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Abstract—In this paper, we derive bounds on the structural simi-
larity (SSIM) index as a function of quantization rate for fixed-rate
uniform quantization of image discrete cosine transform (DCT)
coefficients under the high-rate assumption. The space domain
SSIM index is first expressed in terms of the DCT coefficients of
the space domain vectors. The transform domain SSIM index is
then used to derive bounds on the average SSIM index as a func-
tion of quantization rate for uniform, Gaussian, and Laplacian
sources. As an illustrative example, uniform quantization of the
DCT coefficients of natural images is considered. We show that
the SSIM index between the reference and quantized images fall
within the bounds for a large set of natural images. Further, we
show using a simple example that the proposed bounds could be
very useful for rate allocation problems in practical image and
video coding applications.

I. INTRODUCTION

T
HE mean squared error (MSE) is a popular metric in
the design of algorithms ranging from image quality

assessment to quantization to restoration. The popularity of
the MSE can be attributed to two main reasons: amenability to
analysis and a lack of competitive perceptual distortion metrics.
The importance of designing image processing algorithms opti-
mized for perceptual quality measures, as opposed to the MSE,
has been long recognized [7], [13]. Image coding algorithms
that are optimized for perceptual distortion measures have been
proposed by several authors and have become a part of image
coding standards [10], [23], [24], [26], [43]. These algorithms
use distortion measures such as those based on models of the
human visual system (HVS), variants of the MSE such as the
weighted MSE, or other empirical measures of quality.

Advances in understanding the HVS [29], and improved mod-
eling of the statistics of natural scenes [36] have fostered the
development of powerful image quality assessment (IQA) algo-
rithms. These new IQA algorithms include, among others, the
structural similarity (SSIM) index [39], or Wang-Bovik index,
and its variants [41], [42], the Visual Information Fidelity Crite-
rion (VIF) [30] and the Visual Signal to Noise Ratio (VSNR) [4].
These IQA algorithms outperform the measures currently used
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in perceptual image coding algorithms such as the just-notice-
able distortion (JND) metric [22], in addition to being better than
the MSE in measuring perceptual image quality [32]. Image pro-
cessing algorithms that optimize for these new IQA algorithms
are only recently being developed [5], [6], [40]. The emergence
of these IQA algorithms present the possibility of improved de-
sign of image coding algorithms.

In this paper, we analyze the relation between the quantiza-
tion rate and the distortion measured by that SSIM index. The
SSIM index is considered as opposed to other recent IQA al-
gorithms since its performance is very competitive while being
highly amenable to analysis. Nevertheless, a closed form rela-
tion between rate and SSIM index for fixed rate uniform quan-
tization is extremely difficult, if not impossible, to derive. In-
stead, we derive upper and lower bounds on the SSIM index as
a function of quantization rate (under a high rate assumption). It
is shown that the SSIM index between the reference and quan-
tized versions of the input falls within these bounds not only
for uniform, Gaussian, and Laplacian sources, but also for nat-
ural images. The usefulness of the bounds in a practical image
coding scenario is demonstrated using a simple rate allocation
example.

A. Related Work

A brief overview of IQA algorithms is presented, followed by
a discussion of image coding algorithms whose design is influ-
enced by the properties of the HVS. The human eye is the ulti-
mate receiver of all visual information. It is, therefore, natural
to take into account the properties of the human visual system
(HVS) in the design of an objective perceptual distortion mea-
sure. Several full-reference IQA algorithms have incorporated
important properties of the HVS in their design. Yet, it is im-
portant to note that the HVS is still only weakly understood.
This makes image quality assessment (even full-reference) a
very challenging task that is still being actively researched.

The inadequacy of global MSE as a measure of image quality
is well documented [8], [13], [21], [30], [31], [34], [37], [38],
[39], [45]. In the context of image coding, it has been shown that
incorporating models for several important aspects of the HVS
such as the contrast sensitivity function (CSF), eye movement,
edge masking etc. in the design, in addition to using distortion
measures such as frequency weighted mean squared error, result
in substantial quality gains when compared to using only the
MSE [13], [43]. We briefly discuss perceptual distortion mea-
sures, followed by a discussion of perceptually motivated image
coding systems.

Lubin’s mechanistic model for the HVS [21], Daly’s visual
difference predictor (VDP) [8], Teo and Heeger’s normaliza-
tion model for the visual cortex [34], and Winkler’s model of
the HVS for video stimulus [45] are all examples of IQA and
VQA algorithms that explicitly model the HVS in their design.
All these algorithms use some form of the norm and error-
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pooling to arrive at a measure of quality. These measures per-
form consistently better than the MSE in measuring the percep-
tual quality of images and videos [32].

