating points, in terms of power and performance, between a high
number of cores at a low frequency and a lower number of cores at a higher frequency.
For example, at 112 seconds a target of 0.31 fps leads to 12 cores at 1048 MHz whereas
at 154 seconds, the similar target of 0.34 selects 28 cores at 667 MHz. The section of
operating points is non-trivial and so the RTM model is required to capture the power
and performance trade-offs between DVFS and core scaling.

The final series shows the measured average power and energy consumed per frame
as the performance target fluctuates, for both the proposed approach and the default
Linux. To achieve the same performance, the proposed approach can reduce average
power consumption by 27.8% and increase energy efficiency by 30.04%. The proposed
approach consistently gives lower power consumption and increased energy efficiency
across the entire range of performance targets. This is due to the core scaling ability
of the RTM and its rigorous control of frequency.

Comparison to existing work, in terms of percentage power and energy saving, is
detailed in Table IV. For each work, percentage savings were reported explicitly in the
literature and relate to a comparison made between the proposed approach and a base-
line/unmanaged configuration. The proposed approach gives higher power and energy
savings compared to all other online approaches. Fu and Wang [2011] report higher
percentage power savings, however this work relies on an extensive offline profiling
component therefore it is not compatible with dynamic workloads. The short training
phase for our approach enables the run-time model to be learned at the beginning of
execution and relearned should the workload change. This property is discussed in
more detail in the following section. Power and energy saving is not considered for
works which perform run-time management on stereo matching algorithms [Gadioli
et al. 2014; Mariani et al. 2010].

6.2. Run-time Manager Overheads

The proposed approach incurs run-time overheads due to the training phase and adap-
tation steps, including the optimization and control operations. As established in Sec-
tion 5.2, collecting training data takes a period of 12 frames, which must be completed
before optimization begins. Training time is dependent on the execution time of a sin-
gle cycle of the application, for disparity estimation, it takes approximately 10 seconds
depending on the exact operating points which are used as training frames. Learn-
ing the run-time model incurs an overhead of 2 ms, to calculate the linear regression
coefficients. Run-time adaptation exhibits the average overhead of 2.4 ms due to the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:17

Table V: Run-time manager training and adaptation/reconfiguration overheads.

RTM Approach % Training Frames % Total Adaptation Time

AS-RTRM 67.5 2.0

Proposed RTM 6 4.8

gradient-descent based search operation performed on the run-time model. Adaptation
only takes place when the performance target or power constraint is changed.

For a 200 frame video sample, as used in [Paone et al. 2014], training with the
proposed run-time approach has a 6% overhead in terms of the number of frames
used. by comparison, an offline profiling approach has an overhead of 67.5% to map
the complete operating space. This equates to an order of minutes in real time due to
the need to sample all of the lowest performing configurations. Table V shows how our
approach compares to a runtime resource management method where overheads are
reported [Paone et al. 2014]. We present expected training times for our application
and platform (to test all the required operating points). For adaptation overheads,
we predict the behavior of our RTM operating in their workload scenario where six
changes in performance requirement occur, therefore we would see an overhead of
14.4 ms (4.8%) over the 300s experiment time.

7. CONCLUSIONS

This work shows that run-time modeling is a critical component for the optimization of
many-core systems executing parallel applications, enabling run-time adaptation and
control of tuning parameters. In particular, this paper has analyzed the implementa-
tion of a parallel disparity estimation algorithm on the Intel Xeon Phi many-core plat-
form to demonstrate a 46W range in power consumption and 15x range in performance,
motivating the need for run-time management. An adaptive run-time power and per-
formance optimization approach has been presented to reduce the power consumption
of the system. We have reported a performance and power trade-off, demonstrating
that it is possible to achieve the same performance with lower power consumption and
higher energy efficiency by optimizing frequency and core allocation. In addition, our
run-time based modeling approach has a low training overhead of only 12 frames to
achieve error convergence and an online adaptation overhead of 4.8%.

