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1 Introduction

The Standard Model (SM) of particle physics has been very successful in explaining the

properties of the fundamental particles and the interactions among them. After the dis-

covery of the Higgs boson by the ATLAS [1] and the CMS [2] at the Large Hadron Collider

(LHC), the SM has become the most accepted theory of particle physics. The measured

properties of this new boson are in full agreement with the SM predictions so far. However

SM is not the complete theory of the nature as it can not describe many things including

baryogenesis, neutrino masses, hierarchy problem to name a few. Many of these issues

can be addressed by going beyond the SM (BSM), often by invoking some extended sec-

tors. A lot of the effort is recently being made towards the discovery of such new physics

beyond the SM. A plethora of models exist in this context; a large class of which pre-

dicts an extended scalar sector containing multiple scalar or pseudo-scalar Higgs particles.

Extended models like the Minimal Supersymmetric SM (MSSM) or Next-to-MSSM etc.,

predict a larger variety of Higgs bosons which differ among each other for example by their

mass, charge, CP-parity and couplings. A simple example contains an additional Higgs

doublet along with the usual Higgs doublet of the SM. After the symmetry breaking this

gives rise to two CP-even (scalar) Higgs bosons (h,H), one of which is identified with

the SM Higgs boson (h), a CP-odd (pseudo-scalar) Higgs boson (A) as well as a pair of

charged scalars (H±). This allows phenomenologically interesting scenarios particularly

with pseudo-scalar resonances. One of the important goal at the LHC Run-II is to search

for such resonances which requires a precise theoretical predictions for both inclusive as

well as for exclusive observables.

Similar to the SM Higgs production, the dominant production channel for A is through

the gluon fusion. Therefore at the LHC the large gluon flux can boost its production cross-

section to a great extent. Like the Higgs boson, the leading order (LO) prediction for A
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suffers from large theoretical uncertainties due to dependence on the renormalisation scale

µR through the strong coupling constant. The next-to-leading order (NLO) correction [3–6]

is known to increase the cross section as high as 67% compared to the Born contribution

with scale uncertainty varying about 35%. This essentially calls for higher order corrections

beyond NLO. The total inclusive cross section at next-to-next-to-leading order (NNLO) has

been known for quite a long time [7–11]. The NNLO correction increases the cross-section

further by 15% and reduces the scale uncertainties to 15%. To further reduce the scale

dependences one has to go even higher order considering full next-to-next-to-next-to-leading

order (N3LO) corrections. The complexity in full N3LO correction is even higher and only

recently [12] has been obtained for the SM Higgs boson production with infinite top mass

limit which reduces the scale uncertainty to 3%. The large top mass approximations turned

out to be a good approximation for the Higgs case and the predictions are found to be within

1% [13–15] and one could expect similar behaviour in pseudo-scalar production as well.

The first attempt towards the N3LO corrections is made through the calculation of

the threshold enhanced soft-virtual (SV) corrections. For the Higgs production these are

known for a long time up to N3LOSV [16–21]. Associated production [22] and bottom

quark annihilation [23] are also known at the same accuracy. The soft gluons effect at

threshold for pseudo-scalar has been computed in [24] at N3LOSV level on the subsequent

computation of its form factor at three loops [25]. Fixed order (f.o.) cross section may

however give unreliable results in certain phase space (PSP) region due to large logarithms

arising from soft gluon emission and needs to be resummed to all orders. The soft gluon

resummation for inclusive h production has been known up to next-to-next-to-leading

logarithmic (NNLO+NNLL) [26] accuracy for a long time. The full N3LO result [12] en-

ables to perform soft gluon resummation at next-to-next-to-next-to-leading logarithmic

(N3LO+N3LL) [27–29] accuracy (see also [30] for renormalisation group improved predic-

tion.). For pseudo-scalar production, an approximate N3LOA result has been matched with

N3LL threshold resummation in [31] (see [32, 33] for earlier works in this direction).

