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Robust optimization of sustainable food grain transportation with uncertain 

supply and intentional disruptions 

 

Abstract 

The proliferating need for sustainability intervention in food grain transportation planning is 

anchoring the attention of researchers in the interests of stakeholders and environment at large.  

Uncertainty associated with food grain supply further intensifies the problem steering the need for 

designing robust, cost-efficient and sustainable models. In line with this, this paper aims to develop 

a robust and sustainable intermodal transportation model to facilitate single type of commodity 

food grain shipments while considering procurement uncertainty, greenhouse gas (GHG) 

emissions, and intentional hub disruption. The problem is designed as a mixed integer non-linear 

robust optimization model on a hub and spoke network for evaluating near optimal shipment 

quantity, route selection and hub location decisions. The robust optimization approach considers 

minimization of total relative regret associated with total cost subject to several real time 

constraints.  A version of Particle Swarm Optimization with Differential Evolution (PSODE) is 

proposed to tackle the resulting NP-hard problem. The model is tested with two other state-of the 

art meta-heuristics for small, medium, and large datasets subject to different procurement scenarios 

inspired from real time food grain operations in Indian context. Finally, the solution is evaluated 

with respect to total cost, model and solution robustness for all instances. 

Keywords: Transportation; Sustainable supply chain; Robust optimization; Particle swarm 

optimization; Metaheuristics 

 

 



2 
 

1. Introduction 

According to global statistics put forth by Food and Agriculture organization (FAO), the annual 

wastage of food grains is 1.3 billion tons,, and up to 20% of annual food grain produce are wasted 

in the post-harvest phases of developing countries (Zorya et al. 2011). Major reasons for 

witnessing the heavy magnitude of losses in Indian context have been attributed to improper 

utilization of government infrastructure and resources, uncertainty associated with food grain 

supply, and untimely planning of rake allocation and scheduling (CAG report 2013). In addition, 

food grain consumption levels in India are reportedly less as compared to the world due to shortage 

of the staple food available for direct intake (CAG report 2013). The food grain demand is almost 

constant and is extrapolated from population census data, whereas the abundance and uncertainty 

associated with the food grain yield poses numerous challenges. Balancing the mismatch between 

uncertain supply and deterministic demand points with efficient utilization of various resources is 

a striking challenge in Indian context owing to geographically widespread yields. Given the huge 

financial outlay (Rs 90000 crore) of ongoing food grain operations (Narayanan 2015) and the 

severity of the aforementioned issues, the need for particular emphasis on streamlining Indian food 

grain supply chain with focus to address supply uncertainty is an immediate necessity.  

In addition to the aforementioned concerns, rapidly increasing levels of global warming, 

advancement of environmental regulations and higher rates of natural calamities, compel the need 

for holistic design of food grain supply chain networks by incorporating sustainability. Thirty eight 

percent of global GHG emissions is attributed to transportation and agriculture sectors (IPCC 

2014). Multimodal freight transportation, shipping operations, carbon intensive manufacturing 

activities, and intermodal facilities are prime sources of GHG emissions where the implementation 

of carbon sensitive design of supply networks is of utmost importance. Over 35 million tons of 
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food grains are transported annually through railways and roadways, thus significantly 

contributing to freight GHG emissions (fci.gov.in/movements.php). Intermodal and multimodal 

freight transportation, shipping operations, carbon intensive manufacturing activities, and 

intermodal facilities are prime sources of GHG emissions. Food and Agriculture organization 

points out that a kilogram of food lost in the later stages of supply chain (post harvest stages) 

possess higher carbon intensity than a kilogram lost at preliminary stages. In India, agriculture 

contributes to 18% of total GHG emissions (INCCA 2010).  Food grains alone accounted for 7,900 

kilograms of CO2 emissions in the subcontinent in 2003 (Parikh et al. 2009). The forecasts by 

Indian Council of Agricultural Research (ICAR) suggest that the area-averaged annual mean 

warming is estimated to range between 1 °C – 4 °C by 2020 and between 2.2 °C – 2.9 °C by 2050. 

Thus, the need for considering environmental issues in the design of food grain transportation 

systems, with focus to reduce emissions is justified.  

Apart from environmental concerns, the food grain supply chain network design also holds the 

need for simultaneous focus to curb the impact of disruption.  The adverse impact of floods at 

West Bengal, India in 2016, and the infamous Bhuj earthquake in Gujrat provide a wakeup call 

and testify the need for focusing on disruption to safeguard the population against staple food. This 

draws the attention of researchers to accommodate design for disruptions in food grain supply 

chain.  According to Parvaresh et al. (2014), supply chain design for natural calamities, terrorists 

attacks and shutdowns have been modelled as intentional disruption. The possibility of maintaining 

adaptive capacity for dealing with disruption was recognized by Williams et al. (2017) who 

emphasized the importance of extending the step forward towards inculcating sustainability. 

However, the literature pertaining to collective design for sustainability, supply uncertainty and 

intentional disruptions is underdeveloped and attracts deeper attention. 
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Based on the aforementioned concerns, this research explores the idea of integrating economic and 

environmental sustainability with food grain transportation network design subject to uncertain 

supply and intentional disruptions. . It is built upon the framework proposed by Maiyar et al. (2015) 

for food grain supply chain system in Indian context. The proposed model in this paper facilitates 

interstate transportation in between the central level warehouses of two different states. Robust 

optimization approach is adopted to deal with uncertainty associated with food grain supply. The 

proposed model is ensured to be model robust and solution robust by enforcing penalty on control 

constraints and considering the minimization of total relative regret associated with total cost 

respectively. The total cost captures total shipment costs from warehouses in origin state to 

warehouses in destination states through origin and destination intermodal hubs, facility location 

costs, rerouting costs and GHG emissions costs. The constraints of the problem ensure to satisfy 

demand, warehouse capacity, vehicle capacity, hub allocation, emergency hub and flow balance 

requirements. The resulting mixed integer non-linear robust optimization model is solved using 

self-tailored particle swarm optimization with differential evolution (PSODE), particle swarm 

optimization (PSO) and firefly algorithm (FFA). Finally, the robustness of the solutions obtained 

are verified with respect to model robustness and solution robustness for small, medium and large 

size data sets.  

The subsequent sections are organized as follows. The second section highlights the literature 

review conducted and presents the identification of research gaps. Section 3 provides the problem 

description with figurative illustration. Section 4 delineates the proposed mathematical model. 

Section 5 describes the tailoring of hybrid particle swarm optimization with differential evolution 

algorithm followed by the plan of experiments in Section 6. The explanation of result and detailed 
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discussions are carried in Section 7. Lastly, section 8 provides conclusion, limitation and future 

scope. 

2. Literature review 

The following systematic approach was employed for conducting literature review. Initially, the 

keywords “supply chain network design with uncertainty”, “supply chain network design with 

disruption” and “sustainable supply chain design” were used to identify the relevant papers from 

the web of science and scopus database. Later on, the literature concerning to supply chain network 

design was reviewed to understand present contributions and future direction. During the review 

process, the review paper authored by Govindan et al. (2017) was identified as a reference to 

further narrow down the focus for identifying problems which addressed uncertainty, sustainability 

and disruption mathematically.  The literature pertaining to uncertainty modelling in supply chain 

network design can be broadly classified into various categories of problems based on modelling 

approach, problem environment and solution methodology as shown in Figure 1. Based on the 

uncertainty source, the risks associated with supply chain design are categorized as operational 

and disruption risks (Govindan et al. 2017). Disruption risks can be intentional (war and terrorist 

attacks) or unintentional (floods, natural disasters etc.). The uncertainty arising from unintentional 

disruptions are captured by assuming discrete or continues probability scenarios whereas 

intentional disruptions are modelled as discrete problems (Parvaresh et al. 2014). Blackhurst et al. 

(2005) emphasized the need for real time supply chain reconfiguration and reachability analysis to 

deal with disruption recovery issues in supply chain network. In this regard, they discussed the 

importance of robust modelling approach towards the design of resilient supply chain network. 

According to Chopra and Sodhi (2004), a disruption in supply chain due to natural disaster or 

terrorism significantly affects the overall cost.  Wagner and Bode (2008) conducted an empirical 

https://www.sciencedirect.com/science/article/pii/S0925527308002612#bib5
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investigation that confirmed the adverse effect of supply side risk and risks from catastrophes on 

supply chain performance. The present work gains a unique position in this framework of existing 

literature by its contribution towards the development of a non-linear and multi-period robust 

optimization model characterized by discrete supply side uncertainty and intentional hub 

disruptions. The aforesaid model is designed to minimize total costs associated with transportation, 

facility location, rerouting and GHG emissions. Table 1 illustrates the different methodologies 

adopted for uncertainty modelling in supply chain network design and the convergence or 

divergence of the present methodology from standard approaches with respect to various 

modelling intricacies. The proposed hybrid approach combines the robust optimization approach 

adopted by Rosa et al. (2013) with particle swarm optimization and differential evolution 

algorithm (PSODE) to arrive at near optimal solutions. Owing to the higher capability of PSODE 

in striking the balance between exploration and exploitation of the search space (Epitropakis et al. 

