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Abstract

We explicitly determine all the relative generalized Hamming weights of affine Cartesian

codes using the notion of footprints and results from extremal combinatorics. This generalizes

the previous works on the determination of relative generalized Hamming weights of Reed–

Muller codes by Geil and Martin, as well as the determination of all the generalized Hamming

weights of the affine Cartesian codes by Beelen and Datta.

Keywords Affine Cartesian codes · Relative generalized Hamming weights · Footprint

bounds

Mathematics Subject Classification 11T71 · 06A07 · 14G50 · 94B27

1 Introduction

Determination of parameters of Reed–Muller type codes has received a lot of attention from

several mathematicians in recent past. In this paper, we look at a certain class of codes, called

the affine Cartesian codes, that comes naturally as a generalization of Reed–Muller Codes.

These codes were introduced in 2013 by Geil and Thomsen [12] in a more general setting of

weighted Reed–Muller codes. The name “affine Cartesian codes” was coined by López et al.

[17] in 2014. Since then several articles have appeared where the parameters of these codes

were studied extensively. Like in the case of Reed–Muller codes, the problem of computing

parameters such as minimum distance, generalized Hamming weights etc., of affine Cartesian

codes translates to the problem of determination of the maximum number of common zeroes

of systems of polynomials satisfying certain properties in a subset of an affine space over a

finite field. The fundamental properties of affine Cartesian codes, such as their dimensions
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and the minimum distances, were obtained in [17]. Later in 2018, the generalized Hamming

weights [1] of the affine Cartesian codes were completely determined. This generalizes the

classical work [15] of Heijnen and Pellikaan towards the determination of all the generalized

Hamming weights of the Reed–Muller codes. Several articles, for example [3,4], are devoted

towards the determination of the next to minimal weights of affine Cartesian codes.

The notion of generalized Hamming weights of a code was introduced by Wei [21] in

1991 in order to characterize the code performance of on a wire tap channel of type II. A

generalization of these weights is known as the relative generalized Hamming weight of a

code C1 with respect to a proper subcode C2. This notion was introduced by Luo et al. [18],

again towards studying new characters on the wire tap channel of type II, in 2005 and was

further studied in a subsequent article [16] by Liu et al. For the definition of the relative

generalized Hamming weights of linear codes we refer to Sect. 2.1.

As the title of the article indicates, we are interested in determining the relative generalized

Hamming weights of an affine Cartesian code with respect to a subcode which is again an

affine Cartesian code. This work generalizes the result in the article [11] where the authors

have determined all the relative generalized Hamming weights of the Reed–Muller codes.

Also, the main results of the current article can be viewed as a generalization of the result in

[1] which gives all the generalized Hamming weights of affine Cartesian codes. In proving

our result in this paper, we follow the footsteps of [1] and [11], where the results were derived

using the notion of the so-called footprint bound. Some early articles on footprint bounds

include [8,10,14] and some recent articles include [2,13,20] among others. A somewhat brief

discussion of the notion of the footprint bounds is given in Sect. 2.3.

The paper is organized as follows. In Sect. 2, we recall most of the definitions and the known

results that will be used in proving our main theorem. In Sect. 3, we deduce Theorem 3.7,

which can be viewed as an extension of the famous Kruskal–Katona Theorem in extremal

combinatorics. Finally, in Sect. 4, we state and prove the main result of the paper where

we compute all the relative generalized Hamming weights of an affine Cartesian code with

respect to a smaller affine Cartesian code.

2 Preliminaries

We devote this section to recalling the well-known definitions and results that will be used in

the sequel. In particular, we recall the definitions of relative generalized Hamming weights

of a code with respect to a smaller subcode and the notion of affine Cartesian codes in the

following two subsections. Later, we revisit the notion of the so called footprint bound which

helps us in translating the algebraic geometric problem of determination of the maximum

number of common zeroes of certain systems of polynomials in a specified subset of the affine

space over a projective space into a seemingly different problem in extremal combinatorics.