In a departure from earlier quality measures, Wang and Bovik
[37] proposed the universal image quality index (UQI). The UQI
differs from the earlier philosophy in that there is no explicit
HVS modeling and the error is no longer measured using an
norm. The idea behind UQI is to measure the distortion of three
image features (locally)—luminance, contrast, and correlation
between the reference and the distorted image. The correlation
between UQI and the mean opinion score (MOS) of subjective
studies is significantly better than the correlation between MSE
and MOS [37]. In addition to better perceptual correlation, this
metric is intuitive, computationally efficient, and analytically
amenable. Wang et al., [39] proposed an improvement to the
UQI in a measure called the structural similarity (SSIM) index.
The SSIM index introduces stabilizing constants to handle the
instability issues associate with the UQI. A detailed discussion
of the SSIM index is presented in Section II-A. Some of the
other recent IQA algorithms include the information fidelity cri-
terion (IFC) [31], and its improved version, the visual informa-
tion fidelity criterion [32]. Both these measures use empirical
statistical models for natural scenes in their design [33], [36]. A
performance analysis of these recent algorithms can be found in
[30]. Another recent IQA algorithm is the visual signal to noise
ratio (VSNR) [4]. A detailed discussion of the state-of-the-art
image quality metrics can be found in [38].

The importance of optimizing image codecs for perceptual
distortion measures has also been long recognized. A nat-
ural way to design such codecs is to use HVS models (such
as the aforementioned ones) in the bit-allocation process.
Mannos and Sakrison [23] provided the first-ever analysis of
rate versus a perceptual distortion measure. The distortion
measure used here is a weighted mean squared error and the
optimal weighting function is determined empirically so that
it maximizes perceptual quality. The general approach to the
design of a perceptually optimal encoder is that the image is
decomposed using transforms such as the DCT or wavelets.
Visual models [21], [8] are used to mask the coefficients in such
a way that the visibility of quantization errors is minimized.
Examples of such codecs include Nill’s perceptually weighted
cosine transform approach [24], Eggerton and Srinath’s per-
ceptually weighted quantization of DCT coefficients subject to
an entropy constraint [10], the Safranek–Johnston perceptual
image coder [28], Watson’s work on perceptually optimized
DCT quantization matrices [44], Buccigrossi and Simoncelli’s
image codec based on the statistics of wavelet coefficients [2],
Hontsch and Karam’s adaptive coder with perceptual distortion
control [16], Chandler and Hemami’s dynamic contrast-based
image coder [3], and Liu et al.’s JPEG2000 compliant encoding
with a perceptual distortion control mechanism [20]. This list
is nonexhaustive but covers several significant contributions
made towards the design of perceptually optimal image codecs.

Eckert and Bradley [9] provide a thorough review of percep-
tually optimized image coding techniques. Pappas and Safranek
[25] summarize several popular image quality measures with
particular reference to those used for image compression. The
flavor of our work presented here is most closely related to [23]
and [44] in that we analyze the relation between the quantization
rate and a popular and successful perceptual distortion measure
(SSIM index).

B. Proposed Work

Next, we discuss the nature and relevance of the proposed
work, followed by a brief outline of the rest of the paper. The
MSE between a random variable (RV) and its quantized
version at a given quantization rate for fixed rate uni-
form scalar quantization is well known and is approximated
as MSE [12], [15], where is the
quantization step size. This is valid under the high resolution
assumption, where the rate is large, and the contribution of
the overload region is ignored. This result holds well for most
practical scenarios in image and video coding and has been
used to estimate the MSE (PSNR) of quantized images as a
function of quantization rate (e.g., Sabir et al. [27]). Currently,
a similar relation between the SSIM index and quantization rate
does not exist. As with the MSE, such a relation would be very
useful in bit-allocation problems in image and video coding.
In a broader context, such a relation (between rate and SSIM
index) could be used in the design of image and video codecs
that can guarantee a desired level of perceptual quality.

In this paper, upper and lower bounds on the SSIM index
as a function of quantization rate are proposed. Fixed rate uni-
form quantization under the high-rate assumption is considered.
Since the discrete cosine transform (DCT) is commonly used in
the transform coding of images, our analysis is carried out in
the DCT domain. It is shown for a large set of natural images,
in addition to uniform, Gaussian, and Laplacian sources, that
the SSIM index between the reference and quantized versions
of the input lie within the proposed bounds. We demonstrate the
usefulness of the proposed bounds in a practical image coding
scenario with a simple rate allocation example.