2012), as different from the previously developed hybrid approaches, the current hybrid approach 

guarantees robust as well as higher quality of near optimal solution.  

It is important to understand the conceptualization of robust optimization put forth by several 

authors to deal with uncertainty (Laguna 1998). Robust models under polyhedral uncertainty sets 

have been extensively studied and implemented on linear problems (Jalilvand-Nejad et al. 2016; 

Bertsimas and Sim 2004) and later extended to address mixed integer programming problems (Liu 

et al. 2018). The proofs derived by Bertsimas and Sim (2004) for robust counterparts under 

polyhedral uncertainties cannot be generalized for non-linear mixed integer formulations. 

Therefore, Ben-Tal et al. (2015) proposed a robust counterpart for non-linear uncertainties which 

fall within the boundary of convex programming problems. 
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Figure 1. Hierarchical classification of uncertainty literature pertaining to supply chain network design.  
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Table1. Methodology comparison study of relevant literature with present work 

 

Literature 
study 

Methodology Linear  Mixed 
integer 
linear  

Non- 
linear 
and 
convex 

Non-
linear 
and non-
convex 

Mixed 
integer 
non-linear 
and convex 

Mixed 
integer non-
linear and 
non-convex 

Exploration Exploitation Optimality 

Khatami et al. 
(2015) 

Decomposition 
✓ ✓     ✓ ✓ 

Optimum 

Shu et al. 
(2010) 

Column generation and  
Stochastic optimization 
(SO)  

✓ ✓ ✓  ✓  ✓ ✓ 
Optimum 

Azizi et al. 
(2016) 

Genetic Algorithm(GA) 
✓ ✓ ✓ ✓ ✓ ✓ ✓  

Near- 
optimum 

Hachicha et al. 
(2011) 

Differential Evolution 
(DE) 

✓ ✓ ✓ ✓ ✓ ✓ ✓  
Near- 
optimum 

Bozorgi-
Amiri  et al. 
(2012) 

Particle Swarm 
optimization (PSO) ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

Near-  
optimum 

Huang and 
Lin (2010) 

Ant Colony optimization 
(ACO) ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

Near-  
optimum 

Nickel et al. 
(2012) 

Commercial solvers 
✓ ✓ ✓  ✓  ✓ ✓ 

Optimum 

Rosa et al. 
(2013) 

Robust optimization 
with discrete scenarios 
(ROD) 

✓ ✓ ✓ ✓ ✓ ✓ - - 
Robust  
near  
optimum 

Ben-Tal et al. 
(2015) 

Robust optimization 
with interval sets (ROI) ✓ ✓ ✓    - - 

Robust  
optimum 

Jung et al. 
(2004) 

Simulation 
✓ ✓ ✓ ✓ ✓ ✓ - - 

Sub 
optimum 

Present study RO based PSODE 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Near- 
optimum 
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However, any such method containing polyhedral sets with uncertain parameters has not yet been 

developed for problems which are of non-convex type. Mulvey et al. (1995) pioneered the concept 

of solution and model robustness while illustrating the desirable properties of a solution to robust 

optimization models. They developed models for several practical applications including power 

capacity expansion, matrix balancing and image reconstruction, scenario immunization for 

financial planning, air-force airline scheduling; and minimum weight structure design while 

capturing the trade-offs between two type of robustness. Rahmani et al. (2013) developed a robust 

optimization model which aims at minimizing the total cost and decreasing the influence of 

uncertainty in the production costs and demand for multiple products in dual stage production. 

Amin and Zhang (2013) recommended a multi-objective facility location model that investigates 

the influence of uncertainty of demand and return on a closed-loop supply chain network. 

Govindan et al. (2015) developed a multi-objective optimization model that emphasizes to 

minimize the total costs and ecological effect of combining supply chain network design and order 

allocation problem. Lium et al. (2009) examined the significant role of demand stochasticity in 

service network design. Zeballos et al. (2014) developed a design and planning approach to assess 

the impact of uncertain customer demand and supply of raw material on network considering 

multi-period and multi-product closed-loop supply chains scenario. Rosa et al. (2013) proposed a 

robust capacitated facility location model which aims at minimizing the expectations of relative 

regrets for a number of scenarios considering uncertain supply and demand of goods. Hasany and 

Shafahi (2017) suggested a two-stage stochastic program that determines optimal shipment paths 

while addressing the railroad blocking problem under uncertain demand and supply of resource. 

Govindan et al. (2017) described the applicability, advantages and disadvantages of various 
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uncertainty handling approaches such as risk-averse stochastic programming, recourse-based 

stochastic programming, fuzzy mathematical programming, and robust optimization. 

There is paucity of literature that highlights sustainability and uncertainty issues in food supply 

chains. The empirical study conducted by Mangla et al. (2018) employs interpretive structural 

modelling technique to identify the contextual relationship and relative importance of dependent 

and independent enablers that drive sustainable initiatives in Indian context. They confirm that 

focussing on resources allocation and information sharing, capacity building, supply chain 

monitoring, developing competitive advantages, cost effectiveness and performance improvement 

are important dependent enablers that significantly contribute to sustainable development. They 

also confirm that the impact of these enablers can be realized through the implementation of 

independent enablers such as governmental and non-governmental pressure, regulatory 

interference, incentives for sustainability implementation, customer and stakeholder 

understanding, sustainability awareness, and management support. While the mathematical 

treatment and analysis of independent variables is beyond the scope of this research, the present 

study aims to quantitatively capture dependent variables such as resource allocation, capacity 

building, cost effectiveness, and performance improvement. In the context of quantitative 

modeling, Ahumada et al. (2012) presented a stochastic tactical planning model that incorporates 

uncertainty encountered in the fresh produce industry in order to develop robust growing plans. 

Bortolini et al. (2016) introduced a three-objective linear programming model to handle tactical 

optimization pertaining to fresh food distribution networks comprising of operating cost, carbon 

footprint and delivery time goals. Borodin et al. (2016) provided an overview of operations 

research methodologies which deal with uncertainty in the agri-based supply chain management. 

Garrone et al. (2014) provided a multi-dimensional concept of sustainability in food supply chain 
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by offering Availability-Surplus-Recoverability-Waste (ASRW) approach, which integrated the 

food supply chain with environmental, enterprise and social participants. Akkerman et al. (2010) 

reviewed quantitative methodologies to food distribution management, and identified challenges 

encountered by the food industry. They investigate the importance of food safety, food quality and 

sustainability at strategic, tactical, and operational decision levels of transportation planning. 

Accorsi et al. (2016) presented a framework to support strategic decision-making that addresses 

the problems pertaining to agriculture and food distribution considering climate stability. The 

authors aimed to resolve an original agro food land-network problem with localized as well as 

large-scaled decisions for optimal land-use allocation and location-allocation. 

While the rigorous mathematical treatment of food grain transportation planning with 

sustainability and uncertainty concerns has been conducted independently in literature, efforts to 

visualize and implement an integrated approach considering both the issues is scarcely seen and 

often neglected in this domain. Ge et al. (2015) dealt with quality control issues subject to 

uncertainty with respect to delivery of eligible wheat in the context of Canadian wheat supply 

chain. Focusing on sustainability, Maiyar and Thakkar (In press) developed a food grain 

transportation model considering social and environmental costs in the presence of intentional 

disruptions while ignoring uncertainty issues. Barbosa-Póvoa et al. (2018) reviewed the trends and 

directions of operation research methods and their applications towards the achievement of 

sustainable supply chain. Garnett (2011) conducted a review based study estimating the 

greenhouse gas (GHG) emissions from foods at the regional, national and global levels, 

highlighting both GHG-intensive stages and GHG-intensive food types in food chains. Wakeland 

et al. (2012) described different methods for evaluating the energy intensity and emissions from a 

food distribution system, assessing various trade-offs between facets of sustainability (economic, 
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environmental and equity) and identifying improvement opportunities. Maiyar and Thakkar (2019) 

presented a multi-objective model to minimize GHG emissions and total supply network cost 

considering food grain wastages, while they ignored the impact of uncertain supply. Zhu et al. 

(2018) published a model based review summarizing the recent advancements and opportunities 

for sustainable modelling of food supply chains considering economic, environmental and social 

perspectives.   Focusing on disruptions, Diabat et al. (2012), proposed a risk averse interpretive 

structural model (ISM) considering five types of risks pertaining to food industry. Huang et al. 

(2018) dealt with pricing and inventory decisions with production disruption and governable 

deterioration for food supply chain. 