We will conclude this section by introducing some combinatorial notations which will be

used in the next section. In particular, none of the results or definitions mentioned in this

section are new. For more detailed description of the results that are mentioned here a reader

is encouraged to see the references mentioned and the references therein.
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Relative generalized Hamming weights of affine Cartesian codes 1275

2.1 Relative generalized Hamming weights of linear codes

We begin this subsection by recalling the definition of the relative generalized Hamming

weights of a code with respect to a proper subcode. Throughout, we will denote by Fq a finite

field with q elements where q is a prime power.

Definition 2.1 [16, Definition 2] Let C2 � C1 be linear codes and ℓ := dim C1 − dim C2.

For r = 1, . . . , ℓ, the r -th relative generalized Hamming weights of C1 with respect to C2

(RGHW of C1 w.r.t. C2) is defined as

Mr (C1, C2) := min
J⊆{1,...,n}

{|J | : dim((C1)J ) − dim((C2)J ) = r},

where (Ci )J = {c = (c1, . . . , cn) ∈ Ci | ct = 0 for t /∈ J } for i = 1, 2. The sequence

(M1(C1, C2), . . . , Mℓ(C1, C2)) is known as the hierarchy of RGHWs of C1 w.r.t. C2.

The following Lemma, which can be found as [16, Lemma 1], gives an alternative defini-

tion of the RGHWs of a code C1 w.r.t. a proper subcode C2.

Lemma 2.2 [16, Lemma 1] Let C2 � C1 be linear codes and ℓ = dim C1 − dim C2. For

r = 1, . . . , ℓ, we have

Mr (C1, C2) = min {|Supp(D)| : D ⊂ C1; D ∩ C2 = {0}, dim D = r} , (1)

where, given a subspace D of Fn
q , the support of D, denoted by Supp(D), is given by

Supp(D) := {i ∈ {1, . . . , n} | ci �= 0 for some (c1, . . . , cn) ∈ D} .

In what follows, we will use the Eq. (1) as our definition of the RGHWs.

Remark 2.3 In view of Lemma 2.2, it is clear that if C2 = {0}, then the RGHWs of C1 w.r.t.

C2 are exactly the generalized Hamming weights of C1.

2.2 Affine Cartesian codes

In this subsection, we recall the definition of the affine Cartesian codes. Throughout, we will

use the convention that the degree of the zero polynomial is −1.

Definition 2.4 Let d1 ≤ . . . ≤ dm be positive integers and A1, . . . , Am are subsets of Fq with

cardinalities d1, . . . , dm respectively. Denote by A the cartesian product A := A1×· · ·× Am .

Note that |A| = n := d1 · · · dm . Further, fix an enumeration P1, . . . , Pn of elements in A

and a positive integer d ≤ k :=
∑m

i=1(di − 1). For d ≤ k, define the subspace

S≤d(A) := { f ∈ Fq [x1, . . . , xm] : degxi
f ≤ di − 1 and deg f ≤ d}.

The map

ev : S≤k(A) → F|A|
q by f 	→ ( f (P1), . . . , f (Pn))

is a linear map and consequently, for each d ≤ k, the image ACq(d, A) := ev(S≤d(A)) is a

linear subspace of Fn
q and is called an affine cartesian code.

Henceforth, we will write Ai := {γi,1, . . . , γi,di
} for i = 1, . . . , m. It is not hard to show

that the map ev is injective. This implies that the dimension of ACq(d, A) is the same as

dim S≤d(A). As mentioned in the introduction, we are interested in the determination of the

RGHWs of an affine Cartesian code w.r.t. a “smaller” affine Cartesian code. More precisely,

our goal is to answer the following:
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Question 2.5 Let u1, u2 be integers satisfying −1 ≤ u2 < u1 ≤ k. Determine

Mr (ACq(u1, A), ACq(u2, A)), for r ≤ dim ACq(u1, A) − dim ACq(u2, A).