Recently there has been a renewed interest in the resummed improved prediction for

exclusive observables as well. Higgs [34] and Drell-Yan [35] rapidity distributions are

predicted at NNLO+NNLL accuracy resumming large threshold logarithms using dou-

ble Mellin space formalism (see [36–38] for earlier works).1 The resummation in transverse

momentum (pT ) distribution is also well studied in the past. The small pT region (defined

by pT ≪ M , M being typical hard scale of the theory) often spoils the f.o. predictions

due to the presence of large logarithms of the type ln(M2/p2T ). By resumming these large

logarithms [47–59], the predictivity of the QCD can be recovered in the full PSP region

for pT distribution. Such resummation of large logarithms can be obtained by exploiting

the universal properties of the QCD in the infrared region [48–54, 57, 60, 61]. Recently a

powerful and elegant technique is provided using soft-collinear effective theory (SCET) by

exploiting only the soft and collinear degrees of freedom in an effective field theory set up

(see [62–66]). These approaches have been applied to obtain the Higgs boson pT spectrum

in gluon fusion up to NNLO+NNLL [67–75] and through bottom quark annihilation up to

1Also see [39–43] for a different QCD approach and [44–46] for SCET approach.
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NNLO+NNLL [76, 77]. Recently the pT distribution for the Higgs boson has been achieved

to NNLO+N3LL accuracy [78–80]. Another approach to resum these large logarithms is

through the parton shower (PS) simulations which has been also successful in recent times

through the implementation in Monte Carlo generators like MadGraph5 aMC@NLO [81],

POWHEG [82] etc. mostly up to NLO+PS accuracy. However the accuracy of PS predic-

tion is often not clear and has remained an active topic of research these days.2 In all

these approaches, there is an effective matching scale (resummation scale or shower scale)

which defines the infrared region and the hard region. Although its dependence is of higher

logarithmic order, a suitable choice is needed to properly describe the full pT spectrum in

a meaningful way.

A clear understanding of the pseudo-scalar properties is also based on the precise knowl-

edge of differential observables like transverse momentum, rapidity etc. For the pseudo-

scalar production in association with a jet, the two-loop virtual amplitudes can be found

in [84], which is important to predict the differential distribution. The small pT region of

the pseudo-scalar pT spectrum renders the f.o. prediction unreliable due to the large loga-

rithms in this PSP region. These logarithms have to be resummed in order to get a realistic

distribution. This has been achieved at next-to-leading logarithmic (NLO+NLL) [85] ac-

curacy for a long time3 using universal infrared behaviour of QCD. The scale uncertainty

in the peak region at NLO+NLL was found to be 25% when the scale is varied simply

by a factor of two. Along with the PDF uncertainty, the total theoretical uncertainties

reach as large as 35% near the peak. This necessitates the correction at the next order.

In this article we extend this accuracy to NNLL. We obtained different pieces necessary

for pT resummation of a pseudo-scalar Higgs boson up to NNLL accuracy. The resummed

contribution has to be matched with the f.o. in order to get a realistic distribution valid in

the full pT spectrum. We use the ansatz prescribed in [31] to obtain the NNLO piece to a

very good approximation and thereafter call it as NNLOA. Finally the matched prediction

is presented up to NNLOA+NNLL accuracy for the pseudo-scalar pT spectrum in light of

phenomenological study both at 14TeV and 13TeV LHC.

The paper is organised as follows: in section 2 we set up the theoretical framework for

the resummation of large logarithms for small pT region relevant for pseudo-scalar Higgs

boson production. In section 3, we will provide a detailed phenomenological study of the

pT spectrum for different masses, scales and parton distribution functions (PDFs) relevant

at the LHC. Finally we draw our conclusion in section 4.

2 Theoretical framework

In this section we give the formula that carries out resummation and present the various

coefficients that enter to it.

Resummation formula. If we calculate the pT distribution of a colorless final state of

mass M and if pT is significantly smaller than M , large logarithms of the form ln (pT /M)

2For a recent study see [83] and references therein.
3Throughout this paper we take gg → A as the LO for pT distribution even though its contribution is

∼ δ(pT ).
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arise in the distribution dσ/dpT due to an incomplete cancellation of soft and collinear

contributions. At each successive order in the strong coupling constant, αs(= g2s/4π), the

highest power of the logarithm that appears increases which renders the näıve perturbative

expansion in αs invalid as pT → 0. However, factorisation of soft and collinear radiation

from the hard process allows us to resum these logarithms to all orders in αs. This fac-

torization occurs in the Fourier space conjugate to pT called impact parameter space; the

variable conjugate to pT is denoted by b:

f(pT ) =
1

(2π)2

∫

d2b e−ib·pT f(b) , (2.1)

implying that the limit pT → 0 corresponds to b → ∞. The momentum conservation

relates pT to the sum of the transverse momenta kT =
∑

i ki,T of the outgoing partons

which is factorized in b space using

δ(pT + kT ) =
1

(2π)2

∫

d2b exp[−ib · pT ] exp[−ib · kT ]. (2.2)