The paper is organized as follows. Section II presents a brief
overview of the SSIM index, and uniform quantization, and for-
mulates the SSIM index versus rate problem. Bounds on the
SSIM index as a function of quantization rate are presented
in Section III, followed by a discussion of its properties. In
Section IV, we present results and highlight the usefulness of the
proposed bounds, followed by concluding remarks in Section V.

II. PROBLEM FORMULATION

In this section, we provide an overview of the SSIM index,

and express the space domain SSIM index in terms of the DCT

coefficients of the space domain vectors. We briefly discuss uni-

form quantizers, and then the notation used in the sequel. Fi-

nally, the expression for the average SSIM index as a function of

quantization step size is presented, and the motivation to bound

this expression is discussed.

A. Structural Similarity Index

The most general form of the metric that is used to measure

the structural similarity between two signal vectors and

(both in ) is

SSIM (1)

The term compares

the luminance of the signals,

compares the contrast of the signals, and

measures the structural correlation

of the signals. The quantities are the sample means of
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and respectively, are the sample variances of and

respectively, and is the sample cross-covariance between

and . The constants are used to stabilize the metric

for the case where the means and variances become small. The

parameters , and , are used to adjust

the relative importance of the three components. We use the

following simplified form of the SSIM index in our work (where

, and )

SSIM (2)

In image quality assessment, image blocks from the reference

and distorted image constitute the vectors and respectively.

The average of the SSIM values across the image (also called

mean SSIM or MSSIM) gives the final quality measure. The

design philosophy of the SSIM index is to acknowledge the fact

that natural images are highly structured, and that the measure

of structural correlation (between the reference and the distorted

image) is important for deciding overall visual quality. Further,

the SSIM index measures quality locally and is able to capture

local dissimilarities better, unlike global quality measures such

as MSE (and, hence, PSNR). Though (2) has a form that is more

complicated than MSE, it remains analytically tractable. These

features make the SSIM index attractive to work with.

B. Measuring SSIM index From DCT Coefficients

The DCT is widely used in the transform coding of images

and videos and is central to several popular image (JPEG) and

video coding standards (MPEG-x) [26], [11]. Highly efficient

software and hardware implementations of the DCT form the

core of several of these standards. The DCT is popular due to

its energy compaction property, combined with efficient imple-

mentations. These reasons motivate us to perform our analysis

in the DCT domain. The SSIM index in (2) is defined in the

space domain, however. In the following, we derive a simple

yet useful formula for measuring the SSIM index between two

vectors from their DCT coefficients. Similar expressions can be

obtained for the Fourier transform, as well.

In order to measure the SSIM index from DCT coefficients,

the space domain mean, variance, and cross correlation are ex-

pressed in terms of DCT coefficients. The DCT of a vector

is [18]

where
if

(3)

The DCT is a unitary transform and obeys the Parseval’s the-

orem [35]. Using this property and (3), the following relations

between space domain mean, variance, cross correlation, and

the DCT coefficients are established

from (4)

Fig. 1. Three-bit uniform quantizer. Shown are the quantization intervals and
quantization levels. The figure also shows the notation used in the paper.

(5)

(6)

Substituting the space domain mean, variance, and cross corre-

lation terms in the definition of SSIM (2) with the expressions

in (4)–(6)

SSIM

(7)

This expression can be particularly useful when perform quality

assessment of JPEG compressed images without having to de-

compress the images to the space domain (for computing the

SSIM index from nonoverlapping blocks). We use the DCT do-

main expression for the SSIM index in the following analysis.

C. Uniform Quantization

Uniform quantization [1], [15] is the earliest, simplest, and

most common form of quantization. It is used in a range of

audio, image, and video coding applications [11], [26] mainly

due to its simplicity. While other forms of quantization are well

studied [15], asymptotic analysis of the relation between rate

and distortion (mean squared error) for fixed-rate uniform quan-

tization of symmetric sources with infinite support was reported

only as recently as 2001 by Hui and Neuhoff [17]. We use re-

sults from this work in our implementation.

A uniform quantizer is illustrated in Fig. 1, with its granular

region highlighted. The following notation is used in our anal-

ysis. The range of the granular region is denoted by , the

number of quantization levels , where is the quantiza-

tion rate. The quantizer step size is denoted by .

The quantization levels are denoted by , with

. An interval in the granular region is

denoted by .