To simplify notations, we will denote Mr (u1, u2) := Mr (ACq(u1, A), ACq(u2, A)) and

ℓ := dim ACq(u1, A) − dim ACq(u2, A). We note that if u2 = −1, then Mr (u1, u2) are

simply the r -th generalized Hamming weights of ACq(u1, A). In the recent work [1], the

generalized Hamming weights of affine Cartesian codes were completely determined. To

answer the above question we introduce the following sets. For an integer r ≤ ℓ, we define,

Dr := {D ⊂ ACq(u1, A) | D ∩ ACq(u2, A) = 0; dim D = r}.

We endow the set of monomials in Fq [x1, . . . , xm] with the graded lexicographic order. In the

following Lemma we give a necessary and sufficient condition for a subspace of ACq(u1, A)

to be a member of Dr .

Lemma 2.6 Let D be a subspace of ACq(u1, A) of dimension r. Then D ∈ Dr iff there exists

f1, . . . , fr ∈ S≤k(A) with D = Span{ev( f1), . . . , ev( fr )} satisfying the following three

conditions:

(C1) f1, . . . , fr are linearly independent,

(C2) u2 < deg LT( fi ) ≤ u1 for i = 1, . . . , r ,

(C3) LT( fi ) �= LT( f j ) whenever i �= j .

Consequently, |Supp(D)| = n − |ZA( f1, . . . , fr )|, where ZA( f1, . . . , fr ) denotes the set of

common zeroes of f1, . . . , fr ∈ A.

Proof It is easy to see that the three conditions are sufficient. To see that they are also

necessary, we begin with D ∈ Dr , and a set of r linearly independent polynomials f1, . . . , fr

such that D = Span{ev( f1), . . . , ev( fr )}. It is clear that the polynomial f1 satisfies the

condition (C2). For 2 ≤ s ≤ r , we replace fs by a linear combination of f1, . . . , fs so that

the polynomials f1, . . . , fs satisfy the condition (C3). Clearly the condition (C2) is satisfied

for f1, . . . , fr . The last assertion follows trivially. ⊓⊔

We now define the following family consisting of sets of r polynomials:

Cr := {{ f1, . . . , fr } | f1, . . . , fr satisfy (C1), (C2), (C3)}.

It follows directly from Lemma 2.6 that

Mr (u1, u2) = n − max{|ZA( f1, . . . , fr )| : { f1, . . . , fr } ∈ Cr }. (2)

We have thus shown that the Question 2.5 is equivalent to the following question:

Question 2.7 For integers r , u1, u2 and the set A as above, determine

ar (u1, u2, A) := max{|ZA( f1, . . . , fr )| : { f1, . . . , fr } ∈ Cr }.

2.3 The footprint bound

In order to answer Question 2.7 we will use the footprint bound. This method of producing

upper bounds on generalized Hamming weights of Reed–Muller type codes is dependent on

the theory of Gröbner bases and that of affine Hilbert functions. For a comprehensive reading

on these notions, the reader is referred to [7]. Most of what follows in this section can be

found in [1, Sect. 2]. We provide a somewhat detailed description of what will be used later

for the sake of completeness.
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Let us denote by S the polynomial ring Fq [x1, . . . , xm] and for any integer u we define

S≤u := { f ∈ S | deg f ≤ u}. For any ideal I of S, we define I≤u := I ∩ S≤u . The affine

Hilbert function of I , denoted by a
HFI , is defined as

a
HFI : Z → Z given by a

HFI (u) := dim S≤u − dim I≤u .

It is easy to derive that if I and J are ideals of S with I ⊂ J , then for any u ∈ Z we have
a
HFJ (u) ≤a

HFI (u). For a subset X ⊂ Fm
q we define the ideal I (X) to be the ideal of S

consisting of polynomials vanishing everywhere in X . For such a subset X ⊂ Fm
q , we define

its affine Hilbert function, denoted by a
HFX , as a

HFX :=a
HFI (X).

Proposition 2.8 (a) [7, Sect. 9.3] Let ≺ be any graded order on S. Then

(i) For any ideal I of S, we have a
HFLT(I )(u) =a

HFI (u).

(ii) If I is a monomial ideal of S, then a
HFI (u) is given by the number of monomials of

degree at most u that do not lie in I .