The aforementioned review of the existing literature reveals that there is huge potential and need 

for developing integrated and robust transportation models that capture sustainability and 

uncertainty in food grain supply chains. Thus, the current paper attempts to bridge this gap and 

attempts to contribute to the existing literature in the following specific aspects. Firstly, it 

formulates a mixed integer non-linear robust optimization model with focus to uniquely capture 

supply uncertainty, design for disruptions and environmental concerns simultaneously in Indian 

food grain context. Secondly, the paper contributes to transportation literature by considering, hub 

allocation, vehicle capacity, warehouse capacity and emergency hub constraints while realizing 

the shipments in intermodal setting on hub and spoke system. Thirdly, a hybrid approach which 

combines the robust optimization approach adopted by Rosa et al. (2013) with particle swarm 

optimization and differential evolution algorithm (PSODE) to arrive at near optimal solutions is 

proposed.  The detailed problem, model formulation and solution approach are delineated in 

further parts of this study. 
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3. Problem environment  

This paper addresses the transportation problem invigorated from Indian food grain supply chain 

network connecting two states, Andhra Pradesh and Tamil Nadu, hailing from southern region of 

India. Every state in the subcontinent is demographically divided into a number of regions. In the 

current practice, the food grain system undertakes two types of procurement: Centralized and 

Decentralized. In decentralized procurement, food grains are procured by the state government 

authorities whereas in the later case the central government agency (Food Corporation of India) 

undertakes procurement of food grains.  Food grains procured through decentralized procurement 

strategy are stored in warehouses owned or hired by the state and are used to satisfy the demand 

within the state. On the other hand, food grains procured through centralized procurement strategy 

are stored in warehouses owned or hired by the central government and are used to satisfy the 

demand of another state. The focus of this work aligns within the operational spectrum of 

centralized procurement, which is undertaken by Food Corporation of India (FCI), a central 

government agency that is responsible for procurement, storage and transportation of food grains. 

Every region inside a particular state is further divided into limited number of warehouses. A fixed 

number of such warehouses are positioned as potential intermodal transport hubs from where the 

incoming flow of food grains from trucks are transferred to trains, which are subsequently shipped 

by rail to the destination state. The food grain warehouses present in each region are segregated 

into two types: (1) intermodal hub warehouse and (2) non-hub warehouse. Intermodal hub 

warehouses are categorized as the warehouses which have the capacity to handle intermodal 

transfer operations in addition to storage of food grains, whereas non-hub warehouse are described 

as the ones that are employed for only storing the food grains. The food grains to be transferred 

either originate from a non-hub warehouse or from an intermodal hub warehouse of the origin 
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(surplus) state and continue towards the designated non-hub warehouse or intermodal hub 

warehouse of the destination (deficit) state. Since, the interstate transportation takes place only 

through rail, the non-hub warehouses are not equipped with rail road facilities to receive the stock 

of food grains from another state. The set of routes therefore between the states is nearly fixed and 

can be altered only with government intervention or change of interstate wagon management 

policies. Therefore, direct shipments from origin to destination non-hub warehouses are not 

allowed and are transported only through intermodal hubs. The two types of warehouses within a 

state are linked either by road or rail. Figure 2 shows the pictorial outline of the supply network 

with the intermodal links connecting distinctive nodal elements pertaining to the problem while it 

illustrates the flow of food grains from origin warehouse (OW) to destination warehouse (DW) for 

different cases of disruption. The dotted unidirectional arrow that corresponds to “disruption at 

only destination hub” in Figure 2, represents the flow of food grains from OW to DW for the case 

when disruption occurs only in one of the destination intermodal hubs. In such a case, there is no 

disruption of origin hubs. For example, if there are 3 potential origin hubs and all the origin hubs 

are selected to be opened, then the total number of disrupted hubs in the origin state would be zero, 

and the flow shall not be routed through origin emergency hubs and will be routed through one of 

the three selected origin intermodal hubs (OIH). Whereas, since the destination intermodal hubs 

(DIH) are disrupted in this case, the disrupted flow is rerouted through the emergency destination 

intermodal hub as shown in Figure 2. Therefore, for the above scenario, the food grain flow from 

origin warehouse (OW) to destination warehouse (DW), passes through origin intermodal hubs 

(OIH) and destination emergency hubs (DEH). 
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Figure 2. Outline of food grain supply network 

As stated earlier in section 1, the current scenario of food grain procurement in Indian context is 

highly randomized with abundant and uncertain yield. As a consequence, it becomes highly 

challenging to capture the nature of probability distribution that exactly defines the procurement 

patterns.  Hence, in this paper, we choose to represent the situation of supply uncertainty as a 

discrete equivalent optimization problem considering different scenarios of food grain 

procurement denoted by s S , where S  is the set of all scenarios, associated with probability of 

occurrence sp   for each scenario s  such that, 1s

s S

p


= . 

4. Mathematical model 

As different from the robust optimization models with uncertainty sets proposed by Bertsimas and 

Sim (2004) and traditional stochastic programming approaches (risk-averse stochastic 
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programming, recourse-based stochastic programming, fuzzy mathematical programming, etc.), 

the sustainable and stochastic intermodal food grain transportation problem addressed in this work 

is articulated in accordance with the robust design for stochastic optimization proposed by Rosa et 

al. (2013). The later approach is line with the conceptualization put forth by Mulvey et al. (1995) 

who highlighted the importance of robust formulations considering the trade-off between model 

robustness and solution robustness for a wide class of linear as well as non-linear problems subject 

to erroneous or uncertain parameters. Therefore, this method of uncertainty modelling is adopted 

in this work to tackle with the resulting non-linear and NP hard nature of the formulation. In the 

present problem, the inclusion of penalty for infeasibilities occurring from uncertain realization of 

decision variables accounts for model robustness, whereas, solution robustness is ensured by 

considering minimization of total relative regret associated with the total costs. A clear illustration 

of the proposed robust optimization framework is shown in Figure 3.  

 

Figure 3. Robust optimization framework 

The following assumptions are required for mathematical conceptualization of the practical large 

scale stochastic problem addressed in this work: 
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• Single type of food grain is transported 

• Nature of demand is known and deterministic 

• Vehicles carry Full Truck Load (FTL) transport 

• In each region one warehouse is at least present. 

• In each state one hub is at least open 

• Emergency hubs are not disrupted 

• The shipment is completed in one time period 

• Supply uncertainty is unknown and discrete 

Table 2. Table of indices and sets 

Symbol Description Set Definition 

i  Origin FCI 
warehouse o

R  Regions in origin state o  

j  Destination FCI 
warehouse d

R  Regions in destination state d  

k  Origin hub pW  Warehouses in origin region p  

m  Destination hub o
W  Warehouse in origin state, 

1

oR

o p

p

W W
=

=  

e  Origin 
emergency hub  qW  Warehouses in destination region q  

f  Destination 
emergency hub  d

W  Warehouses in destination state, 
1

dR

d q

q

W W
=

=  

  Road o
H  Potential hub locations in origin state o , 

1

oR

o p

p

H W
=

  

  Rail/Rake d
H  

Set of potential hub locations in destination state d , 

1

dR

d q

q

H W
=

  

t  Time period T  Time periods 
s  Scenario S  Discrete scenarios 
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The list of definitions for indices and sets followed while formalizing the stochastic problem with 

uncertain supply are shown in Table 2. The information regarding potential hubs is known prior 

to start of planning process. They are mathematically represented as a subset of origin or 

destination warehouses. The advantage of flow consolidation at the intermodal hubs is 

quantitatively captured by using cost consolidation factor ( | (0 1)   ). The unconsolidated 

unit transportation cost through intermodal hubs k ( )
o

k H  and m ( )
d

m H , is kmTR . Given 

this, actual hub to hub unit transportation cost is estimated as, ( )kmTR , where, 1 −  denotes the 

fractional reduction in the unconsolidated price caused by economies of scale associated with 

consolidation. 

, , , ,ikmj ik km mjCT RO TR RD i j k m= + +            (1)  

A linear cost function as presented in Equation (1) is employed to estimate intermodal 

transportation cost for one unit of food grain from warehouse i  ( o
i W ) to warehouse j  ( )

d
j W

. Here, the unit transportation cost, ikmjCT  is the summation of three components. The first 

component is the unit cost of transportation by road from warehouse i  ( o
i W ) to origin hub k

( )
o

k H  represented by ikRO . The second component is the unit hub-hub transportation cost, 

kmTR , while third component is the unit cost of transportation through road from destination hub 

m  to warehouse j ( )
d

j W , represented by mjRD .  

The decision variables capture shipment quantity, route choice, hubs located and the hubs 

disrupted across origin and destination states. While the hub location and hub disruption decisions 

form the structural variables of the robust formulation, the shipment quantity and route choice 

form the control variables. The set of decision variables are defined as follows: 
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ts

ikmjx  Quantity of food grains flowing from origin warehouse i  to destination warehouse j  

through intermodal hubs k  and m  in time period t   and scenario s , where, d
i W , d

j W

, o
k H , d

m H , t T , s S  

ts

ikmjy  = 1, if there is flow from origin warehouse i  to destination warehouse j  through origin 

hub k  and destination hub m in time period t  and scenario s , where, o
i W , d

j W , 

o
k H , d

m H , t T , s S , 0 otherwise. 

ktz  = 1, if hub k  is open in time period t , 0 otherwise 

mtw  = 1, if hub m  is open in time period t , 0 otherwise 

kt  = 1, if hub k  is disrupted in time period t , 0 otherwise 

mt  = 1, if hub m  is disrupted in time period t , 0 otherwise 

Minimize s s

s S s

p
TRR




=           (2) 

( )s s c s

c

TC G c  


= + −            (3) 

s s s sTC TRC HC RC EC= + + +         (4) 

 
, , , ,

(1 )(1 ) ts

s kt mt ikmj ikmj

t i k m j

TRC CT x = − −         (5)  