Using rotational invariance around the beam axis, the angular integration can be performed

which gives Bessel function J0. The distribution for low pT values compared to M has the

following behaviour which is obtained by resumming the large logarithms to all orders in

perturbation theory:

dσF,(res)

dp2T
= τ

∫

∞

0
db
b

2
J0(bpT )W

F (b,M, τ) , (2.3)

here τ =M2/S, and S is the hadronic centre-of-mass energy. The proper inclusion of terms

pT & M will be described in section 2.1. Here and in what follows, the superscript F is

attached to final state specific quantities. It is convenient to consider the Mellin transform

with respect to the variable τ :

WF
N (b,M) =

∫ 1

0
dττN−1WF (b,M, τ) , (2.4)

which has the following form for Higgs and pseudo-scalar Higgs production [54, 57]4

WF
N (b,M) = σ̂F,(0)gg exp

{

−
∫ M2

b2
0
/b2

dk2

k2

[

Ag(αs(k
2)) ln

M2

k2
+Bg(αs(k

2))
]

}

×
∑

i,j

[

HF
g C1C2

]

gg,ij
fi,N (b0/b) fj,N (b0/b) ,

(2.5)

where σ̂
F,(0)
gg is the Born factor which is the parton level cross section at LO. The function

fi,N (q) in eq. (2.5) is the Mellin transform of the density function fi(x, q) of parton i

in the proton, where x is the momentum fraction and q the momentum transfer. The

numerical constant b0 = 2 exp (−γE), with Euler constant γE = 0.5772 . . ., is introduced

4Throughout this paper the parameters that are not crucial for the discussion will be suppressed in

function arguments.
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for convenience. Unless indicated otherwise, the renormalisation and the factorization

scales have been set to µF = µR =M . The symbolic factor
[

HF
g C1C2

]

in eq. (2.5) has the

following explicit form [69]:
[

HF
g C1C2

]

gg,ij
= HF

g;µ1ν1,µ2ν2C
µ1ν1
gi Cµ2ν2

gj , (2.6)

and the structure of partonic tensor, Cµν
gk , is given by

Cµν
gk (z; p1, p2,b;αs) = dµν(p1, p2)Cgk(z;αs) +Dµν(p1, p2;b)Ggk(z;αs) , (2.7)

where

dµν(p1, p2) = −gµν + pµ1p
ν
2 + pµ2p

ν
1

p1.p2
,

Dµν(p1, p2;b) = dµν(p1, p2)− 2
bµbν

b2
. (2.8)

The vector bµ = (0,b, 0) is the two-dimensional impact parameter vector in the four-

dimensional notation and p1, p2 are the momenta of colliding partons. All the coefficients

that appear in the resummation formula in eq. (2.5) and eq. (2.7) have series expansions

in as = αs/4π:

Cgi(z;αs) = δgiδ(1− z) +

∞
∑

n=1

ansC
(n)
gi (z),

Ggi(z;αs) =
∞
∑

n=1

ansG
(n)
gi (z), HF

g (αs) = 1 +
∞
∑

n=1

ansH
F,(n)
g ,

Ag(αs) =
∞
∑

n=1

ansA
(n)
g , Bg(αs) =

∞
∑

n=1

ansB
(n)
g . (2.9)

The order at which these coefficients are taken into account in eq. (2.5) determines the

logarithmic accuracy of the resummed cross section; LL means that all higher order coef-

ficients except for A
(1)
g are neglected, NLL requires A

(2)
g , B

(1)
g , C

(1)
gi , and H

F,(1)
g , etc. The

coefficients required for the pseudo-scalar Higgs boson at NNLL accuracy will be given in

section 2.2.

Since these resummation coefficients are process independent (i.e. they do not depend

on specific final state), the coefficients Ag, Bg, and Cgi that enter in the resummation

formula for the Higgs production with Hh
g = 1 can be used for the pseudo-scalar production

as well. This choice of resummation coefficients will be termed as Higgs resummation

scheme in this paper (see [86] for details on resummation schemes). The information of

pseudo-scalar Higgs is contained in the hard coefficient HF
g and the Born factor σ̂

F,(0)
gg . All

resummation coefficients are known in the Higgs scheme up to the order required in this

paper (see section 2.2), with the exception of H
A,(1)
g and H

A,(2)
g whose evaluation through

NNLO will also be presented in section 2.2.