The relation between SSIM index and rate is derived under

the high rate assumption and includes contributions only from

the granular region. We assume that the DCT coefficients are

independent [19], and that they are quantized at different step

sizes [26]. In the sequel, we use the term rate and quantiza-

tion step size interchangeably (for notational convenience) since

they are related by , where and are as de-

fined above.
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D. Relation Between SSIM Index and Quantization Rate

Let denote a random vector com-

posed of DCT coefficients. In the sequel, we assume that the

elements are independent and have a joint

density . Each element of

the random vector is uniformly quantized at rate . Under

these assumptions, an interval in the joint granular region of the

quantizers can be indexed by a vector ,

where varies between 0 and . The vector

is quantized by a point . We ig-

nore the contribution of the overload region to the average SSIM

between and , and consider only the granular region.

The average SSIM index between and is computed as

shown in (8) at the bottom of the page. In practice, the most

common DCT block size used in image and video coding ap-

plications is 8 8. The expression in (8) however, is quite for-

midable to evaluate and implement even for DCT block sizes as

small as 2 2. Therefore, directly using (8) in a practical sce-

nario appears extremely difficult, if not impossible. To make this

problem tractable, we develop upper and lower bounds on (8).

These bounds are shown to be accurate in estimating the range

of the average SSIM index between the reference and quantized

versions of a variety of sources. Further, it is also shown that

the bounds are easier to implement and evaluate than an explicit

solution to (8).

III. BOUNDS ON THE SSIM INDEX

In this section, we present upper and lower bounds on the

average SSIM index as a function of quantization rate, eval-

uate these bounds for uniform, Gaussian, and Laplacian sources,

and discuss several properties of these bounds. We assume that

the DCT coefficients are independent, and each coefficient

is quantized separately at step size . The high-resolution as-

sumption is made, and only the contribution of the granular re-

gion is considered.

Theorem 3.1: For a random vector with independent

components, the average SSIM index [as defined in (7)

and (8)] between and its uniformly quantized version

is bounded

with probability by

SSIM

(9)

where is the step size assigned to quantizer to quan-

tize random variable

is the average value of the contribution from

the mean term, are quantities defined below, is the

range of the granular region of the quantizer with the largest

span, and is a stabilizing constant [from (7)].

The terms and for a given probability are

(10)

where are dependent on the source distribu-

tion. For the case of uniform sources,

, which

makes the bounds hold with probability .

The main idea used to arrive at the bounds is to relate the

SSIM index in (7) to MSE. Once this relation is established,

the average SSIM index can be bounded with terms that are

a function of the MSE, and the standard high resolution MSE

result for fixed rate uniform quantization can be applied. The

detailed proof can be found in the Appendix. The use of the

standard MSE result gives the bounds several useful properties

that are discussed in the following, and in Section IV.

The term is evaluated next for uniform, Gaussian, and

Laplacian sources. The uniform source is considered as it is best

suited to uniform quantization. Its upper bound provides an es-

timate of the highest average SSIM index that is achievable at

a given quantization rate. Gaussian and Laplacian sources are

considered as they are commonly used to model DCT coeffi-

cients [19]. The expressions for these bounds can be very easily

implemented for these sources for any DCT block size. Most

SSIM

SSIM

SSIM

(8)
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importantly, we show that the bounds are indeed accurate not

only for these sources, but also for a large set of natural images.

Before presenting expressions for , we revisit the notation

used. These expressions correspond to the DC coefficient ,

quantized by quantizer . The rate assigned to this quantizer

is . The quantization levels of are indexed using . The

upper and lower limits of an interval are notated by and

respectively. Finally, a quantization level is denoted by .

The number of DCT coefficients is denoted by , and is a

constant from (7). The steps in arriving at the expressions for

are presented in the Appendix.

A. Uniform Source

Suppose that the DC coefficient is uniformly distributed

over . For this case, the expression for is

given by

(11)

B. Gaussian Source

If the DC coefficient is Gaussian distributed with zero

mean and variance , the expression for is given by

(12)

where , is the exponential in-

tegral. The expression for is an approximation in this case

since we consider the contribution of only one term in the nu-

merator (see Appendix for details).

If the AC coefficients are indepen-

dent and Gaussian distributed with zero mean and variance

, respectively

(13)

C. Laplacian Source

If the DC coefficient is Laplacian distributed with zero

mean and variance , the expression for is a combination

of three terms depending on the values of the upper and lower

limits of the interval . Suppose that there are intervals

corresponding to Case 1 intervals

in Case 2 , and intervals in Case 3

, with . Each case is

evaluated as follows.