The objective function (Equation (2)) minimizes the total relative regret, TRR , where sp  is the 

probability associated with occurrence of scenario s . In this model, TRR  is a normalized measure 

of total regret, s  (Equation (3)) which accounts for solution robustness with respect to the near 

optimal cost, s  for a particular scenario s S . The second term in Equation (3) calculates the 

total induced penalty from the set of all control constraints,  . c  and ( )G c  denote the unit 
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penalty cost and total violation for constraint type c . Constraint penalty increases the regret 

while ensuring that higher degree infeasibilities donot fit into the scope of acceptable solutions, 

thus accounting for model robustness. As different from the penalty approximation for constrained 

optimization, this penalty approach penalizes the violations resulting from uncertain parameters 

and decision variables of the stochastic problem. The total sustainable freight network cost is 

estimated using (Equation (4)) as an aggregate of following economic and ecological cost 

components: (1) Transportation cost, sTRC  (2) Hub location cost, sHC  (3) Rerouting cost, sRC , 

and (4) Environmental cost, sEC . The first term in the objective function, sTRC  (Equation (5)), 

sums the transportation cost of individual shipments transported across all the routes passing 

through non-disrupted origin and destination hubs for each scenario s S . The multiplication 

(1 )(1 )kt mt − −  ensures that the aggregated cost eliminates the cost of transporting disrupted 

shipments.  

o dHC HC HC= +           (6) 

'
( 1) ( 1) ( 1)

,

(1 ) (1 )o k kt k t k t k k t kt

k t

HC F z z F z z− − − = − + + −       (7) 

'
( 1) ( 1) ( 1)

,

(1 ) (1 )d m mt m t m t m m t mt

m t

HC F w w F w w− − − = − + + −       (8) 

Equation (6) estimates the total hub location cost, where oHC represents total hub location costs 

at the origin, whereas dHC  denotes total hub location cost at the destination states. oHC is 

calculated as per Equation (7) and dHC  is measured according to Equation (8). kF  and mF  are the 

fixed costs of opening the hubs k  ( )
o

k H  and m ( )
d

m H  respectively, whereas, '
k

F  and '
m

F  

are the fixed costs of closing the hubs. The hub location cost, oHC , in Equation (7) considers the 
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summation of cost for opening and closing of hubs in the origin state. In this equation, the hub 

closure cost for a particular time period is accounted into total hub location cost if and only if the 

following conditions are satisfied. (1) The hub was opened in the immediate previous time period 

and (2) The hub is closed in the current time period. The expression ( 1) (1 )k t ktz z− −  ensures that 

above conditions are satisfied under closure and becomes one, with ( 1) 1k tz − =  and 0ktz = , for all 

values of k  and t . If the hub k  remains open for continuous time periods ( ( 1) 1k tz − =  and 1ktz = ), 

and hub k  was not disrupted in the previous time period ( ( 1) 0k t − = ), then neither hub closure, nor 

hub opening costs is incurred. In the other case, if hub k  remains open for continuous time periods 

( ( 1) 1k tz − =  and 1ktz = ) and there was a disruption in the previous time period ( ( 1) 1k t − = ), the 

model is designed to incorporate hub opening cost as it is required to recover from disruption 

although the hub was previously opened. A similar effort is exercised for estimating the hub 

location cost of the destination state using Equation (8). The hub location costs are independent of 

the supply scenarios unlike other components of the total cost which are evaluated after the actual 

realization of the supply. 

s os ds odsRC RC RC RC= + +          (9) 

, , , ,

(1 ) ts

os kt mt iemj ikmj

t i k m j

RC C x = −         (10) 

, , , ,

(1 ) ts

ds kt mt ikfj ikmj

t i k m j

RC C x = −         (11) 

, , , ,

ts

ods kt mt iefj ikmj

t i k m j

RC C x =           (12) 

The third term of the objective function, sRC , is calculated based on three cases described as 

follows. In the first case, disruption occurs at only origin hub, whereas in the second case, 
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disruption occurs only at the destination hub, and in the last case, disruption occurs at both origin 

and destination hubs. The rerouting cost pertaining to the abovementioned three cases is obtained 

from Equations (10), (11), and (12) respectively, where iemjC , ikfjC , and iefjC  represent the 

associated unit transit charges for routing the flow through the origin emergency hub, e  and, 

destination emergency hub, f ,as appropriate. Inevitably, above three cases can be qualified as 

independent and mutually exclusive, and thus for a general case, the rerouting cost for each 

scenario s S , sRC  is estimated by simple summation of the three costs, as represented in 

Equation (9). 

(1 ,1 , , ) ( , , , ) (1 ,1 , , ) ( ,1 , , )s s kt mt s kt mt s kt mt s kt mtE E k m E e f E k m E e m          = − − + + − − + −  

       (1 , , , ) ( , , , )s kt mt s kt mtE k f E e f    + − +       (13) 

where, ( ) ' '

, ,' ' '

, ,

( , , , )

ts ts

ikmj ikmj

m j i k

s ik m j
t i k m j

x x

E K L k m KA LA
V V

    
 

 
    
    = + +    
       

 
        (14) 

and, ( ) ' '

,' ' '

, ,

( , , , ) ,

ts

ikmj

i j

s k m
t k m

x

E K L k m KLA
V

   


 
 
 = +  
  


      (15)

     ' '( , ) 0,1 , ,o dK L k H e m H f                

In Equation (4), EC  denotes the total environmental costs and is calculated for each scenario as 

s sEC C E= , where sE  is the total emissions (Equation (13)) for scenario s S  . C  denotes the 

price of carbon tax presented in rupees per tonne of CO2 released. ' '( , , , )sE K L k m (Equation (14)) 

and ' '( , , , )sE K L k m (Equation (15)) estimate the total CO2 emissions as a function of binary 

variables, K  and L , and intermodal hub indices, '
k  and '

m , for road and rail transport respectively 
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for each scenario s S . The values for K , L , '
k  and '

m  are different for different cases of 

disruption that were discussed earlier and are appropriately chosen for each case. For example, 

substituting 1 ktK = − , 1 mtL = − , '
k k= , and '

m m= , in Equation (14) corresponds to emissions 

estimation from a particular road portion of the transport where neither of the origin and destination 

hubs is disrupted. Whereas, the combination ktK = , mtL = , '
k e= , and '

m f=  in the same 

equation, corresponds to the emissions estimation from the particular road portion of the transport 

where either one or both of origin and destination hubs are disrupted, and the disrupted 

consignments are routed through emergency hubs e  or/and f  as appropriate. In another case, 

substituting 1 ktK = − , 1 mtL = − , '
k k= , and '

m m= , in Equation (15) corresponds to emissions 

estimation from the particular rail portion of the transport where neither of the origin and 

destination hubs is disrupted. Emissions from rail transport corresponding to disrupted 

consignments are evaluated using similar conventions provided in Equation (13) for 

single/multiple hub disruption cases. The first two terms of Equation (13) correspond to emissions 

from road transport, whereas the next four terms correspond to total emissions from rail transport. 

This procedure of estimating emissions is in accordance with estimation technique provided by 

Schipper et al. (2009).    and '
  in Equations (14) and (15) are full and empty load CO2 emissions 

(gCO2 /vehicle-km) respectively for road transport, whereas for rail,   and '
  hold similar 

meanings. V  is the capacity of a single truck, whereas V  is the capacity of a single rake. The 

emission conversion factors used in Equations (14) and (15) are expressed in terms of total 

equivalent grams of CO2 per vehicle-kilometer travelled. Ramachandra and Shwetmala (2009) 

proposed emission factors for road transport. The emission factors for rail transport are adopted 
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from Kishore (2012). This procedure of estimating emissions is in accordance with estimation 

technique provided by Schipper et al. (2009). Table 3 highlights the remaining list of parameters.  

, , , , , ,ts ts

ikmj ikmjx My i k m j t s               (16) 

( )
, ,

, , ,ts

ikmj o d d kt

i m j

y Z W H W z k t s           (17) 

( )
, ,

, , ,ts

ikmj o o d mt

i k j

y Z W H W w m t s           (18) 

, ,kt ktz k t              (19) 

Table 3. List of problem parameters 

Notation Description 

jtD  Demand at warehouse j  in time period t , d
j W ,  t T  

itsI  Inventory at warehouse i  observed in time period t  and scenario s , o
i W

, t T , s S  
s

it
P  Procurement at warehouse i  observed in time period t  and scenario s , 

o
i W , t T , s S  

kU  Intermodal handling capacity of hub k , o
k H  

mU  Intermodal handling capacity of hub m , d
m H  

o
n  No. of origin hubs permitted to be disrupted in any time period 

d
n  No. of destination hubs permitted to be disrupted in any time period 

it  No. of trucks available at warehouse i  in time period t , o
i W , t T  

kt  No of rakes available at origin hub k  in time period t , o
k H , t T  

mt  No. of trucks available at destination hub m  in time period t , d
m H , 

t T  

ikA   Road distance from warehouse i  to intermodal hub k , o
i W  , o

k H  

mjA   Road distance from intermodal hub m  to warehouse j , d
m H , d

j W  

kmA   Rail distance from intermodal hub k  to intermodal hub m , o
k H , 

d
m H  

, ,mt mtw m t              (20) 
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The problem is subjected to constraints shown in the Equations (16) - (43). Equation (16) 

associates the shipment quantity and route selection variables through a large number, M in such 

a way that there is positive movement only if there exists a route in the same direction. However, 

as part of the random search strategy, the value of decision variable ts

ikmjx is allowed to vary in 

between a finite range depending upon the size of the problem in which case, the value of M  can 

be decreased till the upper bound for ts

ikmjx . Equations (17) and (18) make sure that flow of food 

grain is routed through a hub only when it is open. Similarly, Equations (19) and (20) establish the 

linking constraints between disruption and hub location variables. 

