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Abstract—In this paper, we present a deep learning 

framework ‘Rehab-Net’ for effectively classifying three 

upper limb movements of the human arm, involving 

extension, flexion and rotation of the forearm which over 

the time could provide a measure of rehabilitation progress. 

The proposed framework, Rehab-Net is formulated with a 

personalized, light weight and low-complex, customized 

CNN model, using 2-layers of Convolutional neural 

network (CNN), interleaved with pooling layers, followed 

by a fully-connected layer that classifies the three 

movements from tri-axial acceleration input data collected 

from the wrist. The proposed Rehab-net framework was 

validated on sensor data collected in two situations–a) semi-

naturalistic environment involving an archetypal activity of 

‘making-tea’ with 4 stroke survivors and b) natural 
environment, where 10 stroke survivors were free to 

perform any desired arm movement for a duration of 120 

minutes. We achieve an overall accuracy of 97.89% on semi-

naturalistic data and 88.87% on naturalistic data which 

exceeded state-of-the-art learning algorithms namely, 

Linear Discriminant Analysis, Support Vector Machines, 

and k-means clustering with an average accuracy of 

48.89%, 44.14% and 27.64%. Subsequently, a 

computational complexity analysis of the proposed model 

has been discussed with an eye towards hardware 

implementation. The clinical significance of this study is to 

accurately monitor the clinical progress of the rehabilitated 

subjects under the ambulatory settings. 

 
Index Terms— Convolutional Neural Network, Deep learning, 

Human Activity Recognition, Rehabilitation, Times-series 

Classification.  
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I. INTRODUCTION 

troke is a global public health issue, being the second 

leading cause of death worldwide, besides post-stroke 

outcomes such as disability affects the quality of life [1],[2]. 

Impairment of the upper limb is a common post-stroke episode, 

having a major impact on performing activities of daily living 

(ADL) [3]. Rehabilitation is an effective way to treat and 

promote motor recovery which helps in improving the ability of 

performing ADL among the stroke survivors. However, clinical 

rehabilitation of survivors is a long, inconvenient and expensive 

process, necessitating home/remote-based rehabilitation 

techniques [4], [5]. This requires the monitoring of the ADL 

performed by the patients’ rehabilitation to evaluate their 

progress. Development in wireless sensor network (WSN) 

technologies have facilitated remote monitoring through body-

worn miniaturized sensors enabling objective assessment of 

rehabilitation progress, aiding clinical decision-making [6-8]. 

     In this context, Human activity recognition (HAR) presents 

a solution towards continuous ADL monitoring for evaluating 

patient performance [9]. The principal objective of activity 

recognition is to identify human behavior in real time scenario 

to provide proactive assistance to users even outside the 

conventional clinical setting [10]. Moreover, monitoring of 

ADL, reduces burden of hospital stay and improves both 

recovery, and diagnosis and prognosis reliability which 

increases the patient’s quality of life and minimizes cost [11]. 

ADL monitoring helps to ascertain the degree of participation 

of rehabilitating patients, further acting as a rehabilitation 

indicator [12], [13]. Body-worn inertial sensors have the 

distinct advantage of being non-intrusive over camera-based 

vision sensors and hence have been the preferred modality in 

HAR applications. Accelerometers are the most widely used 

wearable technology for HAR since they usually lead to good 
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results in recognition of physical activities, require relatively 

less energy and processing power and are insensitive to the 

environmental conditions [14], [15]. 

  The most challenging task of HAR using sensor data in real 

time scenario is getting accurate and opportune information of 

people’s activities and behaviors which is usually achieved by 
a good classifier. A range of classifiers such as K-Nearest 

Neighbor (KNN) [16-18], Decision Trees (DT), Multi-Layer 

Perceptron (MLP), support Vector Machine (SVM) [19-21], 

Naive Bayes classifier [22], Artificial Neural Networks (ANN) 

and Hidden Markov model (HMM) [23-25] have been applied 

for HAR using wearable sensors [26]. Majority of these state-

of-the-art algorithms have been used in classifying a host of 

activities ranging from gross, dynamic movements including 

walking, running, gestures etc. However, these methods have 

relied on heuristic feature engineering (hand-crafted feature 

extraction, appropriate selection of features), which cannot find 

the discriminative features to accurately classify different 

human activities.  

Deep neural network (DNN) represents a data driven 

approach where inference can be drawn directly from raw 

sensor data. DNN allows feature extraction directly from in-

domain data, thus enabling the learning of task-adapted feature 

representations. In recent years, DNN has been widely used 

successfully across various fields such as speech recognition, 

computer vision, and natural language processing [27-30]. 

Convolutional Neural Network (CNN) is the most widely used 

DNN algorithm, characterized by an initial layer of 

convolutional filters (a set of weights which slide over the 

input), followed by non-linearity (activation function – rectified 

linear units), sub-sampling (pooling), and a fully connected 

layer which realizes the classification. CNNs often consist of   

stacked filters, activation, and pooling layers to enable the 

network to integrate the information from the different filters 

and various levels of abstraction. The stacking of multiple 

convolutional layers helps to achieve automatic feature 

extraction, where denser layers capture more complex or 

differentiating features. A proof-of-concept application of CNN 

for HAR using wrist accelerometer data, collected from healthy 

subjects and respective preliminary results reported in our 

earlier work [31], illustrating successful classification of the 

three fundamental forearm movements – (1) Task A: reach and 

retrieve (extension and flexion of the forearm), (2) Task B: lift 

arm (rotation of the forearm about the elbow) and (3) Task C: 

rotate arm (rotation of the wrist about long axis of forearm).  