(b) [19, Lemma 2.1] If Y ⊂ Fm
q is a finite set, then |Y | =a

HFY (u) for all sufficiently large

values of u.

Similar statements as in the above proposition could also be found, albeit in disguise of

footprints, in [9, Corollary 4.5] and in [6, Corollary 2.5]. The above Proposition helps us in

finding out an upper bound for the quantity |ZA( f1, . . . , fr )| for a given { f1, . . . , fr } ∈ Cr .

To this end, we see that the polynomials g1, . . . , gm ∈ I (ZA( f1, . . . , fr )), where

g j :=

d j
∏

s=1

(x j − γ j,s) for j = 1, . . . , m.

At this juncture, it will be useful to assign some notations for the ideals in question. Define

I := I (ZA( f1, . . . , fr )) and LT(I) := the leading term ideal of I.

Furthermore, we have the monomial ideals:

J := 〈 f1, . . . , fr , g1, . . . , gm〉 and JMon := 〈LT( f1), . . . , LT( fr ), x
d1
1 , . . . , xdm

m 〉.

It follows trivially from the above discussions that, J ⊂ I and that

JMon ⊆ LT(J ) ⊆ LT(I). (3)

Using Proposition 2.8 and Eq. (3) we see that for sufficiently large u,

|ZA( f1, . . . , fr )| =a
HFI(u) =a

HFLT(I)(u) ≤a
HFJMon

(u). (4)

Let us write M = {μ ∈ S | μ is a monomial}. It follows from from Proposition 2.8 (a) (ii)

that

a
HFJMon

(u) = |{μ ∈ M : deg μ ≤ u, x
di

i ∤ μ, LT( f j ) ∤ μ for i = 1, . . . , m and j = 1, . . . , r}|.

Furthermore, if we take u ≥
∑m

i=1 di , then

a
HFJMon

(u) = |{μ ∈ M : degxi
μ ≤ di − 1, LT( f j ) ∤ μ for i = 1, . . . , m and j = 1, . . . , r}|.

We define

MA := {μ ∈ M | degxi
μ ≤ di − 1 for i = 1, . . . , m},
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and given any set of monomials m1, . . . , mr , the set of footprints,

FPA(m1, . . . , mr ) := {μ ∈ MA : mi ∤ μ for i = 1, . . . , r}.

The previous discussions now imply that

|ZA( f1, . . . , fr )| ≤ |FPA(LT( f1), . . . , LT( fr ))|. (5)

The upper bound on the number of points on ZA( f1, . . . , fr ) thus obtained from Eq. (5)

is referred to as the footprint bound. Indeed,

ar (u1, u2, A) ≤ max {|FPA(LT( f1), . . . , LT( fr ))| : { f1, . . . , fr } ∈ Cr } . (6)

In the following subsection, we will introduce some combinatorial notions which will help

us to derive the right hand side of the Eq. (6).

2.4 Some combinatorial tools

In this subsection, we will introduce some combinatorial notions that will help us to translate

the problem of determining the right hand side of the Eq. (6) to a problem of extremal

combinatorics. Let

F = {0, . . . , d1 − 1} × · · · × {0, . . . , dm − 1}.

We have two natural orderings for the elements of F , namely the lexicographic order and the

partial order. Let us write

(a1, . . . , am) ≺lex (b1, . . . , bm)

if (a1, . . . , am) is less than (b1, . . . , bm) in lexicographic order, i.e. there exists j with 1 ≤

j ≤ m such that ai = bi for all i < j and a j < b j . Also we will write

(a1, . . . , am) ≺P (b1, . . . , bm)

if and only if (a1, . . . , am) is less than (b1, . . . , bm) in partial order, i.e. ai ≤ bi for all

i = 1, . . . , m and for some j ∈ {1, . . . , n} we have a j < b j .We write (a1, . . . , am) �lex

(b1, . . . , bm) (resp. (a1, . . . , am) �P (b1, . . . , bm)) if (a1, . . . , am) ≺lex (b1, . . . , bm) (resp.