In the infinite top quark mass limit the effective Lagrangian [87] describing pseudo-

scalar production is given by

LA
eff = ΦA(x)

[

−1

8
CGOG − 1

2
CJOJ

]

, (2.10)
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where the operators are defined as,

OG = Gµν
a G̃a,µν ≡ ǫµνρσG

µν
a Gρσ

a , OJ = ∂µ
(

ψ̄γµγ5ψ
)

. (2.11)

The Wilson coefficients CG and CJ are obtained by integrating out the loops resulting

from top quark. Gµν
a and ψ represent gluonic field strength tensor and light quark fields,

respectively. In this study we will only consider contributions arising from the operator OG

in the effective Lagrangian and will not include the contributions arising from OJ operator.

The Born cross section for the pseudo-scalar production at the parton level including the

finite top mass dependence is given by

σ̂A,(0)
gg (µ2R) =

π
√
2GF

16
a2scot

2β
∣

∣τAf(τA)
∣

∣

2
. (2.12)

Here τA = 4m2
t /m

2
A, mt is the MS top quark mass at scale µR, mA is the mass of pseu-

doscalar particle and the function f(τA) is given by

f(τA) =



















arcsin2
1

√
τA

τA ≥ 1 ,

−1

4

(

ln
1−

√
1− τA

1 +
√
1− τA

+ iπ

)2

τA < 1 .

(2.13)

In the above equation, GF is the Fermi constant and cot β is the ratio between vacuum

expectation values of the Higgs doublets.

Perturbative expansion of resummation formula: evolving the parton densities

from b0/b to µF in eq. (2.5) (see ref. [86]), one can define the partonic resummed cross

section WF
ij,N through

WF
N (b,M) =

∑

i,j

WF
ij,N (b,M, µF ) fi,N (µF )fj,N (µF ) . (2.14)

From a perturbative point of view, WF can be cast into the form

WF
ij,N (b,M, µF ) = σ̂F,(0)gg

{

HF
gg←ij,N (M,Q, µF ) + ΣF

gg←ij,N (L,M,Q, µF )
}

, (2.15)

where L = ln(Q2b2/b20) denotes the logarithms that are being resummed in WF and Q is

an arbitrary resummation scale. While WF is formally independent of Q, truncation of the

perturbative series will introduce a dependence on this scale which is, however, of higher

order. The b dependence is contained entirely in the functions ΣF
cc̄←ij which are defined

to vanish at L = 0; for the perturbative expansions up to NNLO refer to ref. [86]. The

hard-collinear function HF
gg←ij,N depends on the coefficients HF

g and Cgi of eq. (2.9).

2.1 Matching the cross section across the large and small pT regions

The resummed result given in the previous section is valid at small values of transverse

momentum where the logarithms of pT are summed to all orders, and to emphasize that

– 6 –
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these results are accurate to a certain logarithmic accuracy such as NLL or NNLL we attach

a subscript to the resummed cross section:
(

dσF,(res)/dp2T
)

l.a.
. At high values of transverse

momentum, fixed order results accurately describe the distribution which we will denote

by
(

dσF /dp2T
)

f.o.
. To match the cross section across the entire pT region we will follow the

additive matching procedure defined below:

(

dσF

dp2T

)

f.o.+l.a.

=

(

dσF

dp2T

)

f.o.

+

(

dσF,(res)

dp2T

)

l.a.

−
(

dσF,(res)

dp2T

)

l.a.

∣

∣

∣

∣

∣

f.o.

. (2.16)

At low pT the divergences in pT spectrum arising due to the fixed order result in the

first term are subtracted by the last term, which is nothing but the expansion of the

resummation formula in as truncated to appropriate order. At large values of pT we can

reduce the effect of the last term by making the replacement [86]

L→ L̃ ≡ ln

(

Q2b2

b20
+ 1

)

. (2.17)

2.2 Resummation coefficients and determination of HA,(2)
g

Here we list down the A
(1)
g , B

(1)
g , A

(2)
g [53, 55] , B

(2)
g [56, 88, 89], A

(3)
g [90] coefficients

along with Cgi [56, 88, 89, 91] and Ggi [69] coefficients that enter into the computation.

Whenever, a coefficient is scheme dependent we have given it in the Higgs scheme.