Being motivated by our initial results as reported in [31], in 

this paper, we further extend the concept to develop a deep 

learning framework with a personalized, light weight and low-

complex, customized CNN model for classifying arm 

movements of stroke survivors in a “semi-naturalistic” and a 

“naturalistic” environment. The basic premise of this work is 

developing a data driven framework to classify fundamental 

arm movements performed with the paretic arm involved in 

ADL, using data from a minimal number of sensor, i.e. wrist-

worn accelerometer. Enumeration of classified movements over 

a longitudinal scale could be used as an indicator of 

rehabilitation progress in neurodegenerative pathologies such 

as stroke. Our proposed framework, Rehab-Net is successfully 

evaluated on a cohort of 4 stroke survivors participating in an 

archetypal activity of ‘making-tea’ comprising three 
fundamental movements in an inter-leaved manner (semi-

naturalistic environment) and on 10 survivors left on their own 

to perform activities of their choice (naturalistic environment). 

We achieve an overall movement classification accuracy of 

97.89% and 88.87% respectively in the two mentioned 

scenarios respectively, demonstrating the usefulness of CNN in 

inferring movement information from time-series data collected 

through pervasive means in an uncontrolled natural setting 

reflecting its use to monitor patient activity in remote 

monitoring setting.  

Furthermore, it can be noted that the proposed Rehab-Net 

framework for identification of HAR also includes the stroke 

survivors, exhibiting moderate levels of tremor therefore the 

proposed Rehab-Net framework, could be extended for the use 

with the patients suffering from other neurodegenerative 

disorders (Parkinson’s disease, multiple sclerosis, chronic 

kidney disease) that might demonstrate greater levels of tremor. 

This can not only help the clinicians to detect and quantify the 

tremor but also understand the link among different activities 

and tremor to analyze the cause of tremor [32]. The proposed 

Rehab-Net framework, therefore, can add further insights to the 

state-of-the-art based tremor identification in stroke survivors 

during rehabilitation and thereby can complement the existing 

methods. 

The novelty of this work rests in developing deep learning 

framework with a personalized, light weight and low-complex, 

customized CNN model for HAR during ADL using a minimal 

number of inertial sensor data. The exploration further involves 

a detailed analysis on hyper parameter optimization, a key 

factor in CNN based formulation, leading to an optimal model 

for personalized evaluation on stroke survivors who were at 

varying stages of post-stroke rehabilitation, also exhibiting the 

moderate level of tremor. Furthermore, the efficacy of the 

proposed model was demonstrated in comparison with existing 

classification algorithms, viz. Linear Discriminant Analysis 

(LDA), Support Vector Machines (SVM) and k-means 

clustering. We further analyze the computational complexity of 

the developed framework and discuss ways to minimize the 

complexity making it amenable for implementing on resource-

constrained wearable platform for real-time inference. The rest 

of the paper is organized as follows. Section II discusses about 

the motivation and background of this work, Section III 

describes the experimental protocol. The movement 

classification framework using the proposed CNN topology has 

been discussed in Section IV. The results, comparison with 

state-of-the-art models and complexity analysis have been 

mentioned in Section V, whereas Section VI concludes the 

paper. 

II. BACKGROUND AND MOTIVATION      

HAR using wearable sensors has been a popular research 

area with applications covering medical diagnosis, home 

monitoring, assisted living, sports and rehabilitation [33]. 

Inertial sensors have been commonly used, especially most of 

the research has focused on accelerometers for classifying 
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activities [34-35]. The study on HAR has been further aided by 

recently published surveys which provide a detailed account on 

activities being monitored, sensors, algorithm and performance 

[33-36]. Upper limb rehabilitation for survivors of 

neurodegenerative disease (e.g. stroke) has also received due 

attention in literature [37], [38], with [39-44] focusing on 

monitoring rehabilitation outcomes of stroke survivors during 

motor activities, using accelerometer attached to the arm and 

trunk. Machine learning algorithms, ranging from Random 

Forest, transfer wise learning, k-means clustering, incurring 

hand-crafted features and subsequent processing, have been 

employed in these studies.  

To accelerate the generalization capability of such activity 

classification models/approaches and to achieve higher 

accuracy for ADL, recent work has focused on using DNN, 

which has been covered in detail in the review [30],[45]. CNN 

has come across as the most widely used DNN algorithm [46-

48] owing to its strong discriminatory capabilities on time-

series data. A CNN-based generalized framework was 

effectively demonstrated in our previous study [31] for 

classifying three upper limb movements of four healthy 

subjects, using tri-axial accelerometer on the wrist.  This 

motivated us to explore CNN in conjunction with a fully 

connected layer for classifying three target tasks (A, B and C). 

The deep structure of CNN with multiple layers (convolution, 

rectifier, pooling, and fully connected) allows characterization 

of the salient features of the sensor signals, making it effective 

for activity classification. 

 
TABLE I- ACTIVITY LIST FOR ‘MAKING-TEA’ 

Definition of Tasks  

A   Reach and retrieve (extension and flexion of the forearm) 

B   lift arm (rotation of the forearm about the elbow) 

C  Rotate arm (rotation of the wrist about long axis of forearm) 

Activity Task 

1. Fetch cup from desk A 

2. Place cup on kitchen surface A 

3. Fetch kettle A 

4. Pour out extra water from kettle  C 

5. Put kettle onto charging point A 

6. Reach out for the power switch on the wall A 

7. Drink a glass of water while waiting for kettle to boil B 

8. Reach out to switch off the kettle A 

9. Pour hot water from the kettle in to cup C 

10. Fetch milk from the shelf A 

11. Pour milk into cup C 

12. Put the bottle of milk back on shelf A 

13. Fetch cup from kitchen surface A 

14. Have a sip and taste the drink B 

15. Have another sip while walking back to desk B 

16. Unlock drawer C 

17. Retrieve biscuits from drawer A 

18. Eat a biscuit B 

19. Lock drawer C 

20. Have a drink B 

 

III. DATA ACQUISITION SYSTEM AND METHOD 

The data for the algorithmic exploration were collected in 

two situations from four and ten stroke survivors in consultation 

and supervision of expert clinicians.  