, , , , , ,
1

ts

ikmjts

ikmj ts

ikmj

x
y i k m j t s

x

 
=       

+  
       (21) 

,kt

k

z a t=              (22) 

,mt

m

w b t=             (23) 

, ,

, , ,ts

ikmj jt

i k m

x D j t s              (24) 

, ,

, , ,ts

ikmj its

k m j

x I i t s             (25) 

( 1)
, ,

, , ,ts

i t s its ikmj its

k m j

I P x I i t s− + − =            (26) 

, ,

, , ,ts

ikmj k kt

i m j

x U z k t s             (27) 

, ,

, , ,ts

ikmj m mt

i k j

x U w m t s             (28) 

The function in Equation (21) avoids empty transport between origin and destination warehouses. 

Equations (22) and (23), restrict the number of hubs located in origin and destination hubs in any 

time period to a and b respectively. Furthermore, the demand, available inventory and flow 
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balance constraints are denoted by Equations (24), (25) and (26) respectively. Equations (27) and 

(28) are used to represent intermodal hub capacity restrictions. 

, ,

(1 ) , , ,ts

i ikmj it

k m j

x V i t s −              (29) 

, ,

, , ,ts

ikmj kt kt

i m j

x z V k t s             (30) 

, ,

, , ,ts

ikmj mt mt

i k j

x w V m t s            (31) 

It is made sure that the food grain flow are restricted by vehicle capacity from Equation (29), (30) 

and (31). The binary parameter, i  is defined to distinguish between a hub node and a non-hub 

node in Equation (29), where  i  equals 1 if  th
i  origin warehouse is a potential hub and equals 0 

otherwise. Furthermore, the equation signifies vehicle capacity restriction only at the origin non-

hub nodes, whereas the Equations (30) and (31) are formulated to satisfy vehicle capacity 

restrictions at origin and destination hubs respectively.  

2, , , , , , ,ts

iemj kt kt mty z w i k m j t s m f + + −             (32) 

1, , , , , , ,ts

ikfj mt mty w i k m j t s k e + −              (33) 

3, , , , , ,ts

iefj kt mt kt mty z w i k m j t s  + + + −             (34) 

When a hub is disrupted, one possibility is that the flow may be routed through non-disrupted hubs. 

Since the non-disrupted hubs possess limited intermodal handling and vehicle capacities, there is 

larger possibility of traffic congestion and further flow disruption. Therefore, this paper, considers 

that demand of food grains is routed through the emergency hubs after disruption. The emergency 

hubs are associated with high intermodal capacity and higher transportation cost. In this regard, 

Equations (32), (33) and (34) make sure that emergency route is selected respectively for the three 

cases of disruption as described earlier. 

1,etz t T=               (35) 
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1,ftw t T=              (36) 

0,et t T =              (37) 

0,ft t T =              (38) 

,
kt o

k

n t T =             (39) 

,
mt d

m

n t T =             (40) 

Equations (35) and (36) ensure that emergency hubs are always open. Equations (37) and (38) 

ensure emergency hubs are not disrupted. The number of disrupted hubs in the origin and 

destination hubs are restricted to o
n  and d

n  respectively by Equations (39) and (40).  

0, , , , , ( , )ts

ikmj ox i j t s i k H=              (41) 

0, , , , , ( , )ts

ikmj dx i j t s j m H=              (42) 

0,ts

ikmjx   , , , , 0,1 , , , , , ,ts

ikmj kt kt mt mty z w i j k m t s              (43) 

The Equations (41) and (42) are formulated to ensure no flow between two hubs of a single state. 

Finally, Equation (43) are non-negativity and integrality constraints for the given problem.  

The procurement quantity, itsP  of warehouse oi W  in time period t T  and scenario s S  is 

considered as the source of supply uncertainty. The constraints directly interacting with the control 

variables that may generate positive violation due to the variation in values of stochastic elements 

of the formulation are called control constraints. In this problem, constraints represented by 

Equations (16) - (18), (21), (24) - (34), are the control constraints. The violations generated from 

these constraints are penalized as shown in Equation (3). The following aspects highlight the 

uniqueness of the formulation. The simultaneous minimization of transportation, hub location, 

rerouting and environmental costs in the presence of intentional disruption and supply uncertainty 

is unique to transportation modelling in food grain context. The vehicle capacity constraint in 
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combination with demand and flow constraints associated with various types of linking constraints 

are dealt with the scenarios of uncertain supply.  

The dataset for the aforementioned problem formulation are described in Tables 4, 5 and 6 

respectively. In Table 4, 1n , 2n , 3n , 4n , 5n , and 6n  symbolize the number of origin warehouses, 

origin hubs, destination hubs, destination warehouse, time periods and scenarios respectively. For 

example, the set of time periods is defined as  1,2T =  for small dataset, and   1,2,3T =  for 

medium and large data sets. Similarly, the number of elements in each set is purely dependent on 

the problem instance defined in Table 4. Therefore, Tables 4, 5 and 6 provide the dataset range for 

all the sets and different problem parameters defined in this section. 

Table 4. Problem set description 

Problem  
set  

Origin  
regions 

Destination 
regions 

Configuration 

1 2 3 4 5 6( , , , , , )n n n n n n  

Number of 
variables  

Number of 
control 
constraints 

Number of total 
constraints 

Small 3 3 (5, 3, 3, 5, 2, 3) 2724 9858 9976 
Medium 3 4 (6, 3, 5, 9, 3, 3) 14628 53271 53493 
Large 3 4 (10, 4, 4, 10, 3, 3) 28848 102816 103074 

Table 5. Region wise warehouse distribution 

Problem 
set 

Small Medium Large 

State Origin Destination Origin Destination Origin Destination 

Warehouse 
type 

HW NHW HW NHW HW NHW HW NHW HW NHW HW NHW 

Reg 1 1 1 1 0 1 1 1 0 1 2 1 0 

Reg 2 1 1 1 1 1 2 1 2 2 2 1 2 

Reg 3 1 0 1 1 1 0 2 1 1 2 2 1 

Reg 4 - - - - - - 1 1 - - 0 3 

*HW: hub warehouse, NHW: non hub warehouse, Reg 1: Region 1, Reg 2: Region 2, Reg 3: 
Region 3, Reg 4: Region 4 



29 
 

Table 6. Numerical description of problem and algorithm parameters 

Parameter Value Parameter Value 

k
F  Rs. 5 x 105  – Rs. 10 x 105 b  3-5 

mF  Rs. 8 x 105  – Rs. 12 x 105 
on  1 

ikA   75 km – 1000 km 
dn  1 

kmA   100 km – 1500 km 
kU  2 x 105 MT – 4 x 105 MT 

mjA   50 km – 500 km 
mU  1.5 x 105 MT – 3 x 105 MT 

  0.8 C  15 MT 

jtD  2000 – 20000 MT C  4000 MT 

0iI  25000 – 100000 MT 
it  1000 – 5000 

S  3 
kt  20 – 45 

1
it

P  400 – 7000 MT 
mt  1000 – 5000 

2
it

P  2000 – 35000 MT N  300 
3

it
P  4000 – 70000 MT E  0.9 

1p  0.2   0.9 

2p  0.3 
1c  

0.1 

3p  0.5 
2c  

0.98 

a  3-4   

 

5. Solution methodology 

Intermodal supply network optimization problems that deal with evaluation of simultaneous 

shipment route and hub allocation decisions are often developed considering p-hub median 

problem (Ishfaq and Sox, 2011). According to Parvaresh et al. (2014) and Alumur and Kara, 

(2008),  the problem in the presence of single period interdictions, also known as p-hub median 

problem with intentional disruption (PHMI) is NP-hard. Since, the mathematical model developed 

in the current paper is a further extension of PHMI formulation with uncertain supply, the present 

formulation can be considered atleast as hard as PHMI problem. While decomposing and 

linearizing the aforementioned formulation has high possibility of fetching inefficient results in 
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real time for large datasets, evolutionary optimization is an effective surrogate for solving such 

complex problems. Parvaresh et al. (2014) employed simulated annealing and tabu search 

techniques to solve the PHMI problem. A genetic algorithm based approach with multiple start 

points was adopted by Azizi et al. (2016) to solve PHMI variants. Metaheuristics such as genetic 

algorithm (GA), chemical reaction optimization (CRO), simulated annealing (SA), and ant colony 

optimization (ACO) have been used to solve (Mogale et al. 2016; Asgari et al. 2013) food grain 

supply chain problems. However, these techniques lack the ability to fully explore and exploit the 

solution space. Therefore, in this paper, particle swarm optimization with differential evolution 

(PSODE) proposed by Epitropakis et al. (2012) which combines the benefits of PSO and DE is 

tailored and used to solve the proposed problem.  