REFERENCES

K. Ambrosch and W. Kubinger. 2010. Accurate Hardware-based Stereo
Vision. Comput. Vis. Image Underst. 114, 11 (Nov 2010), 1303–1316.
DOI:http://dx.doi.org/10.1016/j.cviu.2010.07.008

N. Baha and S. Larabi. 2012. Accurate Real-time Neural Disparity MAP
Estimation with FPGA. Pattern Recogn. 45, 3 (March 2012), 1195–1204.
DOI:http://dx.doi.org/10.1016/j.patcog.2011.08.005

C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch. 2010. Real-
time stereo vision system using semi-global matching disparity esti-
mation: Architecture and FPGA-implementation. In Embedded Com-
puter Systems (SAMOS), 2010 International Conference on. 93–101.
DOI:http://dx.doi.org/10.1109/ICSAMOS.2010.5642077

P. Bellasi, G. Massari, and W. Fornaciari. 2015. Effective Runtime Resource
Management Using Linux Control Groups with the BarbequeRTRM Framework.
ACM Trans. Embed. Comput. Syst. 14, 2, Article 39 (March 2015), 17 pages.
DOI:http://dx.doi.org/10.1145/2658990

M. Bleyer and C Rhemann. 2011. PatchMatch Stereo - Stereo Matching with Slanted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:18 Charles Leech et al.

Support Windows. In British Machine Vision Conference 2011. 1–11. http://publik.
tuwien.ac.at/files/PubDat 201949.pdf

A. Burbano, S. Bouaziz, and M. Vasiliu. 2015. 3D-sensing Distributed Embed-
ded System for People Tracking and Counting. In 2015 International Confer-
ence on Computational Science and Computational Intelligence (CSCI). 470–475.
DOI:http://dx.doi.org/10.1109/CSCI.2015.76

R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. 2011. Pack & Cap:
Adaptive DVFS and Thread Packing Under Power Caps. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture. 175–185.
DOI:http://dx.doi.org/10.1145/2155620.2155641

J. Cohen, P. Cohen, S.G. West, and L.S. Aiken. 2013. Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences. Taylor & Francis.

M. Curtis-Maury, A. Shah, F. Blagojevic, D. S. Nikolopoulos, B. R. de Supin-
ski, and M. Schulz. 2008. Prediction Models for Multi-dimensional Power-
performance Optimization on Many Cores. In Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques. 250–259.
DOI:http://dx.doi.org/10.1145/1454115.1454151

B. Cyganek and J. P. Siebert. 2009. Introduction to 3D Computer Vision Techniques
and Algorithms. Wiley-Blackwell.

J. Ding, J. Liu, W. Zhou, H. Yu, Y. Wang, and X. Gong. 2011. Real-
time stereo vision system using adaptive weight cost aggregation approach.
EURASIP Journal on Image and Video Processing 2011, 1 (2011), 1–19.
DOI:http://dx.doi.org/10.1186/1687-5281-2011-20

N. R. Draper and H. Smith. 1998. Applied Regression Analysis (3rd ed.). Wiley-
Blackwell.

M. Etinski, J. Corbalan, J. Labarta, and M. Valero. 2012. Understand-
ing the Future of Energy-performance Trade-off via DVFS in HPC En-
vironments. J. Parallel Distrib. Comput. 72, 4 (April 2012), 579–590.
DOI:http://dx.doi.org/10.1016/j.jpdc.2012.01.006

X. Fu and X. Wang. 2011. Utilization-Controlled Task Consolidation for Power Opti-
mization in Multi-core Real-Time Systems. In 2011 IEEE 17th International Con-
ference on Embedded and Real-Time Computing Systems and Applications, Vol. 1.
73–82. DOI:http://dx.doi.org/10.1109/RTCSA.2011.65

D. Gadioli, S. Libutti, G. Massari, E. Paone, M. Scandale, P. Bellasi, G. Palermo, V.
Zaccaria, G. Agosta, W. Fornaciari, and C. Silvano. 2014. OpenCL Application Auto-
tuning and Run-Time Resource Management for Multi-core Platforms. In 2014 IEEE
International Symposium on Parallel and Distributed Processing with Applications.
127–133. DOI:http://dx.doi.org/10.1109/ISPA.2014.25

S. K. Gehrig, F. Eberli, and T. Meyer. 2009. A Real-Time Low-Power Stereo Vi-
sion Engine Using Semi-Global Matching. Springer Berlin Heidelberg, 134–143.
DOI:http://dx.doi.org/10.1007/978-3-642-04667-4 14

K. He, J. Sun, and X. Tang. 2013. Guided Image Filtering. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 35, 6 (June 2013), 1397–1409.
DOI:http://dx.doi.org/10.1109/TPAMI.2012.213

H. Hirschmuller. 2008. Stereo Processing by Semiglobal Matching and Mutual Infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (Feb
2008), 328–341. DOI:http://dx.doi.org/10.1109/TPAMI.2007.1166