A. Semi-naturalistic Dataset (D1):  

Data were collected in a semi-naturalistic environment, from 

four stroke survivors (age range 45–73, both sexes, both left and 

right arm dominant, at various stages of rehabilitation) at the 

Brandenburg Klinik (BBK) in Berlin (Germany). Participants 

performed an archetypal activity of daily living, namely 

‘making-tea’, comprising of 20 arm movements representing 10 
repetitions of Tasks A and five each of B and C in an interleaved 

manner (cf. Table I). 

Participants gave their kind consent for the experiments and 

were encouraged to perform the movements in a natural way 

without restricting physical factors such as 

height/distance/position of tables/chairs/working surface, with 

respect to the subject’s position, pace of performing the 
designated task. This was done to ensure a wide range of 

variability within the kinematic data aiding the development of 

a robust activity classification mechanism which would 

produce acceptable level of accuracy in real-world scenario. 

The data were collected for total 5 days from each stroke 

patient, wherein each day two repetitions of ‘making-tea’ were 

performed by each stroke survivors to ensure patient remain 

comfortable. Therefore, the semi-naturalistic dataset consists 

total 10 repetitions (2 repetitions/day), adding up to 200 arm 

movements (100 Task A, 50 each of Task B and C). Among 

these collected data, the preliminary studies [44] [51] have been 

reported by the coauthors using two repetitions of ‘making-tea’.  
Shimmer 9DoF wireless kinematic sensor module was used 

as the sensing platform which contains mutually orthogonal tri-

axial accelerometer, magnetometer, and gyroscope. For our 

experiments, only a tri-axial accelerometer (range ± 1.5 g) was 

used to collect from the impaired arm at a sampling rate of 50 

Hz. The data pertaining to each task was segmented in 

accordance with annotations from a researcher accompanying 

the experiment.  

B. Naturalistic Dataset (D2): 

Data were collected from 10 chronic stroke survivors (age 

61.4 ±11.7 years old, both sexes, both left and right arm 

dominant, at various stages of rehabilitation) with varying 

degrees of severity of Hemiplegia at Ecole Polytechnique 

Federale de Lausanne. Each subject was requested to perform 

different arm movements during 2 hours of a weekday, within 

their home environment with exclusion of taking a shower or 

leaving the house. After the measurement period, participants 

gave feedback on the activities performed to have an estimated 

reference on the time spent in each activity. Data were collected 

using Physilog wearable sensor, comprising of tri-axial 

accelerometer, gyroscope and magnetometer, on the 

wrist/elbow of both arms as well as one on the sternum. For our 

analysis, we focus only on the tri-axial acceleration data 

(sampled at 200 Hz) collected from the wrist of the impaired 

arm for our analysis. Although collected in completely 

uncontrolled environment, participants were encouraged to use 

their upper limb to perform various daily motor activities. 
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Fig. 1 Proposed Rehab-Net framework of upper limb movement recognition where Tr and Ts represent training and testing subset respectively.  

 

 

TABLE II: ARCHITECTURAL AND TRAINING INFORMATION OF PROPOSED REHAB-NET 

(Where D1 and D2 are dataset of semi-naturalistic and natural environment respectively.) 

 

Layer(type) Output Shape Total Parameters 

(Weights + biases) D1 D2 

Input layer (64,1) 

 

(256,1) 

 

0 

Conv1D_1 (9,1,20) (56,20) 

 

(248,20) 

 

200 

MaxPooling_1 (2,1) (28,20) 

 

(124,20) 

 

0 

Dropout_1  (0.5) (28,20) 

 

(124,20) 

 

0 

Conv1D_2 (9,1,20) (20,20) 

 

(116,20) 

 

3620 

Maxpooling_2 (2,1) (10,20) 

 

(58,20) 

 

0 

Dropout_2 (0.5) (10,20) 

 

(58,20) 

 

0 

Fully connected layer 200 

 

1160 

 

0 

Output layer 3 4 603   (D1) 

4644 (D2) 

Since, these data were collected in an uncontrolled setting, the 

precise class labels for various human activities were not 

available for a supervised learning framework. This posed a 

challenge to translate the proposed supervised learning model 

from semi-naturalistic environment to a completely 

uncontrolled setting. However, similar problems were 

overcome recently by [49] [50] by applying certain algorithms 

to extract the class information. But in an attempt to do so, off 

course, the precision in the class information would be 

degraded. Nevertheless, since our first of its kind attempt here 

is to resolve a practically challenging problem in an 

uncontrolled setting in the context of stroke-survivors during 

rehabilitation process, following [49] [50], we also adopt 

movement recognition algorithm [51] in our proposed 

framework only for validation. This works by mapping six 

standard orientations of a tri-axial accelerometer to the three 

investigated arm movements (Tasks A, B, C and U).  The 

algorithm was used in conjunction with 1024 data samples 

(approximately 5.12 seconds, a representative timeframe for 

completion of one of the interested Tasks), with an overlapping 

window size of 50% to yield an annotation (A, B or C) for each 

window. The dataset is partitioned into training and testing set 

using the nested 10-fold cross validation. Since these data were 

collected in natural environment, it would also incur subjects 

performing a host of other movements therefore we focus on 

Unknown Task (U) along with Task A, B and C. Hence, the 

adopted CNN based activity recognition would focus on 

classifying 4 activities (including U) for D2 dataset. 