A(1)
g = 4CA ,

A(2)
g = 8CA

[(

67

18
− π2

6

)

CA − 5

9
nf

]

,

A(3)
g = 64CA

[

C2
A

(

11π4

720
− 67π2

216
+

245

96
+

11

24
ζ3

)

+ CAnf

(

5π2

108
− 209

432
− 7

12
ζ3

)

+ CFnf

(

−55

96
+

1

2
ζ3

)

− 1

108
n2f + 8β0

(

CA

(

101

216
− 7

16
ζ3

)

− 7

108
nf

)

]

,

B(1)
g = −2

3
(11CA − 2nf ) ,

B(2)
g = 16C2

A

(

23

24
+

11

18
π2 − 3

2
ζ3

)

+
1

2
CFnf − CAnf

(

1

12
+
π2

9

)

− 11

8
CFCA ,

C(1)
gg =

[

(5 + π2)CA − 3CF

]

δ(1− z) ,

C(1)
gq = 2CF z ,

G(1)
gg = 4CA

1− z

z
,

G(1)
gq = 4CF

1− z

z
, (2.18)

where β0 = (11CA − 2nf )/3, with the SU(N) QCD color factors CF = (N2 − 1)/2N ,

CA = N and nf = 5 is the number of active quark flavors. The coefficients A
(i)
g , B

(1)
g , C

(1)
gq ,

G
(1)
gg and G

(1)
gq are scheme independent. The scheme dependent coefficients B

(2)
g and C

(1)
gg

have been given above in Higgs scheme.
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3 The results: hard coefficients and matched distributions

In this section we will first calculate the hard coefficients H
A,(1)
g and H

A,(2)
g , then we will

describe how we obtain the fixed order pT distribution that we need for the matching, and

finally obtain the distributions.

3.1 Evaluation of hard coefficient

The only coefficients that remain to be determined are the first and second order hard

coefficients. These can be extracted from the knowledge of form factors up to 2-loop for

the pseudo-scalar. The unrenormalized form factors F̂A,(n)
g up to 2-loop are given here

FA
g ≡

2
∑

n=0

[

âns

(

−q2
µ2

)n ǫ

2

Sn
ǫ F̂A,(n)

g

]

. (3.1)

We present the unrenormalized results after factoring out Born term for the choice of the

scale µ2R = µ2F = −q2 as follows:

F̂A,(1)
g = CA

{

− 8

ǫ2
+ 4 + ζ2 + ǫ

(

− 6− 7

3
ζ3

)

+ ǫ2
(

7− ζ2
2

+
47

80
ζ22

)}

,

F̂A,(2)
g = CFnf

{

− 80

3
+ 6 ln

(

q2

m2
t

)

+ 8ζ3

}

+ CAnf

{

− 8

3ǫ3
+

20

9ǫ2
+

1

ǫ

(

106

27
+ 2ζ2

)

− 1591

81
− 5

3
ζ2 −

74

9
ζ3

}

+ C2
A

{

32

ǫ4
+

44

3ǫ3
+

1

ǫ2

(

− 422

9
− 4ζ2

)

+
1

ǫ

(

890

27
− 11ζ2 +

50

3
ζ3

)

+
3835

81
+

115

6
ζ2 −

21

5
ζ22 +

11

9
ζ3

}

. (3.2)

The strong coupling constant as ≡ as
(

µ2R
)

is renormalised at the mass scale µR and is

related to the unrenormalised one, âs ≡ ĝ2s/16π
2, through

âsSǫ =

(

µ2

µ2R

)ǫ/2

Zasas, (3.3)

with Sǫ = exp [(γE − ln 4π)ǫ/2] and the scale µ is introduced to keep the unrenormalized

strong coupling constant dimensionless in d = 4+ ǫ space-time dimensions. The renormal-

isation constant Zas up to O(a3s) is given by

Zas = 1 + as

[

2

ǫ
β0

]

+ a2s

[

4

ǫ2
β20 +

1

ǫ
β1

]

+ a3s

[

8

ǫ3
β30 +

14

3ǫ2
β0β1 +

2

3ǫ
β2

]

. (3.4)

The coefficients of the QCD β function βi are given by [92]

β0 =
11

3
CA − 2

3
nf ,

β1 =
34

3
C2
A − 2nfCF − 10

3
nfCA ,

β2 =
2857

54
C3
A − 1415

54
C2
Anf +

79

54
CAn

2
f +

11

9
CFn

2
f − 205

18
CFCAnf + C2

Fnf , (3.5)
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where nf is the number of active light quark flavors. The operator renormalisation is

needed to remove the additional UV divergences and UV finite form factor is given by