(a1, . . . , am) ≺P (b1, . . . , bm)) or (a1, . . . , am) = (b1, . . . , bm). We have a bijection

φ : MA → F given by x
a1
1 · · · xam

m 	→ (a1, . . . , am).

It is clear that for μ1, μ2 ∈ MA, we have μ1 | μ2 if and only if φ(μ1) �P φ(μ2). Now for

a = (a1, . . . , am) ∈ F , we define deg(a) := a1 + · · · + am . Let us introduce some subsets

of F consisting of elements satisfying certain degree constraints: for any integer u, define

Fu := {a ∈ F : deg(a) = u} and F≤u := {a ∈ F : deg(a) ≤ u}.

On a similar note, for integers u1, u2 satisfying u2 < u1, we define

Fu1
u2

:= {a ∈ F : u2 < deg(a) ≤ u1}.

Given a subset S ⊂ F , we define the shadow (resp. footprint) of S in F , denoted by ∇(S)

(resp. �(S)) as follows:

∇(S) := {b ∈ F | a �P b for some a ∈ S} and �(S) := F \ ∇(S).

123



Relative generalized Hamming weights of affine Cartesian codes 1279

For an integer u, we define �u(S) := �(S) ∩ Fu and ∇u(S) := ∇(S) ∩ Fu . It now follows

from Eq. (6) that

ar (u1, u2, A) ≤ max{|�(S)| : S ⊂ Fu1
u2

, |S| = r}. (7)

In the subsequent section, we will derive the exact value of the right hand side in the above

inequality. Before concluding this section, we remark that the field Fq does not play an

essential role as long as we are interested in computing the quantity ar (u1, u2, A). The

inequalities (6) and (7) continue to hold even if we replace Fq by an arbitrary field having at

least dm elements.

3 Result from combinatorics

Motivated from the discussion in the last section, we now investigate the following question.

Question 3.1 Fix integers u1, u2 and r with −1 ≤ u2 < u1 ≤ k. Denote by Fr , the family

of subsets of F
u1
u2

of cardinality r . Determine max{|�(S)| : S ∈ Fr }.

We remark that if d1 = d2 = · · · = dm = q , then the answer to this question is known in

various cases:

(1) for u2 = −1, this question corresponds to the determination of the GHWs of the Reed–

Muller codes, which was solved by Heijnen and Pellikaan in [15].

(2) in general, without any constraint on u2, the question corresponds to the determination

of the RGHWs of the Reed–Muller codes, and as mentioned before, this question was

answered by Geil and Martin in [11].

Furthermore, in the general situation with d1 ≤ · · · ≤ dm , this problem was solved in [1] in

the case u2 = −1 in order to determine the GHWs of the affine Cartesian codes. In order to

proceed, we first introduce the following two notations:

(a) For and integer u and a subset S ⊂ Fu , we define L(S) to be the set consisting of the

first |S| elements of Fu in descending lexicographic order.

(b) For integers u1, u2 with −1 ≤ u2 < u1 ≤ k and a subset S ⊂ F
u1
u2

, we define N (S) to

be the set consisting of the first |S| elements of F
u1
u2

in descending lexicographic order.

The following classical Theorem, due to Clements and Lindström, will play an instru-

mental role in the sequel.

Theorem 3.2 [5, Corollary 1] Let u < k and S ⊆ Fu . Then

∇u+1(L(S)) ⊆ L(∇u+1(S)).

The following is an easy corollary of the Theorem 3.2.

Corollary 3.3 For integers u, v with u ≤ v ≤ k and S ⊂ Fu , we have

(a) [1, Corollary 3.2] ∇v(L(S)) ⊆ L(∇v(S)) and thus, |∇v(L(S))| ≤ |∇v(S)|.

(b) [1, Corollary 3.3] |∇(L(S))| ≤ |∇(S)|.

In order to prove our main results, we will also need the following lemma that can be

found in [1, Lemma 3.4 and Remark 3.5].

Lemma 3.4 Fix integers u, v with u < v ≤ k and an element y ∈ Fv . If ay := maxlex {f ∈

Fu : f ≤lex y}, then ay �P y.
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The following two lemmas are motivated from their analogues [1, Lemmas 3.6 and 3.7].