IV. PROPOSED DEEP LEARNING FRAMEWORK 

The proposed framework revolves around developing a 

personalized, light weight and low-complex, customized CNN 

model for recognizing elementary arm movements which 

constitute majority of upper limb activities performed in daily 

life using only a wrist-worn tri-axial accelerometer. The 

personalized framework helps to model the variability inherent 

within the data distribution of a given subject who is at various 

stages of their rehabilitation process. An overview of the 

proposed Rehab-Net framework for movement recognition is 

shown in Fig. 1 and presented in further detail.  
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A. Stage 1: Data Augmentation  

Deep learning algorithm requires large amount of data to 

ensure better generalization capability as well as performance. 

Given the application area, it was difficult to collect data for 

long duration from stroke survivors, since they tend to tire out 

quickly which sometimes results in over fitting problem. Data 

augmentation is a preferred technique to build a powerful 

classifier with very less amount of data in deep learning [52]. A 

fundamental idea for using data augmentation is that the 

deformations/variance applied to the labeled data only changes 

the way of representation while keeping the semantic meaning 

of the labels same making the network more robust against real 

data which is unseen or untrained. Based on the approach 

described in one of the recent study [53], data augmentation is 

performed by adding the Gaussian noise to the raw data to 

create different possible variations of the input which may 

occur in real time scenario, resultant in 20x larger dataset size. 

This data augmentation technique can be expressed as- 

 𝑆𝑣 = 𝑆𝑜 + 𝑤(𝜎, 𝜇)                                                                 (1) 

 Where,  𝑆𝑣 is virtual data, 𝑆𝑜 is the original input data and 𝑤 

is a weighting parameter that generates random numbers from 

the normal distribution with mean 0 and standard deviation 0.1. 

 

B. Stage 2: Pre-processing  

The main motivation behind this stage is to reduce the 

computational complexity for real-time execution which can be 

helpful to develop a low power, less area and less complexity 

architecture design for resource constrained applications. To 

meet the requirement of CNN model, all inputs must have the 

same length therefore each activity data is analyzed and fixed 

to 5.12s which is sufficient to capture the different arm 

movements of stroke survivors. Further, length of the input 

signal is compressed while preserving the useful information 

where down-sampling with scaling factor 4 is performed by 

averaging each set of four samples. Next, we have transformed 

the tri-axis signal into 1D signal shown in Fig. 2, followed by 

normalization step. Signal transformation is done through 

estimation of acceleration magnitude of three axis data as it 

always contains the significant information from all the axes 

[54] which can be expressed as- 

             𝐴𝑅  =   √(𝐴𝑥)𝟐 + (𝐴𝑦)𝟐 + (𝐴𝑧)𝟐                          (2) 

   Where 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 are acceleration data in 𝑥, 𝑦 and 𝑧 

direction. Moreover, this reduces the huge amount of 

computational which is detailed in section V-C. 

 

C. Stage 2: Hyper- parameters tuning 

Selection of optimally tuned hyper-parameters is a key 

towards neural network performance. These parameters can be 

divided into two types: architectural and training parameters. 

Architectural parameters involve selecting the number of 

layers, number of filters/kernels in each layer, size of each filter, 

stride rate and type of pooling which are paramount in model 

formulation. Training parameters include learning rate, type of 

back propagation algorithm, activation function, loss function, 

dropout and number of epochs, etc. In our study, to estimate the 

impact of training parameters on the performance of the model, 

a Grid search cross validation method using the GridSearchCV 

instance [55] has been employed. It works through multiple 

combinations of tuning the parameters, cross validates and 

determines the one which gives the best performance. 

Architectural parameters such as depth, filter size, filter length 

and pooling size are optimized using a heuristic grid search 

method where filter size from 3 to 11, filter length from 5 to 25 

are considered for analysis which are detailed in Table III. 

Several experiments have been carried out to select the 

optimally tuned parameters for training and selecting the 

appropriate architecture where best configuration of theses 

parameters are shown in Table II.  

D. Stage 3: Proposed ‘Rehab-Net’ Model 
The proposed network architecture comprises of two 

convolutional layers followed by ReLU activation function, 

two pooling layers, and one fully connected layer as shown in 

Fig. 3. The first convolutional layer formed by 20 unique 9 × 1 

(stride 1) filters which are convolved with the input data, 

resulting in 20 feature maps. Each of these feature maps are then 

passed through the ReLU activation function to introduce non-

linearity which are followed by Pooling Layer 1 that does 2 × 1 

max pooling  separately over all the 20 rectified feature maps.

     

 
Fig. 2: Transformation of Tri-axis accelerometer signal into 1D signal 
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Fig. 3 Proposed Model Architecture (where X is no. of samples 64 (D1) and 256 (D2) and n is no. of neurons in the fully connected layer which are 200 and 

1160 for D1 and D2 dataset respectively).

This progressively reduces the spatial size of each rectified 

feature map and allows a form of translation invariance, besides 

controlling over-fitting and reducing computation. Similar to 

the first convolutional and pooling layer, same process is 

repeated for second convolutional and pooling layer without 

any changes in the parameters. The output of Pooling Layer 2 

is flattened which acts as an input to the Fully Connected Layer. 