[FA
g ]R = ZA

g FA
g , (3.6)

where the operator renormalisation constant up to O(a3s) is given by

ZA
g = 1 + as

[

22

3ǫ
CA − 4

3ǫ
nf

]

+ a2s

[

1

ǫ2

{

484

9
C2
A − 176

9
CAnf +

16

9
n2f

}

+
1

ǫ

{

34

3
C2
A

− 10

3
CAnf − 2CFnf

}]

+ a3s

[

1

ǫ3

{

10648

27
C3
A − 1936

9
C2
Anf +

352

9
CAn

2
f − 64

27
n3f

}

+
1

ǫ2

{

5236

27
C3
A − 2492

27
C2
Anf − 308

9
CACFnf +

280

27
CAn

2
f +

56

9
CFn

2
f

}

+
1

ǫ

{

2857

81
C3
A − 1415

81
C2
Anf − 205

27
CACFnf +

2

3
C2
Fnf +

79

81
CAn

2
f +

22

27
CFn

2
f

}]

.

(3.7)

We can obtain the hard coefficient function by removing infrared singularities from renor-

malised form factor given in eq. (3.6) by multiplying the IR subtraction operators [93].

This gives the hard function in what is called hard scheme. We would however use the B

and C functions in the Higgs scheme. Finally, hard coefficient functions can be calculated

in the Higgs scheme by using following relations [77]:

HA,(1)
g = H

A,(1)
g,hard −H

h,(1)
g,hard ,

HA,(2)
g = H

A,(2)
g,hard −H

h,(2)
g,hard +

(

H
h,(1)
g,hard

)2
−H

A,(1)
g,hardH

h,(1)
g,hard , (3.8)

where the subscript ‘hard’ denotes hard scheme. The first and second order coefficients

that appear in the expansion of the hard function when calculated in the Higgs scheme are

HA,(1)
g =

3

2
CF − 1

2
CA ,

HA,(2)
g =

1

12
CF +

5

96
CA +

41

144
CAnf +

(

−13

8
+

1

4
log

m2
A

m2
t

)

CFnf

+

(

37

24
+

11

8
log

m2
A

m2
t

)

CACF +

(

137

288
− 7

8
log

m2
A

m2
t

)

C2
A . (3.9)

3.2 Fixed order distribution at NNLO

It has been long observed that the inclusive pseudo-scalar Higgs coefficient function can be

obtained from the scalar Higgs coefficient at each order of perturbation theory by a simple

rescaling (see eq. 13–16 of [31]) after factoring out the born cross-section. The rescaling

is exact at NLO; and at NNLO the correction terms do not contain scales explicitly and

are suppressed by partonic (1 − z)2. The fact that at NLO the rescaling is exact, is

already highly non-trivial and is a direct consequence of similarity of the two processes.

At NNLO level the difference is only sub-dominant. We use the same scaling factor to

obtain the approximate fixed order pT spectrum (denoted as NNLOA) for pseudo-scalar
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Figure 1. Resummation scale variation for (a) NLO+NLL and (b) NNLOA+NNLL at 14TeV.

since both the processes share similar kinematics. The only difference comes from the

vertex corrections through virtual loop calculation which only affects the low pT spectrum

and does not affect the very high pT tail. Thus we have obtained the approximate fixed

order pT distribution for pseudo-scalar Higgs from scalar-Higgs spectrum by multiplying

same rescaling factor as in eq. 13 in ref. [31]. We find that at NNLO level in the high pT
tail, only the rescaling coefficient from one lower order contributes to the pT spectrum. In

particular the contribution comes from H
A,(1)
g . The fixed order distribution obtained this

way has been matched to the NNLL resummed spectrum at low pT completely within HqT

framework. In the next section we describe the detailed phenomenology for the matched

pT spectrum.

3.3 Matched distributions

In this subsection we present the phenomenological aspects of the differential distribution

that we have obtained using our FORTRAN code, which we created by modifying the

publicly available code HqT [86, 94, 95]. We studied the distributions for the LHC centre-

of-mass energy both at 13TeV and 14TeV. Our default choices for different quantities in

this study are:

For 14TeV centre-of-mass energy:

1. Pseudo-scalar mass mA = 200GeV,

2. Resummation scale Q = mA,

3. MMHT 2014 [96] parton density sets with the corresponding αs.

For 13TeV centre-of-mass energy:

1. Pseudo-scalar mass mA = 200GeV,

2. Resummation scale Q = mA/2,

3. MMHT 2014 [96] parton density sets with the corresponding αs.
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Figure 2. Resummation scale variation for (a) NLO+NLL and (b) NNLOA+NNLL at 13TeV.