We include the proofs for the sake of completeness.

Lemma 3.5 Let u, u1, u2 be integers satisfying −1 ≤ u2 < u ≤ u1 ≤ k. Let N (r) denote the

first r elements of F
u1
u2

in descending lexicographic order. If Nu := N (r)∩ Fu and ru := |Nu |,

then

∇u1(Nu) ⊆ Nu1 ⊆ ∇u1(N∗
u ),

where N∗
u consists of the first ru + 1 elements of Fu in descending lexicographic order.

Proof The result is trivially true if u = u1. So we may assume that u < u1. Let y ∈ ∇u1(Nu).

Then there exists x ∈ Nu such that x �P y. Consequently x �lex y. Since x ∈ N (r) and

x �lex y, we have y ∈ N (r). Since y ∈ Fu1 , we have y ∈ N (r) ∩ Fu1 = Nu1 .

Now let y ∈ Nu1 . Define a := maxlex {f ∈ Fu : f �lex y}. From Lemma 3.4, we obtain

a ≤P y. If a ∈ Nu , then a ∈ N∗
u , which proves the assertion. So we may assume that a /∈ Nu .

Clearly, the set Nu consists of the first ru elements of Fu in descending lexicographic order.

If we write N∗
u = {f1, . . . , fru+1}, then a �lex fru+1. If a = fru+1, then a ∈ N∗

u , and the

assertion follows. Now suppose, if possible, that a ≺lex fru+1. The maximality of a implies

that y ≺lex fru+1. Since y ∈ N (r), it follows that fru+1 ∈ N (r) and hence fru+1 ∈ Nu . This

contradicts |Nu | = ru . This completes the proof. ⊓⊔

Lemma 3.6 With notations as in Lemma 3.5 and u2 < u1 − 1, we have

|∇(N (r))| = r − |Nu1 | + |∇(Nu1)|.

Proof It follows from Lemma 3.5 that,
⋃

u2<u≤u1

∇u1(Nu) ⊂ Nu1 . (8)

This implies,

|∇(N (r))| = |∇(N (r)) ∩ F<u1 | + |∇(N (r)) ∩ F≥u1 |

= |∇(N (r) \ Nu1) ∩ F<u1 | + |∇(Nu1)|.

Note that, N (r) \ Nu1 consists of the first r − |Nu1 | elements of F
u1−1
u2

in descending lexico-

graphic order. We obtain by applying (8) to N (r)\Nu1 (on F
u1−1
u2

) that ∇u1−1(N (r)\Nu1)) ⊂

Nu1−1. Also, Nu1−1 ⊂ N (r)\Nu1 . This implies that ∇u1−1(N (r)\Nu1) = Nu1−1. Repeating

the argument iteratively we deduce that,

∇u(N (r) \ Nu1) = Nu for all u2 < u ≤ u1 − 1.

Consequently, ∇(N (r) \ Nu1) ∩ F<u1 = N (r) \ Nu1 , which proves the lemma. ⊓⊔

We are now ready to state and prove the main theorem of this section. This is a general-

ization of [1, Theorem 3.8]. Further special cases, when d1 = · · · = dm = q , appear as [21,

Lemma 6], [15, Theorem 5.7] and [11, Lemma 4.6].

Theorem 3.7 Let u1, u2, u, r be integers with −1 ≤ u2 < u1 ≤ k and let S ⊆ F
u1
u2

with

|S| = r . Then |∇(N (r))| ≤ |∇(S)|. In particular, given any S ∈ Fr , we have |�(S)| ≤

|�(N (r))|. Consequently,

|�(N (r)| = max{|�(S)| : S ∈ Fr }.
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Proof For u2 < u ≤ u1, define Su := S ∩ Fu and Nu := N (r)∩ Fu . When u2 = u1 −1, then

the assertion follows directly from Corollary 3.3 (b). Henceforth, we will always assume that

u2 < u1 − 1. We distinguish the proof in two cases:

Case 1: Suppose that |Su1 | ≥ ru1 . Then |Su1 | = ru1 + α for some α ≥ 0. We may write