Finally, the output of fully connected layer is passed to the 

softmax activation function to classify the particular task. The 

full architecture can be simplified by C(20,9,1)-R-P(2,1)-

C(20,9,1)-R-P(2,1)-FC(n) where C(N,k,s) indicates 

convolutional layer with N kernels of spatial size kx1, applied 

to the input with stride s, R is rectified unit, P is pooling layer 

and FC(n) is a fully connected layer with n neurons where n is 

200 and 1160 for dataset D1 and D2 respectively. 

    The proposed model is trained on the data of each subject 

with a dropout probability of 0.5 to drops out a random set of 

activations in particular layer with 50% probability. This 

assured the network is not getting too ‘fitted’ to the training data 
and thus helps to alleviate the over-fitting problem. Sparse 

categorical cross-entropy loss function and ‘Adam optimizer’ 
[56] is used to update the weights faster than the popularly used 

stochastic gradient descent (SGD). Training was done with 

maximum of 100 epochs and mini-batch size of 15. After each 

epoch of training, model performance is evaluated on testing set 

and early stopping criteria is set to halt the training process 

when there is no decrement in training error during the 100 

epochs. The best model having lowest error on testing set is 

saved for real-time evaluation.    

V. RESULTS AND DISCUSSION 

Experiments are conducted to get an efficient and 

computationally less-complex model, suitable for embedded 

platform. The proposed model was evaluated on D1 and D2 

dataset and the results have been analyzed in this section.  

   The proposed model has been implemented in Keras 2.0.5 

[57] using Theano 0.9.0 as a backend engine, running on a 

workstation with a 64 bit Ubuntu operating system, an Intel(R) 

Xeon (R) CPU E5-1607 v3 @ 3.10 GHz, 24 GB RAM and 

trained and tested utilizing the Nvidia GTX 1080 GPU having 

4GB dedicated memory.  

A. Evaluation criteria 

In our study, we have used nested 10-fold cross validation for 

evaluating the proposed Rehab-Net performance. Further, these 

results are averaged to compute the optimum test performance 

of the Rehab-Net model. Accuracy, precision, recall, F1-score 

and ROC curve, are the effective metrics for imbalance class 

distribution therefore, included to validate the robustness of the 

proposed model which can be defined as- 

a) Accuracy- ratio of correctly predicted observation to the 

total observations.  

b) Precision- ratio of correctly predicted positive 

observations to the total predicted positive observations. 

c) Recall- ratio of correctly predicted positive observations 

to the all observations in actual class. 

d) F1 Score- weighted average of precision and recall. 

e) ROC curve - A Receiver Operating Characteristic (ROC) 

curve illustrates the true positive rate (sensitivity) against the 

false positive rate for the different threshold points.  

B. Performance assessment 

In the first evaluation, experiments are done to select the 

optimum training parameters which are explained in previous 

section (Section IV-B). For initialization, 2 convolutional 

layers, 10 filters with size 7*1 are fixed and then experiments 

are performed separately for different depths, filters length and 

filter size by keeping the other parameters constant. The second 

evaluation is performed for selection of architectural 

parameters where depths (1,2,3) filter sizes (3,5,7,9,11) and 

filter length (5,10,15,20,25) are included for the analysis. This 

was done using the nested 10 fold validation wherein 

parameters with less variance in the performance selected for 

further evaluation of the proposed Rehab-Net model. Table III 

shows the averaged model performance of different 

architectural parameters. It can be seen that there is a steady 

increment in the classification accuracy on both the datasets 

with increment in filter size and filter length as shown in Table 
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III. However, performance increment for filter length 20 to 25 

and filer size 9 to 11 is very little therefore, filter length 20 and 

filter size 9 are chosen as optimum parameters as they exhibit 

less complexity compared to filter length 25 and filter size 11. 

Furthermore, we have found that adding an extra convolutional 

layer, results in a decrease in accuracy from depth 2 to 3. This 

shows that as more layers are added, more complex features are 

indeed extracted, wherein sometimes some features may be 

irrelevant providing no useful information for classification, 

results in degradation in performance. Based on the first 

evaluation, depth 2, filter size 9 and filter length 20 are chosen 

as optimum parameters which are highlighted in bold face in 

Table III. 

TABLE III. PERFORMANCE ANALYSIS OF DIFFERENT 

ARCHITECURAL PARAMETERS 

Parameters No. Classification Accuracy 

D1  D2 

 1 80.97 76.32 

Depth (convolutional 

layers) 
2 84.56 83.25 
3 78.91 82.34 

Filter length 

(Number of filters) 

5 75.24 82.05 

10 84.56 83.25 

15 91.66 85.93 

20 96.78 86.64 

 25 96.89 86.83 

Filter size 

(size of each filter) 

3 81.09 80.71 

5 83.27 82.9 

7 84.56 83.25 

9 88.01 86.11 

11 89.53 86.53 

 

Similar exhaustive exploration was also done with the pooling 

size where 2*1 provided the best performance in conjunction 

with the demonstrated architecture. After the parameters tuning, 

the proposed model is trained and tested again using the 

optimum selected parameters with 50% dropout probability and 

reported the results to make sure that information is not leaked 

to the model. This provided the average performance of 97.89% 

and 88.87% accuracy for D1 and D2 respectively for our 

investigated problem.  

The classification results for each subject of D1 (semi-

naturalistic) and D2 (natural environment) datasets are 

presented in Table IV and V respectively with the average 

performance over all the subjects highlighted in bold face. It 

can be observed that D2 is having less accuracy than D1 due to 

the facts of evaluation in an uncontrolled setting or/and 

performance of activity annotation algorithm (mislabeling).  

Subsequently, ROC curves are plotted to visualize the 

classification ability of the proposed model as shown in Fig. 5. 