A. Hosni, M. Bleyer, C. Rhemann, M. Gelautz, and C. Rother. 2011.
REal-time local stereo matching using guided image filtering. In
2011 IEEE International Conference on Multimedia and Expo. 1–6.
DOI:http://dx.doi.org/10.1109/ICME.2011.6012131

Y. S. Hwang and K. S. Chung. 2013. Dynamic Power Management Technique for Multi-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

Run-time Performance and Power Optimization of Parallel Disparity Estimation on Many-Core PlatformsA:19

core Based Embedded Mobile Devices. IEEE Transactions on Industrial Informatics
9, 3 (Aug 2013), 1601–1612. DOI:http://dx.doi.org/10.1109/TII.2012.2232299

Intel. 2015. Intel Xeon Phi Product Family. Online. (2015).
M. Jin and T. Maruyama. 2012. A Real-time Stereo Vision System Us-

ing a Tree-structured Dynamic Programming on FPGA. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 21–
24. DOI:http://dx.doi.org/10.1145/2145694.2145698

M. Jin and T. Maruyama. 2014. Fast and Accurate Stereo Vision System on FPGA.
ACM Trans. Reconfigurable Technol. Syst. 7, 1, Article 3 (Feb. 2014), 24 pages.
DOI:http://dx.doi.org/10.1145/2567659

S. Karakaya, G. Kkyildiz, C. Toprak, and H. Ocak. 2014. Development
of a human tracking indoor mobile robot platform. In Proceedings of the
16th International Conference on Mechatronics - Mechatronika 2014. 683–687.
DOI:http://dx.doi.org/10.1109/MECHATRONIKA.2014.7018343

G. C. Sirakoulis L. Nalpantidis and A. Gasteratos. 2008. Review of stereo vision algo-
rithms: From software to hardware. International Journal of Optomechatronics 2, 4
(Jan 2008), 435–462.

B. Lewis and D. J. Berg. 1998. Multithreaded Programming with Pthreads. Prentice-
Hall, Inc.

G. Mariani, C. Ykman-Couvreur, K. Zhang, L. Zhang, and G. Lafruit. 2010. An Ef-
ficient Run-Time Management Methodology for Stereo Matching Application. In
23th International Conference on Architecture of Computing Systems 2010. 1–6.
http://ieeexplore.ieee.org/document/5759019/

X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and Xiaopeng Zhang. 2011. On build-
ing an accurate stereo matching system on graphics hardware. In Computer Vision
Workshops (ICCV Workshops), 2011 IEEE International Conference on. 467–474.
DOI:http://dx.doi.org/10.1109/ICCVW.2011.6130280

C. C. T. Mendes and D. F. Wolf. 2013. Real Time Autonomous Naviga-
tion and Obstacle Avoidance Using a Semi-global Stereo Method. In Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing. 235–236.
DOI:http://dx.doi.org/10.1145/2480362.2480413

H. Oleynikova, D. Honegger, and M. Pollefeys. 2015. Reactive avoidance using embed-
ded stereo vision for MAV flight. In 2015 IEEE International Conference on Robotics
and Automation (ICRA). 50–56. DOI:http://dx.doi.org/10.1109/ICRA.2015.7138979

E. Paone, D. Gadioli, G. Palermo, V. Zaccaria, and C. Silvano. 2014. Evaluat-
ing orthogonality between application auto-tuning and run-time resource manage-
ment for adaptive OpenCL applications. In 2014 IEEE 25th International Con-
ference on Application-Specific Systems, Architectures and Processors. 161–168.
DOI:http://dx.doi.org/10.1109/ASAP.2014.6868651

M. G. Park, J. Park, Y. Shin, E. G. Lim, and K. J. Yoon. 2015. Stereo vision with image-
guided structured-light pattern matching. Electronics Letters 51, 3 (2015), 238–239.
DOI:http://dx.doi.org/10.1049/el.2014.3770

S. Perri, P. Corsonello, and G. Cocorullo. 2013. Adaptive Census Transform: A Novel
Hardware-oriented Stereovision Algorithm. Comput. Vis. Image Underst. 117, 1
(2013), 29–41. DOI:http://dx.doi.org/10.1016/j.cviu.2012.10.003

A. K. Porterfield, S. L. Olivier, S. Bhalachandra, and J. F. Prins. 2013. Power
Measurement and Concurrency Throttling for Energy Reduction in OpenMP
Programs. In Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing Workshops and PhD Forum. 884–891.
DOI:http://dx.doi.org/10.1109/IPDPSW.2013.15

D. Scharstein and R. Szeliski. 2002. A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms. Int. J. Comput. Vision 47, 1-3 (2002), 7–42.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

A:20 Charles Leech et al.