5.1 Particle swarm optimization with differential evolution 

Particle swarm optimization (Eberhart and Kennedy 1995) and differential evolution (DE) 

algorithms have been used to address a number of complex optimization problems. Having said 

so, the individual capabilities of both the algorithms are insufficient to tackle immature 

convergence. Swarm intelligence based meta-heuristics possess the capability to exploit the 

solution space more than the efficiency to explore (Liu et al. 2010). Specifically, the exploitation 

capability of particle swarm optimization (PSO) is much better compared to several other 

algorithms (Onut et al. 2008). On the other hand, differential evolution (DE) algorithm has 

relatively higher ability to explore the solution space but lack the efficiency to exploit a given 

scope of solution (Liu et al. 2010). Therefore, given the individual abilities and relative benefits of 

PSO and DE algorithms with respect to other approaches in exploration and exploitation, 

combining the two approaches would significantly strengthen the directional efficiency of the 

search process in both dimensions (Epitropakis et al. 2012). A number of authors presented the 
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scope of hybridizing perspectives to gain synergistic benefits from the two algorithms (Xin et al. 

2011; Liu et al. 2010; Thangaraj et al. 2011). An integrated form of canonical PSO and DE 

algorithms was originally proposed by Epitropakis et al. (2012). PSODE is characterized by an 

efficient combination of swarm and evolutionary meta-heuristic approaches, capable of reaping 

faster convergence rates. This paper aims to appropriately tailor and implement this hybrid 

approach to tackle the proposed constrained non-linear discrete optimization problem.  

The hybrid algorithm is initiated with two dissimilar populations of equal size, 1pop  and 2pop . 

The particle best from 1pop  is stored in 2pop . The members of 1pop  are arranged in descending 

order as per constraint violations and 2pop  members are linked according to their particle best 

values. The populations continue to evolve separately, while 50 % population of 1pop  are updated 

according to PSO. The individuals that are found to be infeasible are subjected to the reflection 

operator according to Equation (44). The notations , ,c g  and l  represent the particle, position, and 

the iteration number of the variable l

cgx  respectively. The index c  represents a member from the 

set of particles,  1,2,3,...,P N , where N  is the population size. The index g  represents a 

member from the set of decision variables,  1,2,3,...,Z D , where D  is the dimension of each 

particle (total number of decision variables). The index l  represents a member from the set of 

iterations,  1,2,3,...,I E , where E  is the  maximum iteration size. It is important to note that 

the variable l

cgx  may correspond to any type of decision variable shown in Figure 4.   

'

0.5( ( ) ),     if ( )

0.5( ( ) ),    if ( )

,    otherwise

l l

cg cg

l l l

cg cg cg

l

cg

lb g x x lb g

x ub g x x ub g

x

 + 
= + 



       (44) 
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Next, DE procedure is deployed on 2pop . The mutation strategies used for each member of 2pop

are as shown in Equations (45), (46) and (47).  

1 2 3

' ( )l l l l

cg r g r g r gx x x x= + −           (45) 

1 2

'
( )( ) ( )l l l l l l

cg cg best g cg r g r gx x x x x x = + − + −        (46) 

1 2 3 4 5

' ( ) ( )l l l l l l

cg r g r g r g r g r gx x x x x x = + − + −        (47) 

1r , 2r , 3r , 4r , 5r  are picked from uniform distribution in between [1, D], ( )
l

best gx  is the best solution 

obtained for t  iterations. D is the dimension (total number of decision variables) of the particle. 

  is the amplification factor with range [0 2] . These strategies were chosen to ensure maximum 

diversity in the resulting solutions. The boundary conditions are satisfied with the help of Equation 

(48), where l

cgw  represents violated offsprings and 'l
cgw  represents corrected offsprings. 

Subsequently, the procedure of selection according to DE is implemented on the offspring to 

restore the particle best members of 2pop  at the end of iteration t  according to Equation (49), 

where the function ( )G X  estimates the violation of constraint. 

'

2 ( ) ),     if ( )

2 ( ) ),    if ( )

,    otherwise

l l

cg cg

l l l

cg cg cg

l

cg

lb g w w lb g

w ub g w w ub g

w

 − 
= − 



       (48) 

1
,          if   ( ) ( ) ( ) ( )

,    otherwise

l l l l l

c c c c cl

c l

c

W f W f pbest G W G pbest
pbest

pbest

+
   = 


    (49) 

The key advantages of the above approach can be measured in terms of less time taken by the 

algorithm to arrive at near optimal solutions as compared to other hybrid versions and its potential 

to generate adequate solution diversity.  

5.2 Implementation of PSODE  



33 
 

The implementation of PSODE to solve the proposed problem is described in this section. 

5.2.1 Particle encoding scheme 

 The particle encoding scheme defines the way in which the decision variables of the problem are 

collectively arranged. The order of decision variables in this problem are arranged as, ts

ikmjx , ts

ikmjy , 

ktz  , mtw , kt , and mt . As described in section 4, a specific configuration of the problem is 

characterized by the value of 1n , 2n , 3n , 4n , 5n , and 6n  which symbolize the number of origin 

warehouses, origin hubs, destination hubs, destination warehouse, time periods and scenarios 

respectively. For an instance, where 1 6n = , 2 3n = , 3 5n = , 4 9n = , 5 3n = , and 6 3n = , the total 

number of variables amounts to 14628. The dimension of the particle matrix is [ , ]N D  , where, N  

represents population size  and D  represents total number of decision variables. A sample 

encoding scheme is shown in Figure 4.  

 

Figure 4. Particle encoding scheme for problem instance (6,3,5,9,3,3)   

5.2.2 Discretization 

In the course of particle evolution, PSO and DE often may cause the integer variables to get 

directed towards the outer region of the feasible space or may get transformed to continuous values. 

Discretization helps to forcefully restore integrality constraints on the corresponding violated 

variables. Integer variable discretization or binary variable discretization are used depending on 

the type of integer variables. The binary variables ts

ikmjy , ktz  , mtw , kt , and mt  are  treated with 
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binary variable discretization scheme before calculation of fitness whereas the integer variables 

such as number of trucks or number of rains are subjected to integer variable discretization. 

Following this process, the solution string is passed on to the fitness function.  

5.2.3 Pattern generation 

The coding and decoding of a given particle is done through appropriate pattern generation. The 

patterns are generated for each expression of the objective function and constraints. In simple 

words, the patterns reveal the order in which the variables are accessed from the particle array. For 

example a pattern of a certain expression which reads 1, 4, 7,10 and so on directs the access to 1st 

, 4th, 7th, and 10th variables in the particle array. This simplifies the data structure for storing the 

variables and contributes to significant time savings for dealing with large problem scales and 

creates favorable coding environment for sensitivity analysis. 

Table 7. Sample decision variable pattern sequences for demand constraint (Equation (24)) 

Right hand 
side  
( jtD  ) 

j  t  s  Pattern for ts

ikmjx  

11D  1 1 1 1, 10, 19, …, 802, 

21D  2 1 1 2, 11, 20, …, 803,  

31D  3 1 1 3, 12, 21, …, 804,  

91D  9 1 1 9, 18, 27, …, 810,  

12D  1 2 1 811, 820, 829, …, 1612, 

93D  9 3 1 1629, 1638, 1647, …, 2430 

11D  1 1 2 2431, 2440, 2449, …, 3232 

93D  9 3 3 6489, 6498, 6507, …, 7290 

Consider this is familiarized with the notation i  to represent a particular member of the pattern 

where i  takes values from 1 to the maximum number of decision variables. The pattern for ts

ikmjx  

in the demand constraint (Equation (24)) for different combinations of j , t , and s  are as shown 
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in Table 7 for medium problem instance. The value of demand is constant and is independent of 

the realization of the scenario s . This can be seen in the last two rows of Table 7 where the demand 

values for scenarios 2 and 3 remain same as in scenario 1 for corresponding value of j  and t . A 

similar procedure is followed to evaluate the objective function and constraint expressions 

throughout this work. 

5.2.4 Penalty enforcement 

In robust optimization, penalty enforcement plays a significant role to capture model robustness 

while ensuring feasibility of control constraints. The global fitness or total relative regret is 

calculated as the relative expected sum of total regret with respect to the best solution achievable 

under a particular scenario. The total regret is the sum of total cost and penalty, ( )X , for a given 

solution vector X .  ( )X  is calculated as per Equation (50). The value, ( )nV X is the degree of 

violation of th
n  control constraint where n  represents penalty for violating the constraint.  