C. Impact of Preprocessing  

The proposed Rehab-Net model is optimized in algorithmic 

level to reduce the memory and computation cost which 

involved down-sampling followed by conversion of Tri-axis 

signal into 1D signal. To understand the influence of these two 

steps on the performance of the model, comparative analysis is 

done for 1D and 3D input representing processed input and Tri-

axis input respectively. 

 
Fig. 5 (a) and (b) represent the ROC curves of dataset D1 and D2 

respectively. 

 

It is found that with a trade-off of 0.9% accuracy, complexity 

reduction of approximately 3× (𝑂𝑣𝑇 𝑂𝑣1⁄ )  times can be achieved 

where 𝑂𝑣𝑇 and 𝑂𝑣1 represent output feature map size of 3D and 

1D input respectively. 
 

TABLE IV. PERFORMANCE ANALYSIS ON DATASET D1 

Subjects Accuracy Precision Recall F1-score 

S1 95.42 95.23 94.92 95.18 

S2 98.89 99.82 99.68 99.52 

S3 98.34 97.52 98.75 98.24 

S4 98.91 99.46 99.8 99.27 

Average 97.89 98.01 98.29 98.05 

 

TABLE V. PERFORMANCE ANALYSIS ON DATASET D2 

Subjects Accuracy Precision Recall F1-score 

S1 90.11 92.82 93.01 93.24 

S2 87.56 87.52 87.13 86.93 

S3 84.32 83.1 82.99 82.56 

S4 90.85 91.11 91.23 91.33 

S5 92.41 92.98 91.19 92.72 

S6 86.92 87.12 85.27 86.25 

S7 83.73 88.17 87.81 87.01 

S8 91.25 91.23 91.25 91.51 

S9 91.31 95.09 94.38 95.33 

S10 90.23 89.94 88.56 90.05 

Average 88.87 89.91 89.28 89.69 
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TABLE VI.  COMPARISON OF PROPOSED REHAB-NET MODEL’ WITH 

EXISTING MODELS USING DATASET D1 

 

Method Features Sub. Sensitivities (%) Average 

Acc.  A B C 

LDA [44] 19 S1 35 100 40 52 

19 S2 15 0 100 32 

21 S3 60 100 20 60 

8 S4 95 0 20 52 

SVM [44] 19 S1 50 95 0 48 

19 S2 80 5 80 61 

21 S3 45 95 10 49 

8 S4 65 95 5 57 

k-means 

[44] 

19 S1 80 90 100 88 

19 S2 90 20 100 75 

21 S3 95 100 20 78 

8 S4 10 80 60 40 

Proposed 

Model 

- S1 96.06 98.22 90.47 95.42 

- S2 99.41 99.69 99.93 98.89 

- S3 97.58 99.28 99.39 98.34 

- S4 99.82 99.88 99.69 98.91 

 

D. Comparison with State-of-the-Art models- 

To evaluate the performance of the Rehab-Net, comparative 

study is conducted with other state-of-the-art models which 

have used the same dataset. Time domain feature extraction, 

optimal feature selection and classification using LDA, SVM, 

and k-means were employed on the ‘making-tea’ data (two 
repetitions for each of the four subjects) in earlier study [44], 

which accounted in best average accuracies of 49%, 54% and 

70% respectively. However, in all the above study [44], data 

collected in a completely controlled environment (resembling 

exercises performed in a controlled clinical setting) and was 

tested on the ‘making-tea’ data. In the present study, we chose 

to train and test both using the semi-naturalistic ‘making-tea’ 
data (using 10 repetitions  instead of only 2 repetitions as in 

[44]) as we feel this represents a more objective reflection of a 

classifier being trained and tested on data with inherent 

variability. Hence, a direct comparison although not fair, would 

however present the advantage of our proposed approach which 

does not employ feature engineering. It can be seen from Table 

VI that our method outperformed with an average of 48.89%, 

44.14% and 27.64 % improvement against LDA, SVM, and k-

means using the same dataset (D1). For naturalistic dataset, 

same features used in [44] are extracted and performance is 

analyzed using app of MATLAB R2016a toolbox for SVM and 

LDA. It should also be emphasized that our model achieved the 

average 88.87% performance for D2 (natural conditions) 

beating the LDA, SVM and k-means by 26.17%, 19.57% and 

15.7% respectively as shown in Fig. 6, indicating our method 

was not biased by favoring the Task A, over Task B and C. 

These results are favorable with comparison to existing 

methods, as we have eliminated feature extraction as well as the 

complexity involved in 3D input while achieving the better 

performance. This made the process more amenable for 

resource constrained platform such as embedded and mobile 

devices. 

E. Computational complexity analysis  

The computational complexity of Rehab-Net is analyzed  

 
Fig. 6 Comparative analysis of naturalistic dataset 

 

with an aim towards real-time implementation, focusing on the 

most compute- intensive part of CNN i.e. convolutional layer.  

This layer contains approximately 90% computation of the 

model which essentially involves power hungry multiply-

accumulate units. Therefore, estimation of complexity is done 

based on resources involved in computation of convolutional 

layers - convolution of input feature maps with kernels which 

can be illustrated as follows. 