Su1 = S′ ∪ S′′, where S′ denotes the first ru1 elements of S in descending lexicographic

order and S′′ = S \ S′. It follows easily that |S′′| = α and that S′′ is disjoint from ∇(S) and

∇(Nu1). By applying Corollary 3.3 (b) to S′, we see that |∇(S′)| ≥ |∇(Nu1)|. This shows

that |∇(Su1)| ≥ |∇(Nu1)| + α. We note that,

|∇(S)| = |∇<u1(S)| + |∇≥u1(S)|

≥ |∇<u1(S)| + |∇(Su1)|

≥ |S ∩ F<u1 | + |∇(Su1)|

= r − |Su1 | + |∇(Su1)|. (9)

This gives

|∇(S)| ≥ r − |Su1 | + |∇(Su1)| ≥ r − ru1 − α + |∇(Nu1)| + α = |∇(N (S))|.

The last equality follows from Lemma 3.6 and the proof is complete in this case. Case

2: Now suppose that |Su1 | < ru1 . Since |S| = r = |N (r)|, there exists and integer u with

u2 < u < u1 such that |Su | > |Nu | and consequently, |N∗
u | ≤ |Su |. By Lemma 3.5 and

Corollary 3.3 (a) we have |Nu1 | ≤ |∇u1(N∗
u )| ≤ |∇u1(Su)|. Thus,

|∇(S)| ≥ r − |Su1 | + |∇≥u1(S)| (follows from (9))

> r − |Nu1 | + |∇≥u1(Su)|

= r − |Nu1 | + |∇(∇u1(Su))|

≥ r − |Nu1 | + |∇(Nu1)| = |∇(N (S))|.

The inequality |∇(∇u1(Su))| ≥ |∇(Nu1)| follows from Corollary 3.3 (b) and the last equality

follows from Lemma 3.6. The last two assertions are now obvious. ⊓⊔

In order to answer Question 3.1 we must now determine |∇(N (r))|. To proceed we will need

the following Lemma that was proved in [1, Lemma 4.2].

Lemma 3.8 [1, Lemma 4.2] Let d > 0 be an integer and a1, . . . , ar be the first r elements of

F≤d in descending lexicographic order. Then,

∇(a1, . . . , ar ) = {a ∈ F : ar ≤lex a}.

Moreover, if ar = (ar ,1, . . . , ar ,m) then

|∇(a1, . . . , ar )| = d1 · · · dm −

m
∑

i=1

ar ,i

m
∏

j=i+1

d j .

The following Proposition, where we compute the |∇(N (r))| completes our pursuit of

answering Question 3.1.

Proposition 3.9 Let u1, u2, r be as above. Assume that N (r) := {a1, . . . , ar }. Suppose ar is

the s-th element of F≤u1 in descending lexicographic order. Then,

|∇(a1, . . . , ar )| = d1 · · · dm −

m
∑

i=1

ar ,i

m
∏

j=i+1

d j − s + r .
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Proof Let us denote by Mu1(s) the first s elements of F≤u1 in descending lexicographic order.

Clearly, ai ∈ Mu1(s) for i = 1, . . . , r . It is easy to see that

∇(a1, . . . , ar ) = ∇(Mu1(s)) \
(

Mu1(s) \ N (r)
)

,

which proves that

|∇(a1, . . . , ar )| = |∇(Mu1(s))| − (s − r).

The assertion now follows from Lemma 3.8 by noting that ar is the s-th element of Mu1(s)

in descending lexicographic order. ⊓⊔

We have thus answered the Question 3.1 completely and we note it down as the following

corollary.

Corollary 3.10 Fix integers u1, u2 and r with −1 ≤ u2 < u1 ≤ k. Denote by Fr , the family

of subsets of F
u1
u2

of cardinality r . Then

max{|�(S)| : S ∈ Fr } =

m
∑

i=1

ar ,i

m
∏

j=i+1

d j + s − r ,

where (ar ,1, . . . , ar ,m) is the r-th element of F
u1
u2

and s-th element of F≤u1 in descending

lexicographic order. In particular,

(a) ar (u1, u2, A) ≤

m
∑

i=1

ar ,i

m
∏

j=i+1

d j + s − r and

(b) Mr (u1, u2) ≥ d1 · · · dm −

m
∑

i=1

ar ,i

m
∏

j=i+1

d j − s + r .