( ) ( )n n

n

X V X =            (50) 

Given that ( )l lH X B  and ( )m mH X B=  are the set of inequality and equality constraints of the 

problem respectively, ( )nV X  is calculated for each of these cases differently as per Equation (51) 

 ( )   if 
( )

( )     if 

l l

n

m m

H X B n l
V X

H X B n m

+ − == 
− =

        (51) 

5.2.5 Flow diagram and pseudo code 

The flow diagram for PSODE application is illustrated in Figure 5 and its pseudo code is provided 

later in Figure 6.    
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Figure 5. Flow diagram for PSODE implementation 
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Figure 6. Pseudocode for PSODE 

6. Data and experiments 

In this research, the dataset for experiments is motivated from a diversified geographical scenario 

of South India. The type of food grain contemplated for the experimental study is rice. Simulation 

is conducted for food grain transport between two territories Tamil Nadu and Andhra Pradesh 

considered as origin and destination states, respectively. The demand for rice in Tamil Nadu is 

satisfied from the surplus stock available at Andhra Pradesh for multiple periods. The model is 

scrutinized on three samples of data with gradually augmented problem sizes (increasing number 

of variables). The data was assembled through field visit and by referring to different online 

sources (http://fci.gov.in,http://pdsportal.nic.in/main.aspx,https://www.fois.indianrail.gov.in/ 

http://fci.gov.in/
http://pdsportal.nic.in/main.aspx
https://www.fois.indianrail.gov.in/%20foisweb/%20view/qry/TQFrgtCalcIN.jsp
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foisweb/ view/qry/TQFrgtCalcIN.jsp,). In general the articulation of total number of variables 

1( )   and constraints 2( )  for the problem instance is illustrated in Equations (52) and (53). For 

every instance, the problem has to tackle with 1 2 3 4 5 6( )O n n n n n n  variables and constraints 

respectively. 

1 5 1 2 3 4 6 2 32 ( )n n n n n n n n = + +          (52)

1 2 3 4 1 2 3 4 3 4 2 1 2
2 5 6 2 3

1 2 3 3 4

5 4( ) ( 1)( )
3( ) 8

( 1)( )

n n n n n n n n n n n n n
n n n n

n n n n n

 + + + + + − + + 
 = + + +  − +  

 (53) 

A wide range of decision variable compositions as shown in Table 4 are considered while 

augmenting the size of the problem. The smallest data set for the robust optimization model 

consists a total of 2724 continuous and discrete decision variables. The total number of constraints 

vary from 9976 in the small case to 103074 in the large case. Table 4 also shows the drastically 

increasing total number of control constraints with increasing problem size, thus, conforming to 

curse of dimensionality. Thus, the number of uncertainty scenarios chosen for the aforementioned 

problem is restricted to three as shown in Table 6. As introduced earlier in section 4, scenarios 1 

to 3 represent three levels procurement from low to high. Table 6 also illustrates the numerical 

range of procurement levels and probabilities associated with each scenario along with numerical 

values adopted for different parameters of problem and the algorithm. The region-wise distribution 

of warehouses for small, medium and large size instances are described in Table 5.  

7. Result and discussion 

The experiments were executed in MATLAB and performed on Windows 8, 64-bit Operating 

System comprising of 8 GB RAM and Intel Core i7 2.2 GHz processor. Section 7.1 presents results 

of solving the model for a case of deterministic supply while considering independent realizations 

of different procurement scenarios presented in Table 6. Section 7.2 presents the results of the 

https://www.fois.indianrail.gov.in/%20foisweb/%20view/qry/TQFrgtCalcIN.jsp
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model solved for simultaneous multiple realizations of procurement scenarios or in other words 

for the case of stochastic supply using robust optimization approach. The result were evaluated 

using PSODE algorithm initially which were later again evaluated and compared with particle 

swarm optimization (PSO) and firefly algorithms (FFA) in both the cases. The implementation of 

firefly algorithm was carried out by referring to stepwise execution outlined by Zhou et al. (2015) 

and Bottani et al. (2018). 

7.1 Single scenario case (deterministic supply) 

As discussed earlier in section 6, the problem is solved for three different sizes of problem (small, 

medium and large). Single scenario case captures the best solution or near optimal solution 

obtained for all three cases using PSODE, PSO and FFA. The evaluation of different cost 

components for different problem sets and algorithms from scenarios 1-3 are shown in Table 8. 

The average execution times reported in Table 8 are calculated as the average of CPU time and 

total iteration time elapsed until convergence. In Table 8, rerouting cost 1 is the cost incurred for 

rerouting the shipments through origin emergency hub when origin hub is disrupted while all 

destination hubs remain functional. Similarly, rerouting cost 2 is the cost incurred for rerouting the 

shipments through destination emergency hub when only destination hub is disrupted while all 

origin hubs remain functional. Rerouting cost 3 represents the rerouting cost incurred for rerouting 

the shipments through origin and destination emergency hubs for the case where hubs at both 

origin and destinations are disrupted.  The graphs shown in Figure 7 display the convergence of 

global fitness under scenarios 1-3 for different problem sets when solved using PSODE, FFA and 

PSO algorithms. For single scenario case, the global fitness in each iteration is calculated as the 

summation of total costs and total penalty incurred for the given dataset. Table 8 also captures the  
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Table 8. Summary of results for deterministic optimization model for small, medium and large size instances for scenarios 1-3 using PSODE, PSO 
and FFA 

Method Cost 
and 
time 

Scenario 1 (Low procurement) Scenario 2 (Medium procurement) Scenario 3 (High procurement) 

Small  Medium  Large Small  Medium  Large Small  Medium  Large 

PSODE TRC 375778880 1486777398 2616345970 484462769 1075134040 2695544092 467256190 1963267466 2174426614 
OLC 2800000 3300000 5800000 2800000 3300000 5800000 2800000 3300000 4800000 
DLC 4000000 8500000 6800000 4000000 8100000 6800000 4000000 8900000 6800000 
RC 1 224699741 957509060 544228269 106325591 1403404581 969641741 371306882 713484539 1046791034 
RC 2 201587948 807863694 866436683 226127412 538721504 461846626 93689995 210277126 624166016 
RC 3 43898432 98340621 119269437 25343173 11070123 259237976 207444881 141198536 94253756 
EC 217658 1631804 4891106 250372 1346221 5468702 248510 1409392 4403309 
TC 852982659 3363922577 4163771465 849309317 3041076469 4404339137 1146746458 3041837059 3955640729 
AET 148.78 306.24 1125.48 155.7 312.87 1131.77 151.12 303.92 1158.28 

PSO TRC 616358278 3212644109 4380395445 530893372 2939619926 4128594960 696735737 2983113894 4628493741 
OLC 2800000 4300000 5800000 3300000 4300000 5400000 2800000 3300000 5400000 
DLC 4000000 9200000 7400000 4000000 11300000 6400000 4000000 11900000 6800000 
RC 1 450992425 1848301688 2372508747 312526616 1804927746 2391929092 429674764 1975892374 2511134380 
RC 2 125191552 174353925.9 494920737 283112920 297313706.3 223360417 227323735 71469998 514545053 
RC 3 255253337 94542761.78 147505340 10968444 1748016.276 590555189 46643777 4950858 150106779 
EC 253667 2124863.04 6272603 257063 2184627.72 5899326 251451 2045399 6533252 
TC 1454849259 5345467348 7414802873 1145058416 5061394022 7352138984 1407429465 5052672524 7823013205 
AET 128.46 257.34 1019.93 139.37 265.88 1025.44 138.57 269.62 1015.73 

FFA TRC 814007895 3850105880 5258833949 606560419 3778470766 5615095149 622198459 3805507142 5269523279 
OLC 3300000 3300000 5400000 2800000 3300000 5400000 3300000 3300000 5400000 
DLC 4000000 8900000 6800000 4000000 8900000 6800000 4000000 8900000 6800000 
RC 1 638064295 2797980469 3299918851 588289519 2718041592 3432032078 664148627 2800427504 3147468950 
RC 2 283540391 1109652667 476515226 267104112 984689467 477594169 337505083 1160498745 469946506 
RC 3 262521569 731690554 225981378 360201881 816932817 151801461 118723062 676325747 354919972 
EC 394405 3545602 8243705 343309 3503084 8798922 349731 3590252 8211589 
TC 2005828556 8505175171 9281693108 1829299239 8313837726 9697521780 1750224962 8458549391 9262270296 
AET 134.91 255.46 1008.39 135.26 249.66 1024.89 140.69 264.84 1013.84 

 

 
*TRC: Transportation cost, OLC: Origin hub location cost, DLC: Destination hub location cost, RC1: Rerouting cost 1, RC2: Rerouting cost 2,               

  RC3: Rerouting cost 3, EC: Environmental cost, TC: Total cost , AET: Average executive time. All the cost in Rupees and time in second 



41 
 

average execution times required for convergence of global fitness using PSODE, PSO and FFA 

for all instances. 

 
(a) Scenario 1 (Low procurement), PSODE 

 
(b) Scenario 2 (Medium procurement), PSODE 

 
(c) Scenario 3 (High procurement), PSODE 

 
(d) Scenario 1 (Low procurement), PSO 

 
(e) Scenario 2 (Medium procurement), PSO 

 
(f) Scenario 3 (High procurement), PSO 

Figure 7.  Convergence of global fitness by PSODE, PSO and FFA for different problem sizes 

and procurement scenarios under deterministic supply. 
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(g) Scenario 1 (Low procurement), FFA 

 
(h) Scenario 2 (Medium procurement), FFA 

 
(i) Scenario 3 (High procurement), FFA 

Figure 7.  Continued. 