Let’s consider in the  𝑗𝑡ℎ convolutional layer, 𝑁 kernels of 

size 𝐾𝑣 = 𝐾𝑟 × 𝐾𝑐 are getting convolved with D input feature 

maps of size 𝐼𝑣  = 𝐼𝑟 × 𝐼𝑐 using the stride rate of s which results 

in N output feature maps of size 𝑂𝑣 = 𝑂𝑟 × 𝑂𝑐 then the 

estimation of total number of multiplier (𝑀𝑗) and adder (𝐴𝑗) 

operations involved in that layer can be represented as- 

  𝑀𝑗 = [(𝑂𝑣 × 𝐾𝑣) × 𝐷] × 𝑁                                                  (3)        

 

 𝐴𝑗 = [{𝑂𝑣 × (𝐾𝑣 − 1)} × 𝐷] × 𝑁                                        (4)    

                             

This represents the total multiplier and adder operations 

involved in the 𝑗𝑡ℎ  convolutional layer. However, the resource 

utilization for implementation of any architecture depends on 

the type of data processing strategy. Here, there can be four data 

processing strategies for processing among kernels and stride in 

each kernel which are as follows. 

1) Serial stride and serial kernel 

 All the N kernels work one after other wherein convolution 

of kernel with each stride of input happens in serial manner. 

This requires resource utilization equal to one kernel in the  jth 

convolutional layer. 

2) Serial stride and parallel kernel 

     In this case, convolution of kernel with each stride of input 

is processing serially whereas kernels used in the 𝑗𝑡ℎ 

convolutional layer work parallel to each other. Therefore, 

resource utilization is N times of strategy 1.  

3) Parallel stride and serial kernel- 

     This case illustrates the parallel computation of all the 

strides of an input whereas all the kernels of the convolutional 

layer work serially therefore, total resource utilization can be 

estimated based on resources involved in computation of all 

strides of an input.  

4) Parallel stride and parallel kernel 

     In this case, all the kernels of a convolutional layer as well 

as computation of all the strides of an input are processed 

parallel to each other requiring resource utilization equal to 
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number of multipliers and adders operations involved in 

computation of convolution of 𝑗𝑡ℎ convolutional layer. 

    It is feasible to select parallel processing of kernel for 

convolution neural network due to the fact that next 

convolutional layer requires all the feature maps to start the 

computation. Among these, strategy 2 and 4 involving parallel 

processing of kernels whereas strategy 4 requires higher 

resources. Therefore, we have selected strategy 2 for further 

analysis of our proposed model. For data processing of serial 

stride and parallel kernel in both the architectures of D1 and D2, 

required the same amount of resources, however time 

consumption is different as shown in Table VII.  Further, we 

have also analyzed the actual run-time complexity of our 

proposed model wherein D1 and D2 dataset took approximately 

255 and 980 microseconds/step for classifying the arm 

movements.  .  

    The proposed model involved approximately  Kv × N × 𝐷 = 

180 (conv1) and 3600 (conv2) multiplier units and (Kv − 1) ×N × 𝐷 = 160 (conv1) and 3200 (conv2) adder units where 𝐷 is 1 

for convolutional layer 1 and 20 for convolutional layer 2. 

These power-hungry MAC units can be easily eliminated using 

the modified distributed arithmetic (MDA) based methodology 

which helps to formulate a low-complexity, multiplier-less 

design, aiding energy efficiency [58]. It is a bit-serial 

computational operation of multiply and accumulate which 

transforms MAC operations by a series of LUT access and 

summations as additions, therefore requires computation time 

depending on the bit length of the input sequence to produce the 

output. The recent advancement in architecture development 

along with the memory efficient methodology hold promise for 

real-time execution on resource constrained wearable devices 

[58-59].  

 
TABLE VII: HARDWARE COMPLEXITY ANALYSIS  

 (Where C is no. of clock cycles required for one stride) 
Layer Multiplier 

units 

Adders 

 

Time 

(Clock Cycles) 

D1 D2 

Convolutional layer 1 180 160 56C 248C 

Convolutional layer 2 3600 3200 20C 116C 

Total 3780 3740 76C 364C 

 

F. Discussion 

     In this work, we have proposed a deep learning framework 

to recognize the fundamental arm movements of stroke 

survivors in ambulatory setting. The movements were selected 

in consultation with clinicians, constituting majority upper limb 

movements performed in daily living, besides resembling a 

subset of wolf motor function test (WMFT) activities, an 

established clinical test battery for stroke rehabilitation. A key 

feature in such remote monitoring systems is the need for 

adaptation to change in movement patterns specific to each 

subject with respect to their rehabilitation. Hence, we train and 

evaluate the proposed Rehab-Net framework in a personalized 

manner, catering towards inter-subject and intra-subject 

variability inherent within rehabilitating movement profiles.  A 

series of studies conducted by Gebruers [60] and Uswatte [40] 

have proven the reliability and validity of accelerometer data 

with clinical measures and provided significant evidence to be 

considered as a clinical predictor of recovery in measuring the 

upper-limb activity in stroke. Therefore, in this study an 

accelerometer sensor is used as it contains the clinically 

interpretive features about rehabilitation tasks. Enumerating 

occurrences of specific arm movements performed in daily life, 

over a longitudinal scale, could provide an indication on the 

degree of usage of the impaired arm and thereby act as a 

measure of rehabilitation progress, helping to perform a clinical 

profiling of the individual subject with respect to their 

movement quality.  

    Furthermore, the applicability of deep learning framework in 

measurement of upper limb movements in stroke survivors, is 

motivated by the success of deep learning in various clinical 

studies reported for Alzheimer diagnosis, retinopathy and skin 

cancer detention, congestive heart failure and osteoarthritis risk 

prediction, breast nodules and lesions prediction, health 

monitoring, freezing of gait detention in Parkinson disease, etc. 