Case 1:

(14)

where is

the exponential integral.

Case 2:

(15)

where is

the exponential integral.

Case 3:

(16)

with as above evaluated over the interval and also

as above, evaluated over

(17)

If the AC coefficients are indepen-

dent and Laplacian distributed with zero mean and variance

, respectively

(18)

are a conservative set of parameters that satisfy the bounds.

The distribution of is assumed to have zero mean mainly

to simplify notation. The essence of these results is the same

irrespective of the mean.

D. Properties of the Bounds

The bounds in (9) possess several useful properties. (a) The

terms can be easily evaluated for several
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Fig. 2. Uniform source: For i.i.d. uniform sources (over [�0:5; 0:5]) of different lengths, that have been uniformly quantized at the same rate, shown are the upper
and lower bounds on SSIM index. Also shown is the true SSIM index. (a) Source size 4� 4. (b) Source size 8� 8.

Fig. 3. Gaussian source: For i.i.d. Gaussian sources (zero mean, unit variance) of different lengths, that have been uniformly quantized at the same rate, shown
are the upper and lower bounds on SSIM index with p = 0:9. Also shown is the true SSIM index. (a) Source size 4� 4. (b) Source size 8� 8.

commonly used unbounded source types (as shown in the pre-

vious subsections). (b) The second term in the product is easy to

evaluate. These two properties make the bounds tractable when

compared to (8). (c) In practice, different DCT coefficients are

quantized at different rates in order to optimally allocate bits.

The bounds hold for any combination of rates, thereby making

them attractive in practical rate allocation problems. (d) From

the expression for the bounds, we see that they can be imple-

mented efficiently and easily (even for the complex looking

Laplacian case). Note that the second term in the bound involves

only summation and division operations. This property could

be very useful if these bounds were to be used in real-time codec

implementations. This property also allows for fast computation

at any practical DCT block size. (e) These bounds can easily

be extended to SSIM index’s predecessor—the universal image

quality index (UQI).

A point to note is that though the analysis considers a 1-D

DCT, it is easy to show that the results carry over to the 2-D

DCT case. The 2-D DCT obeys the Parseval’s theorem, and the

relation between the space domain and DCT domain means and

inner products also hold. In the following section, we present

several results that illustrate the useful properties of the pro-

posed bounds.

IV. RESULTS

In this section, simulation results for a variety of examples

are presented. Results for uniform, Gaussian, and Laplacian are

presented first, followed by results for natural images. Finally,

to illustrate the usefulness of these bounds in a practical image

coding scenario, a bit-allocation problem is solved using the

proposed bounds.

A. Uniform, Gaussian, and Laplacian Sources

The results are classified into two parts: equal rate and un-

equal rate allocation. As the names suggest, in the equal rate

case, all the elements of the random vector are quantized at the

same rate, while in the unequal rate case, different rates are as-

signed to different elements of the random vector.

1) Equal Rate: The first set of results are presented in

Figs. 2–4. These results illustrate several properties of the

bounds. The true SSIM index lies within the bounds over

a range of rates for all three source types, over a range of

commonly used DCT block sizes. In these results, zero mean

i.i.d source have been used with the uniform source in the

range , and the Gaussian and Laplacian sources both

having unit variance. The source sizes correspond to random
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Fig. 4. Laplacian source: For i.i.d. Laplacian sources (zero mean, unit variance) of different lengths, that have been uniformly quantized at the same rate, shown
are the upper and lower bounds on SSIM index with p = 0:9. Also shown is the true SSIM index. (a) Source size 4� 4. (b) Source size 8� 8.

Fig. 5. General variance example: Upper and lower bounds on SSIM index for sources whose variance is different from unity, along with true SSIM Indices.
(a) 64 independent uniform random variables (RVs) that have been divided into four groups. The first group is uniformly distributed over [�2; 2], the second group
over [�1:5; 1:5], the third group over [�1; 1], and the last group over [�0:5;0:5]. (b) 64 zero mean independent Gaussian RVs divided into four groups, with the
first group having standard deviation of 4, the second group having a standard deviation of 3, the third having a standard deviation of 2, and the last group having a
standard deviation of 1. (c) 64 zero mean independent Laplacian RVs also divided into four groups, and assigned variances identical to the Gaussian case. p = 0:9.
(a) Uniform source. (b) Gaussian source. (c) Laplacian source.

vectors of size 4, 16, and 64, respectively. It is important to note

that these results are general in the sense that they can be used

for comparison with any normalized data set.