7.2 Multiple scenario case (stochastic supply) 

Analogous to the deterministic case, the computational results of the proposed model for stochastic 

case of supply (unknown procurement) are recorded for small, medium and large size problems as 

shown in Table 9. However, in this case, the results include expected costs associated with 

transportation, rerouting, environmental and total costs. The cost associated with structural 

variables (origin and destination facility location cost) remain constant for all scenarios. In Table 

9, expected rerouting cost 1-3 correspond to rerouting costs obtained for respective scenarios of 

disruption as defined earlier in section 7.1. Table 9 also presents penalty incurred for not being 

able to fully satisfy the control constraints while dealing with the uncertain procurement. Later, 

regret associated with a particular procurement scenario ( 1 , 2 , and 3 ) calculated using Equation 
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(3) are reported. Total relative regret calculated using Equation (2) is reported in the last second 

row. The largest size of the model with 28848 variables and 103074 constraints was solved within 

1.5 h of computational time. Figure 8 shows the convergence of global fitness or total relative 

regret for different sizes of the problem solved by all three algorithms. It is found that PSODE 

consumes slightly higher average execution than other traditional metaheuristics evident from 

Tables 8 and 9. This is attributed to the additional operators and penalty enforcement mechanisms 

embedded in PSODE as compared to the less number of operators in PSO and FFA. However, this 

is compensated by the huge difference in the solution quality (minimum cost) obtained in the case 

of PSODE as compared to the costs obtained by other two algorithms. The detailed discussion 

about the results obtained and comparative analysis in terms of solution quality, solution and model 

robustness between the algorithms are reported in section 7.3 for different datasets. 
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Table 9. Summary of results for robust optimization model for small, medium and large size instances using PSODE, PSO and FFA 

Cost and time 
PSODE PSO FFA 

Small  Medium  Large Small  Medium  Large Small  Medium  Large 

ETRC 585537042 2263235780 3612731129 809548896.7 3173750669 5525786615 586625450 3762641379 5600492594 
OLC 2800000 3300000 4800000 2800000 3300000 5800000 2800000 3300000 5800000 
DLC 4000000 8500000 6800000 4000000 8900000 8600000 4000000 8900000 6800000 
ERC 1 467308304 1463208020 2161881058 750345260.6 2544885936 2971071011 581954495 2758882111 3195542251 
ERC 2 352356300 1399734557 801119644 410152138 188158040 988973089 433699665 1036913034 1227736899 
ERC 3 316763601 711716036 738505574 454360003.3 285718769 295324692 306246531 794983942 542200607 
EC  324313 2363397.43 6449488 436815.462 2397197 8375743 334231 3577746 9594260 
ETC  1729089561 5852057790 7332286893 2431643114 6207110611 9803931149 1915660372 8369198212 10588166611 
PI 1701710691 6480780667 8333583184 2824162640 6234048694 10507609228 1684215334 8345711892 10213078856 
PI/ ETC  0.98 1.11 1.14 1.16 1.00 1.07 0.88 1.00 0.96 

1  915520090 3170375508 4323749399 1487651559 3550942924 103950214.4 190054621 16083560561 820246040 

2  1082161331 2609213133 2573800657 1772393183 1790630029 4993385107 265362187 9323655701 650518186 

3  578733292 2706053966 3418639924 863666935 222396436 1959969438 746236940 8553563461 2360428708 
TRR 0.85 0.88 0.81 0.90 0.20 0.22 0.16 0.18 0.08 
AET 646.78 2154.06 5247.3 594.96 1968.49 5032.94 611.13 2071.64 4184.14 

*ETRC: Expected Transportation cost, OLC: Origin hub location cost, DLC: Destination hub location cost, ERC1: Expected rerouting 
cost 1, ERC2: Expected rerouting cost 2,ERC3: Expected rerouting cost 3, EEC: Expected environmental cost, ETC1: Expected total 
cost 1, ETC2: Expected total cost 2, PI: Penalty Incurred, TRR: Total relative regret, AET: Average executive time. All the cost in 
Rupees and time in second 
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(a) Small 

 
(b) Medium 

 
(c) Large 

Figure 8.  Convergence of global fitness (total relative regret) by PSODE, PSO and FFA for 

different problem sizes under uncertain supply  

7.3 Implication 

The theoretical implications of the current research are highlighted as follows. The study develops 

a unique mathematical model with focus to simultaneously capture uncertainty, intentional 

disruptions and environmental issues in the context of Indian food grain transportation. The 

decision variables of the model capture near optimal shipment quantity, hub location decisions and 

route selection while considering supply side uncertainty. The solution methodology combines the 

robust optimization approach and PSODE strategy to achieve near optimal solutions for the 

proposed problem. The solution robustness is evaluated in terms of total relative regret and the 

model robustness is captured by considering penalty for the control constraints. Specifically, 
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absolute and relative penalty incurred (ratio of penalty incurred to total expected costs) are the two 

different types of measures (Table 9) incorporated to measure model robustness.  Further, it is 

found that the proposed method is able to offer superior quality of solution with respect to two 

other state-of the art metaheuristic approaches. 

Large supply chain organizations often face difficulty while making freight booking and facility 

location decisions and are generally taken based on historical data. Given the large scale network 

of food grain supply chains, the results of the proposed model are significantly conducive to key 

decision makers and stakeholders, especially while dealing with uncertainty in food grain supply 

and intentional disruptions (disruptions due to war and terrorists attacks). With respect to the 

present problem, the minimized total relative regret is found to be less than unity for all cases. It 

is important to note that although PSO and FFA algorithms are able to provide lesser values of 

total relative regret, the quality of solution (Total cost and Expected total cost) provided by PSODE 

is superior for all datasets (Tables 8 and 9). This guarantees the replicability of the proposed 

approach with respect to different problem sizes. The relative regret measures the relative 

deviation of the robust solution from the solution obtained in the case of individual scenarios. It 

does not take into consideration the inferiority of the solutions obtained as it is the case for PSO 

and FFA (Table 8) with respect to PSODE.  It could be misleading to completely rely on the 

measure without considering the relative performance of the algorithms in terms of solution 

quality. Therefore, it is important to simultaneously consider model robustness while evaluating 

the overall robustness of the proposed approach. PSODE provides a higher value of model 

robustness compared to other approaches considered in this study depicted by its higher value of 

relative penalty measure shown in Table 9 for all datasets except for one case (small data set with 

PSO) which might be attributed to insignificant problem size. A higher value of relative penalty 
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measure indicates low level of expected total cost and thus higher solution quality. Considering 

the given scale of the practical problem and its computationally intractable nature, and attractive 

average execution times, the proposed approach is found to be capable, flexible and replicable in 

the current context and could be tailored to suit wide range of problems subject to uncertain 

environment. The competition of the government organization with the private market depends on 

additional uncontrollable factors such as selling price to farmers (minimum support price), price 

of food grains offered by private parties, procurement patterns, and weather conditions to name a 

few. Since the focus of the current work is restricted to transportation, the advantages of the 

proposed approach cannot be directly estimated in terms of competitive advantage but can be 

indirectly estimated based on the ability of the robust and sustainable modelling approach to cause 

significant cost savings to the government organizations and country at large towards successful 

implementation of sustainable transportation. 

 

8. Conclusion and future scope 

This paper proposes a mixed integer non-linear discrete robust optimization model for food grain 

transportation problem in the presence of uncertain supply and intentional disruptions in Indian 

context. The proposed model fosters a holistic and sustainable perspective by considering 

transportation cost, intermodal facility location cost, rerouting costs and environmental cost while 

minimizing the total relative regret associated with total cost. The constraints of the model adhere 

to vehicle capacity, hub capacity, and emergency hub restrictions along with food grain demand 

and flow balance constraints. In the problem, shipment quantity and shipment route decisions were 

designed as the control variables while hub location and disruption variables as structural 

variables. A self-tailored hybrid metaheuristic, PSODE is employed to tackle the resulting 
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complex problem in real time. The discrete and robust versions of the model was tested and 

compared for small, medium and large size problems using two other state of the art 

metaheuristics. Later the results of the robust model was verified against model and solution 

robustness for different levels of procurement scenarios.  Results illustrate that the hybrid 

metaheuristic was able to solve the problem with attractive computational times and arrive at 

higher quality of solution for all the instances.  

The limitations of the proposed research are highlighted as follows. Firstly, the current study 

focusses on considering discrete scenarios which may be further perfected by capturing the 

continuous distribution of uncertain parameters. Secondly, the proposed model is developed as 

single objective optimization approach whereas in practical it is important to capture the trade-off 

between the economic and environmental facets of sustainability. In this line, multi-objective 

treatment of the proposed model to excavate practically implementable tradeoffs between total 

shipment cost and carbon emissions is an open research question. Thirdly, the current study 

assumes carbon tax scheme for estimation of GHG emissions costs. However this may not be 

generalized to developed countries where carbon trading is being implemented. In such cases, the 

current study requires deeper analysis to investigate the relative benefits of resorting to an efficient 

emission conversion strategy. Nevertheless, this research opens new avenues for research in the 

arena of food grain transportation. Further, the scope of model implementation can be widened by 

designing similar supply network for other geographically wide spread territories with slight 

modification as per practical requirements, especially where food grains are the staple food. 
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