Proof The first assertion follows from Theorem 3.7 and Proposition 3.9. The assertion (a)

follows from Eq. (6) and we now derive (b) as a consequence of Eq. (2). ⊓⊔

In the following and the last section of this article, we will produce a set { f1, . . . , fr } ∈ Cr

for which the upper bound for ar (u1, u2, A) given in the Corollary 3.10 is attained.

4 Maximal family of polynomials and the relative generalized
Hamming weights of affine Cartesian codes

As mentioned before, we now construct a family of polynomials { f1, . . . , fr } ∈ Cr such that

|ZA( f1, . . . , fr )| attains the upper bound for ar (u1, u2, A) as obtained in Corollary 3.10. We

call such a family of polynomials as a maximal family. First, recall that, Ai = {γi,1, . . . , γi,di
}

for i = 1, . . . , m.

Definition 4.1 For b = (b1, . . . , bm) ∈ F define the polynomial,

fb =

m
∏

i=1

bi
∏

j=1

(xi − γi, j ).
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We may note that deg fb = b1 +· · ·+ bm and with respect to the graded lexicographic order

the leading term of fb is given by LT( fb) = x
b1
1 · · · x

bm
m . We further observe that, We define

a map ψ : A → F given by (γ1,i1 , . . . , γm,im ) 	→ (i1 − 1, . . . , im − 1). The map ψ is a

bijection. It follows easily that for γ ∈ A,

fb(γ ) �= 0 ⇐⇒ ψ(γ ) ∈ ∇(b) (10)

We have the following proposition which is an analogue of [1, Proposition 4.5].

Proposition 4.2 Let a1, . . . , ar be the first r elements of F
u1
u2

in descending lexicographic

order and suppose that ar is the s-th element of F≤u1 in descending lexicographic order.

Then,

|Supp( fa1 , . . . , far )| = d1 · · · dm −

m
∑

i=1

ar ,i

m
∏

j=i+1

d j − s + r ,

where ar = (ar ,1, . . . , ar ,m) and Supp( fa1 , . . . , far ) = A \ ZA( fa1 , . . . , far ).

Proof It follows from Eq. (10) that γ ∈ Supp( fa1 , . . . , far ) if and only if ψ(γ ) ∈

�(a1, . . . , ar ). Thus, |Supp( fa1 , . . . , far )| = |∇(a1, . . . , ar )|. Since a1, . . . , ar are the first

r elements of F
u2
u1

in descending lexicographic order we see that,

|Supp( fa1 , . . . , far )| = |∇(a1, . . . , ar )| = d1 · · · dm −

m
∑

i=1

ar ,i

m
∏

j=i+1

d j − s + r ,

where the last equality follows from Proposition 3.9. This completes the proof. ⊓⊔

Finally we may state the main result of this paper where we compute all the RGHWs of

an affine Cartesian code with respect to a smaller affine Cartesian code.

Theorem 4.3 Fix integers u1, u2 with −1 ≤ u2 < u1 ≤
∑m

i=1(di − 1). Let ACq(u1, A)

and ACq(u2, A) denote the corresponding affine Cartesian codes. For any integer 1 ≤ r ≤

ℓ := dim ACq(u1, A) − dim ACq(u2, A), the r-th RGHW of ACq(u1, A) with respect to

ACq(u2, A), denoted by Mr (u1, u2) is given by

Mr (u1, u2) = d1 · · · dm −

m
∑

i=1

ar ,i

m
∏

j=i+1

d j − s + r ,

where (ar ,1, . . . , ar ,m) is the r-th element of F
u1
u2

and s-th element of F≤u1 in descending

lexicographic order.

Proof The result follows from Corollary 3.10 and Proposition 4.2. ⊓⊔
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