The bounds presented in the previous section hold for any

source variance. Fig. 5 shows the results for the case of equal

rate allocation to the three sources with zero mean, and variance

different from one. In this case, the source vector contains 64

zero mean independent random variables (RVs). For simplicity,

the component RVs are divided into four groups, and each group

is i.i.d. For the uniform source, the first group is distributed over

, the second group over , the third group over

, and the last group over . For the Gaussian

source, the first group has a standard deviation of 4, the second

group has a standard deviation of 3, the third has a standard

deviation of 2, and the last group has a standard deviation of

1. Finally, the four groups in the Laplacian case have variances

identical to the Gaussian case. From the figure, we see that the

true SSIM index lies within these bounds over a range of rates.

These plots point to the fact that the proposed bounds could be

used as-is in a practical image coding scenario where there is no

restriction on the variance of the DCT coefficients. This example

is still not general enough since we assume that equal rate is

assigned to all the RVs. We present more general results in the

following.

2) Unequal Rate: We now present results for the more prac-

tically relevant case of unequal rates being assigned to the ele-

ments of the random vectors. As before, both unit-variance, and

a general variance source set is considered.

The results for the unit-variance (unit step for the uniform

source) are shown in Fig. 6. In this example, the source vector is

composed of 64 zero mean i.i.d RVs. For the uniform source, the

RVs are distributed over . The Gaussian and Lapla-

cian sources have zero mean and unit variance. The 64 RVs

are divided into four groups, and each group is assigned the

same rate. The division is motivated by the practice of grouping

DCT coefficients based on their perceptual importance [43]. The

combinations of rates considered are (8, 6, 4, 2), (5, 5, 3, 3), (4, 3,

2, 1), and (3, 3, 1, 1). These rates were chosen as they are a rep-

resentative set of practical rate combinations. The figure reveals

that the true SSIM index lies within the bounds, and provide a

good estimate of the range of the average SSIM index for all the

combinations considered. This example further strengthens the

case for the applicability of these bounds in a practical setting.

The results for the most general case of unequal rates being

assigned to a source composed of independent RVs is shown

in Fig. 7. As with the unit variance case above, the source is

composed of 64 zero mean independent RVs that are divided

into four groups. Each group has the same variance, and is as-

signed the same quantization rate. The sources considered here

have the same distributions as in the equal-rate general variance

example. The same rate combinations as in the unit variance

case are used. The figure shows that the true SSIM index again
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Fig. 6. Upper and lower bounds on the SSIM index for a set of 64 i.i.d zero-mean sources that have been divided into four groups, and each group quantized at
a different rate. The rate profiles include (8, 6, 4, 2), (5, 5, 3, 3), (4, 3, 2, 1), and (3, 3, 1, 1). (a) Uniform source distributed over [�0:5; 0:5]. (b) Zero mean, unit
variance Gaussian source. (c) Zero mean, unit variance Laplacian source. p = 0:9. (a) Uniform. (b) Gaussian. (c) Laplacian.

Fig. 7. Upper and lower bounds on the SSIM index for a set of 64 independent zero-mean sources that have been divided into four groups, and each group
quantized at a different rate. The rate profiles include (8, 6, 4, 2), (5, 5, 3, 3), (4, 3, 2, 1), and (3, 3, 1, 1). (a) 64 independent uniform RVs that have been divided
into four groups. The first group is uniformly distributed over [�2; 2], the second group over [�1:5;1:5], the third group over [�1; 1], and the last group over
[�0:5;0:5]. (b) 64 zero mean independent Gaussian RVs divided into four groups, with the first group having standard deviation of 4, the second group having
a standard deviation of 3, the third having a standard deviation of 2, and the last group having a standard deviation of 1. (c) 64 zero mean independent Laplacian
RVs also divided into four groups, and assigned variances identical to the Gaussian case. p = 0:9. (a) Uniform. (b) Gaussian. (c) Laplacian.

lies within the bounds for all the combinations considered. This

example demonstrates that the bounds can indeed be used in a

practical image coding scenario where there is no restriction on

the variance of the source or on the rate that is assigned to each

DCT coefficient. We highlight this with examples of quantiza-

tion of DCT coefficient of natural images in the following.

All the simulation results presented so far have the following

experimental setup. For each distribution, a realization con-

sisting of 100 000 samples is used. Each point in the plot is the

average of ten iterations. The value for the granular region

for the Gaussian and Laplacian source have been chosen based

on the optimal values presented in Hui and Neuhoff [17].