In figure 1 (14TeV) and figure 2 (13TeV) we study the effect of resummation over

the fixed order result, where in each figure, the left panel shows the result for NLO and

NLO+NLL; the right for NNLOA and NNLOA+NNLL. For LHC 14TeV we set µR = µF =

mA; for LHC 13TeV we keep µR = µF = mA/2 and use MMHT2014 PDF sets for both

the cases. We observe that the divergent behaviour of the distribution at fixed order is

cured upon resummation. Precisely, at NLO the distribution diverges to positive infinity

and at NNLOA to negative infinity. Upon resummation a regular behaviour is displayed in

both the cases.

Uncertainty due to Q: in figure 1 and figure 2 we also show the sensitivity of the

resummed results to the choice of resummation scale Q, where we have varied Q from mA

to mA/8. For each diagram, in the left panel we see the results are quite sensitive to the

choice, where by sensitivity we mean the range of variation of the maxima of distribution

for different choices of Q. Not surprisingly, upon going to the next logarithmic accuracy

(right panel) the sensitivity is significantly reduced around the peak region and the results

at moderate values of pT are almost insensitive to the choice. It is reassuring that in the

right panel at moderate and large values of pT the resummed curve is coincident with the

fixed order curve, as desired. We note that the position of the peak is unchanged in going to

the next order. For Q = mA and centre-of-mass energy 14TeV we see that the peak value

changes by 25% in going from NLO+NLL to NNLOA+NNLL. Similarly for Q = mA/2 and

centre-of-mass energy 13TeV, the peak value changes by 11% upon going from NLO+NLL

to the next level of accuracy.

Uncertainty due to µR and µF : in figure 3(a) and figure 3(b) we show the sensitivity

of our results to the variation of µR and µF . The bands in this figure have been obtained

by varying µR and µF independently in the range [mA/2, 2mA], while excluding the regions

where µR/µF > 2 or µR/µF < 1/2. More specifically, for 14TeV centre-of-mass energy

we see that at the peak, the variation is about 38% for NLO+NLL which gets reduced to

about 19% upon going to the next level of accuracy. Similarly for 13TeV centre-of-mass

energy we see that at the peak the variation is about 22% for NLO+NLL and about 15%
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(a) (b)

Figure 3. µR and µF variation at NLO+NLL and NNLOA+NNLL for (a) 14TeV and (b) 13TeV.

(a) (b)

Figure 4. Variation of µR at NLO+NLL and NNLOA+NNLL keeping µF fixed at mA for

(a) 14TeV and (b) 13TeV.

for NNLOA+NNLL. We have also studied the individual variation of µR and µF for both

the energies at the LHC in figure 4 and figure 5 respectively. In figure 4 we keep µF = mA

and vary µR in the range [mA/2, 2mA]. For 14TeV centre-of-mass energy we find that at

the peak, the variation for NLO+NLL is about 32%, which gets reduced to about 17% at

NNLOA+NNLL. Similarly for 13TeV centre-of-mass energy we see that at the peak the

variation is about 21% for NLO+NLL and about 13% for NNLOA+NNLL. In figure 5 we

set µR = mA and vary µF in the same range as above. For 14TeV centre-of-mass energy

we find that at the peak, the variation for NLO+NLL is about 4%, which gets reduced to

about 2% at NNLOA+NNLL. Similarly for 13TeV centre-of-mass energy we see that at

the peak the variation is about 4% for NLO+NLL and about 0.5% for NNLOA+NNLL.

Combined uncertainty due to Q,µR and µF : in figure 6(a) and figure 6(b) we show

the sensitivity of our results to the variation of Q, µR and µF . The bands in this figure

show independent variation of Q, µR and µF in the range [mA/2, 2mA] with constraints

µR/µF ∈ [1/2, 2], Q/µR ∈ [1/2, 2] and Q/µF ∈ [1/2, 2]. When we take into account all

scale variations together we notice that both at 13TeV and 14TeV the variation at the

– 12 –
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Figure 5. Variation of µF at NLO+NLL and NNLOA+NNLL keeping µR fixed at mA for

(a) 14TeV and (b) 13TeV.

(a) (b)

Figure 6. Q, µR and µF variation at NLO+NLL and NNLOA+NNLL for (a) 14TeV and (b)

13TeV.

peak is 38% for NLO+NLL which gets reduced to 20% upon going to the next level of

accuracy. It is to be noted that this amount of decrement is almost same as the case

discussed in figure 3(a).