DOI:http://dx.doi.org/10.1023/A:1014573219977
R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi. 2015.

Adaptive Energy Minimization of OpenMP Parallel Applications on Many-
Core Systems. In Proceedings of the 6th Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures. 19–24.
DOI:http://dx.doi.org/10.1145/2701310.2701311

Y. Shan, Y. Hao, W. Wang, Y. Wang, X. Chen, H. Yang, and W. Luk. 2014. Hardware Ac-
celeration for an Accurate Stereo Vision System Using Mini-Census Adaptive Sup-
port Region. ACM Trans. Embed. Comput. Syst. 13, 4s, Article 132 (2014), 24 pages.
DOI:http://dx.doi.org/10.1145/2584659

S. Solak and E. D. Bolat. 2015. Distance estimation using stereo vi-
sion for indoor mobile robot applications. In 2015 9th International Con-
ference on Electrical and Electronics Engineering (ELECO). 685–688.
DOI:http://dx.doi.org/10.1109/ELECO.2015.7394442

H. Son, K. Bae, S. Ok, Y. Lee, and B. Moon. 2012. A Rectification Hardware Architec-
ture for an Adaptive Multiple-Baseline Stereo Vision System. Springer Berlin Hei-
delberg, 147–155. DOI:http://dx.doi.org/10.1007/978-3-642-27192-2 19

J. Stowers, M. Hayes, and A. Bainbridge-Smith. 2011. Altitude control
of a quadrotor helicopter using depth map from Microsoft Kinect sen-
sor. In 2011 IEEE International Conference on Mechatronics. 358–362.
DOI:http://dx.doi.org/10.1109/ICMECH.2011.5971311

T. Tahara, R. Kawahara, S. Nobuhara, and T. Matsuyama. 2015. Interference-
Free Epipole-Centered Structured Light Pattern for Mirror-Based Multi-view
Active Stereo. In 2015 International Conference on 3D Vision. 153–161.
DOI:http://dx.doi.org/10.1109/3DV.2015.25

C. Ttofis, C. Kyrkou, and T. Theocharides. 2016. A Low-Cost Real-Time Em-
bedded Stereo Vision System for Accurate Disparity Estimation Based on
Guided Image Filtering. IEEE Trans. Comput. 65, 9 (2016), 2678–2693.
DOI:http://dx.doi.org/10.1109/TC.2015.2506567

P. Usachokcharoen, Y. Washizawa, and K. Pasupa. 2015. Sign language recogni-
tion with microsoft Kinect’s depth and colour sensors. In 2015 IEEE Interna-
tional Conference on Signal and Image Processing Applications (ICSIPA). 186–190.
DOI:http://dx.doi.org/10.1109/ICSIPA.2015.7412187

W. Wang, J. Yan, N. Xu, Y. Wang, and F. H. Hsu. 2013. Real-time high-quality stereo vi-
sion system in FPGA. In Field-Programmable Technology (FPT), 2013 International
Conference on. 358–361. DOI:http://dx.doi.org/10.1109/FPT.2013.6718387

S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis, and B. M. Al-
Hashimi. 2015. Adaptive energy minimization of embedded heterogeneous sys-
tems using regression-based learning. In 2015 25th International Workshop on
Power and Timing Modeling, Optimisation and Simulation (PATMOS). 103–110.
DOI:http://dx.doi.org/10.1109/PATMOS.2015.7347594

K. Yoon and In S. Kweon. 2006. Adaptive support-weight approach for correspon-
dence search. IEEE Transactions on Pattern Analysis and Machine Intelligence 28,
4 (2006), 650–656. DOI:http://dx.doi.org/10.1109/TPAMI.2006.70

K. Zhang, J. Lu, and G. Lafruit. 2009. Cross-Based Local Stereo Match-
ing Using Orthogonal Integral Images. IEEE Transactions on Cir-
cuits and Systems for Video Technology 19, 7 (2009), 1073–1079.
DOI:http://dx.doi.org/10.1109/TCSVT.2009.2020478

L. Zhang, K. Zhang, T. S. Chang, G. Lafruit, G. K. Kuzmanov, and D. Verkest. 2011.
Real-time High-definition Stereo Matching on FPGA. In Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 55–
64. DOI:http://dx.doi.org/10.1145/1950413.1950428

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: YYYY.