B. Natural Images

In case of natural images, the DCT coefficients are quantized

at various rates, and the SSIM index between the reference and

quantized images is computed. Since DCT coefficients of image

patches are well approximated either by Gaussian or Lapla-

cian probability density functions (pdf’s), the bounds for these

sources are compared with the true SSIM Indices. The mean and

variance of the DCT coefficients are used to estimate bounds for

Gaussian and Laplacian sources. In all our examples, an 8 8

DCT block size is used. As with the distributions above, we con-

sider two sets of results for natural images as well, one where

equal rate is assigned to all the coefficients, and the other where

there is no such restriction.

1) Equal Rate: Two examples are presented, one where the

DCT coefficients of the image are normalized (subtract mean

and divide by variance), and the other where no normalization

is performed. In both cases, like frequency DCT coefficients are

grouped together, and quantized at the same rate.

The bounds for the zero-mean unit variance case for Gaussian

and Laplacian sources are general in the sense they could be

compared with the quantization results for any normalized data

set (and saved as a lookup table). The results for equal rate allo-

cation to normalized DCT coefficients is shown in Fig. 8. It pro-
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Fig. 8. Equal rate normalized coding. DCT coefficients are first normalized, and then quantized at the rates shown. The yellow plot (squares) shows the SSIM
index between the reference and quantized normalized coefficients. Note that the true SSIM Indices fall nicely within the the bounds for all three images. p = 0:9.
(a) Boats. (b) Mandrill. (c) Goldhill.

Fig. 9. Equal rate general coding. The DCT coefficients are quantized at the rates shown. The yellow plot (squares) shows the SSIM index between the reference
and quantized images. p = 0:9. (a) Boats. (b) Mandrill. (c) Goldhill.

vides initial validation that the true SSIM index of normalized

DCT coefficients of natural images also lies within the bounds.

It also shows that the Gaussian and Laplacian models for DCT

coefficients are indeed a good fit. The SSIM index values re-

ported in these plots are measured between the normalized DCT

coefficients, and their quantized versions.

In a practical setting, DCT coefficients are not usually nor-

malized. The proposed bounds are general, and do not impose

any normalization restrictions. In our next example, the DCT

coefficients are quantized after their mean is removed (for

simplicity). The variance of the DCT coefficients (grouped

according to their frequency) is used to determine the granular

region of the quantizer, based on the results from Hui and

Neuhoff [17]. The results for this case are shown in Fig. 9. The

SSIM Indices for the images are true values measured between

the reference and quantized images. These plots reiterate that

the bounds provide a good estimate of the range of the expected

SSIM index for natural images. Observe that the Laplacian

lower bound and Gaussian upper bound form good lower and

upper bounds for natural images. Note that this example is

still restricted by the equal rate assumption. We present more

general results in the following.

2) Unequal Rate: We now present results for unequal rate

quantization of DCT coefficients of natural images. The results

are presented for both normalized and regular DCT coefficients.

To present the results succinctly, yet retain the flavor of a prac-

tical setting, the following experimental setup is used. The 64

DCT coefficients are lexicographically ordered, and divided into

four groups. The first group contains the DC coefficient, and is

given the highest precedence in rate allocation. The remaining

three groups are given progressively decreasing importance. All

the coefficients in a group are assigned the same rate. Two cases

are considered—one at high rate, and the other at low rate.

The results are presented first for the normalized case. As be-

fore, the normalized case serves as a good first test to validate

the proposed bounds. Fig. 10 presents the results for the high

rate case where the four DCT coefficient groups are assigned 8,

6, 4, and 2 bits/coefficient respectively, according to their impor-

tance. The results for the low rate case where the four DCT co-

efficients are assigned 3, 2, 1, and 1 bit/coefficient respectively

are presented in Fig. 11. From these results, it is seen that the

true SSIM Indices lie well within the Gaussian and Laplacian

bounds for all the images. One main reason for the accuracy of

these bounds is the goodness of Gaussian and Laplacian fits to

the DCT coefficients. The constants that go into the bounds have

been chosen empirically so that the bounds are as tight as pos-

sible for as many images as possible. This is discussed in detail

in the following subsections.

Finally, we present the most general example. In this ex-

ample, the DCT coefficients are quantized (after mean subtrac-

tion), at two rates, as before. The variance of the DCT coeffi-

cients is used to determine the extent of the granular regions of

the quantizer, and to form the bounds. The results for the high

rate case is shown in Fig. 12, and for the low rate case in Fig. 13.