Uncertainty due to parton density sets: as there are several PDF groups in the

literature, it is necessary to estimate the uncertainty resulting from the choice of PDFs

within each set of a given PDF group. Using PDFs from different PDF groups namely

MMHT2014 [96], ABMP [97], NNPDF3.1 [98] and PDF4LHC [99] we have obtained the

differential pT distributions along with the corresponding PDF uncertainties. In figure 7(a),

we have demonstrated the uncertainty bands for various PDF sets as a function of pT at

energies of 14TeV. In order to demonstrate the correlation of PDF uncertainty with the

pT values we have tabulated in table 1, the corresponding results for few benchmark values

of pT along with percentage uncertainties. We have also performed the same exercise for

13TeV centre-of-mass energy, as shown in figure 7(b). We have tabulated the results for

few benchmark values of pT along with percentage uncertainties in table 2.
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Figure 7. PDF variation at NNLOA+NNLL for (a) 14TeV and (b) 13TeV using various sets. The

y-axis represents the ratio of extremum variation over the central PDF set.

qT MMHT ABMP NNPDF PDF4LHC

7.0 0.802+0.97%

−1.75%
0.828+0.26%

−0.78%
0.821+4.09%

−3.00%
0.804+1.45%

−0.91%

13.0 0.941+0.98%

−1.07%
0.928+0.31%

−0.49%
0.960+3.77%

−2.60%
0.943+1.60%

−0.80%

19.0 0.882+0.96%

−1.05%
0.847+0.58%

−0.55%
0.897+3.65%

−2.53%
0.884+1.54%

−0.67%

25.0 0.772+0.94%

−1.01%
0.729+0.83%

−0.60%
0.783+3.55%

−2.45%
0.774+1.46%

−0.56%

31.0 0.660+0.91%

−0.96%
0.616+0.99%

−0.63%
0.669+3.46%

−2.38%
0.662+1.38%

−0.61%

Table 1. qT distributions at NNLOA+NNLL using different PDF sets along with percentage

uncertainties for qT = 7.0, 13.0, 19.0, 25.0, 31.0 for
√
s = 14TeV.

qT MMHT ABMP NNPDF PDF4LHC

7.0 0.762+0.99%

−1.87%
0.783+18.52%

−0.85%
0.780+22.04%

−3.30%
0.761+23.32%

−0.89%

13.0 0.880+1.01%

−1.11%
0.864+0.34%

−0.54%
0.898+3.93%

−2.67%
0.882+1.56%

−0.75%

19.0 0.820+0.98%

−0.97%
0.783+0.57%

−0.61%
0.834+3.84%

−2.56%
0.822+1.51%

−0.62%

26.0 0.698+0.94%

−0.92%
0.654+0.85%

−0.66%
0.707+3.70%

−2.45%
0.700+1.43%

−0.68%

32.0 0.596+0.91%

−0.89%
0.552+0.99%

−0.63%
0.602+3.60%

−2.37%
0.597+1.35%

−0.72%

Table 2. qT distributions at NNLOA+NNLL using different PDF sets along with percentage

uncertainties for qT = 7.0, 13.0, 19.0, 26.0, 32.0 for
√
s = 13TeV.
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Figure 8. Pseudo-scalar Higgs mass variation at NNLOA+NNLL for (a) 14TeV and (b) 13TeV.

Pseudo-scalar Higgs mass variation: in figure 8(a) and figure 8(b) we show how

the distribution behaves as the mass of the final state is changed. We have kept the

renormalisation and factorisation scales fixed at 200GeV for 14TeV, at 100GeV for 13TeV

LHC energies and varied mA from 100 to 300GeV. We see that the cross-section decreases

with the increase in the mass of the final state.

4 Conclusion

In this study we obtained the resummed pT distribution for pseudo-scalar Higgs bosons at

the LHC for both the centre-of-mass energy 14TeV and 13TeV at next-to-next-to-leading

logarithmic accuracy by matching the resummed curve with approximated fixed order next-

to-next-to-leading order result. We showed that we achieve a very significant reduction in

sensitivity to the choices of resummation, renormalisation and factorisation scales that are

artefact of perturbation theory. We also studied the uncertainty due to different choices

of parton density sets. These results provide us with precise estimate for the distribution

especially in the region around 15GeV where the cross-section is large and the fixed order

results are completely unreliable due to the breakdown of fixed order perturbation series.
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