[61]. This increasing usability of deep learning in clinical 

applications is due to hierarchical structure which provides end-

to-end learning of data. Thus, it enables high level features 

extractions which helps in understanding, discovering and 

detecting the hidden information from the data about their 

clinical patterns. Moreover, deep learning provides the better 

generalization capability than the traditional methods which is 

also verified in our study in terms of accuracy, precision, recall, 

F-score and also with ROC curve, one of the important metric 

used in clinical studies. The performance of Rehab-Net is also 

cross-validated with the defined label information by the 

clinicians and researchers. The high performance of deep 

learning models in clinical studies showing a way toward 

developing the new generation predictive systems to solve 

health related problems in real-world.   

  One of the main primary challenges for developing the 

framework with deep learning algorithm is over-fitting, limiting 

the use of models for real-time deployment. To mitigate this, in 

our study we have taken the following measures: a) generation 

of virtual data using the widely used technique in machine 

learning i.e. data augmentation, incorporating possible 

variations in the training set, b) employed a personalized 

training-validation strategy, wherein the proposed Rehab-Net 

framework is trained and validated on each subject’s data 
thereby catering for subject-specific variations in arm dexterity 

(at various stages of their rehabilitation), c) used a dropout 

probability of 0.5 which drops out a random set of activations 

in a particular layer with 50% probability, ensuring 

generalization capability of the proposed Rehab-Net.  

 Since the wearable’s sensor are deployed in highly dynamic 
and uncontrolled environment, this degrades the performance 

of the neural models in real time due to training in controlled 

environment. Nevertheless, proposing the model and applying 

in naturalistic environment is also challenging. However, the 

practical problem of HAR under the rehabilitation setup for the 

stroke survivors demands an engineering solution to be 

incorporated in the uncontrolled setting (naturalistic scenario). 

This tradeoff between the need of having an engineering 

solution and unavailability of the ground truth under the 

uncontrolled setting motivated us to translate the proposed 

supervised learning model from the semi-naturalistic 
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environment to a completely uncontrolled conditions where the 

ground truths are not available. Similar problems were 

overcome recently by [49] [50] by applying certain algorithms 

to extract the class information, however, trading-off precision 

in class information. Nevertheless, since our first of its kind 

attempt here is to resolve a practically challenging problem in 

an uncontrolled setting in the context of stroke-survivors during 

rehabilitation process, following [49] [50], we have adopted the 

movement recognition algorithm [51] in our proposed 

framework only for validation. The performance analysis on 

naturalistic environment achieved the average 88.87% 

performance beating the LDA and SVM by 26.17% and 19.57% 

respectively which validates the usability of proposed 

framework in real time settings. 

       The real time execution of deep learning model on resource 

constrained platform is another challenge. Therefore, hyper-

parameterization is used to select the best model with optimum 

parameters. Further, to reduce the complexity and 

computational cost associated with 3D accelerometer data 

without scarifying the performance, we have pre-processed data 

in such a way that reduced  computational cost approximately 

by 3x with negligible loss in performance, making Rehab-Net 

efficient for implementation on mobile and embedded 

platforms.  

   This study is a step towards developing an IoT based solution 

to assist stroke survivors in tracking their rehabilitation 

progress in ambulatory settings. To include the proposed 

system into rehabilitation procedures and protocols, we plan to 

introduce wearable device as a monitoring system for 

rehabilitation process, having embedded accelerometer sensor 

integrated with Rehab-Net for decision making related to ADL 

activities. This will provide an energy efficient system due to 

integration of decision making algorithm on sensor node itself, 

eliminating energy expenditure incurred in data transfer.  Later, 

the information can be sent to the server accessible by clinicians 

and subject’s mobile phone to interpret the progress remotely. 
Here, we have aimed at detecting arm movements in 

ambulatory settings to track the progress of stroke survivors 

during rehabilitation as a case study, however the proposed 

framework can be suitably used in monitoring elderly people, 

critical event monitoring such as fall detection or in sports 

medicine and other health monitoring applications.  There are 

number of advantages of proposed framework which indicate 

the usability of proposed system for practical cases as follows: 

1) An inertial sensor (accelerometer) based solution as opposed 

to vision based monitoring making the most convenient 

solution for users for real-time monitoring; 2) Automatic 

feature extraction from data using deep learning is providing 

cost effective solution and also reduces the latency which 

makes the system very responsive; 3) Preprocessing helps to 

reduce the complexity, making memory and energy efficient 

solution for implementation on resource constrained platforms; 

4) Personalized validation helping to track inter-subject and 

intra-subject variability inherent within rehabilitating 

movement profiles; 5) Validation on naturalistic dataset is 

providing performance analysis in real time settings.  

VI. CONCLUSION 

     This paper presents a deep learning framework Rehab-Net 

for effectively classifying the three upper limb movements, 

involving extension, flexion and rotation of the forearm during 

ADL without using any feature engineering. The proposed 

personalized, light weight and low-complex, customized CNN 

model, Rehab-Net was able to perform automatic feature 

extraction on pre-processed acceleration data (collected from 

the wrist) and classify the three movements from stroke 

survivors under semi-naturalistic and naturalistic conditions. In 

conclusion, our proposed framework, Rehab-Net achieved 

overall 97.89% and 88.87% accuracy when evaluated in the two 

situations, reporting an overall better performance compared to 

state-of-the-art models. In future, we plan to extend our work 

further by including the followings: validation of the proposed 

methodology with data collected for more subjects and diverse 

types of ADL activities in real time settings, investigate the 

different traditional machine learning methods and their 

comparative analysis for all collected data, development of 

accurate and automatic data annotation algorithm, real-time 

implementation of the Rehab-Net, focusing on an energy 

efficient implementation of the inference mode on resource 

constrained platforms. 
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