Header menu link for other important links
X
Role of CeO2/ZrO2 mole ratio and nickel loading for steam reforming of n-butanol using Ni–CeO2–ZrO2–SiO2 composite catalysts: A reaction mechanism
M. Varkolu, A. Kunamalla, S.A.K. Jinnala, P. Kumar, ,
Published in Elsevier Ltd
2021
Volume: 46
   
Issue: 10
Pages: 7320 - 7335
Abstract
This study presents steam reforming of n-butanol to synthesis gas using high surface area mesoporous Ni–CeO2–ZrO2–SiO2 composite catalysts. The reaction proceeds through a combination of dehydrogenation, dehydration, and cracking reactions with propanal, butanal, and C2–C4 hydrocarbons as intermediate compounds. The ceria forms a solid solution with zirconia, promotes dispersion of nickel, and enhances oxygen storage/release capacity. The carbon conversion to synthesis gas (CCSG) and hydrogen yield are thus enhanced with increasing CeO2/ZrO2 mole ratio up to 1:2 and decreased slightly for higher mole ratios. The CCSG and hydrogen yield are also boosted by increasing the amount of nickel in the catalyst up to 20 wt%. 1:2 CeO2/ZrO2 mole ratio and 20 wt% nickel content are thus deliberated as optimum. The optimum catalyst exhibits stable catalytic performance for about 30 h time-on-stream. The study further presents the effect of temperature and steam/carbon mole ratio on n-butanol steam reforming. © 2020 Hydrogen Energy Publications LLC
About the journal
JournalData powered by TypesetInternational Journal of Hydrogen Energy
PublisherData powered by TypesetElsevier Ltd
ISSN03603199