From the figures, we can conclude that the bounds are indeed

useful even in the most practical case. The true SSIM Indices
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Fig. 10. Upper and lower bounds on the SSIM index of quantized normalized DCT coefficients of six natural images—Boats, Mandrill, Goldhill, Lena, Peppers,
and Barbara. The DCT coefficients have been lexicographically ordered, and divided into four groups. The first group is assigned 8 bits/coefficient, the next group
6 bits/coefficient, the third group is allocated 4 bits/coefficient, and the last group is assigned 2 bits/coefficient. (a) Upper and lower bounds for a zero mean unit
variance i.i.d Gaussian source consisting of 64 components. (b) Upper and lower bounds for a zero mean unit variance i.i.d Laplacian source consisting of 64
components. The bounds vary across images since the constants C ;C are image dependent. p = 0:9. (a) Gaussian. (b) Laplacian.

Fig. 11. Upper and lower bounds on the SSIM index of quantized normalized DCT coefficients of six natural images—Boats, Mandrill, Goldhill, Lena, Peppers,
and Barbara. The DCT coefficients have been lexicographically ordered, and divided into four groups. The first group is assigned 3 bits/coefficient, the next group
2 bits/coefficient, the third group is allocated 1 bit/coefficient, and the last group is assigned 1 bit/coefficient. (a) Upper and lower bounds for a zero mean unit
variance i.i.d Gaussian source consisting of 64 components. (b) Upper and lower bounds for a zero mean unit variance i.i.d Laplacian source consisting of 64
components. The bounds vary across images since the constants C ;C are image dependent. p = 0:9. (a) Gaussian. (b) Laplacian.

lie well within the bounds for both the high and low rate cases.

The bounds are tighter for the high rate case as compared to the

low rate case, which can be attributed to the underlying high res-

olution result. As with the normalized case, our aim is to use

and in the bounds that are as general as possible, across rates,

and images. This aspect is discussed further in the following.

C. Bit-Allocation Example

So far, examples that highlight several useful properties of the

bounds have been presented. Now, an example that illustrates

the practical applicability of the bounds is presented. Consider

the following rate allocation problem, and the associated con-

straints. Suppose that a bit budget of 128 bits is to be allocated to

the 64 DCT coefficients. To make this problem tractable, the fol-

lowing constraints are introduced. The DCT coefficients are di-

vided into four groups, each containing 16 coefficients. Further,

the first group is assumed to contain the most important coeffi-

cients, the next group to contain the next most important coeffi-

cients, and so on. Finally, the more important group is always as-

signed bits greater than or equal to the number of bits assigned to

the group immediately lower in importance. Though this setup

is simple, it is a fair reflection of a true coding scenario. Under

these assumptions, four combinations are possible—(5, 1, 1, 1),
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Fig. 12. Upper and lower bounds on the SSIM index of six quantized natural images—Boats, Mandrill, Goldhill, Lena, Peppers, and Barbara. The DCT coefficients
have been lexicographically ordered, and divided into four groups. The first group is assigned 8 bits/coefficient, the next group 6 bits/coefficient, the third group
is allocated 4 bits/coefficient, and the last group is assigned 2 bits/coefficient. (a) Upper and lower bounds for a zero mean Gaussian source consisting of 64
independent components. The variance of the components is equal to the variance of the 64 DCT coefficients, respectively. (b) Upper and lower bounds for a
zero mean Laplacian source consisting of 64 independent components. Again, the variance of the components is equal to the variance of the 64 DCT coefficients,
respectively. Also shown is the true SSIM index. p = 0:9. (a) Gaussian. (b) Laplacian.

Fig. 13. Upper and lower bounds on the SSIM index of six quantized natural images—Boats, Mandrill, Goldhill, Lena, Peppers, and Barbara. The DCT coefficients
have been lexicographically ordered, and divided into four groups. The first group is assigned 3 bits/coefficient, the next group 2 bits/coefficient, the third group is
allocated 1 bit/coefficient, and the last group is assigned 1 bit/coefficient. (a) Upper and lower bounds for a zero mean Gaussian source consisting of 64 independent
components. The variance of the components is equal to the variance of the 64 DCT coefficients, respectively. (b) Upper and lower bounds for a zero mean Laplacian
source consisting of 64 independent components. Again, the variance of the components is equal to the variance of the 64 DCT coefficients, respectively. Also
shown is the true SSIM index. p = 0:9. (a) Gaussian. (b) Laplacian.

(4, 2, 1, 1), (3, 3, 1, 1), and (2, 2, 2, 2). The problem is to find

the rate combination that results in the highest SSIM index of

the quantized image.

The proposed bounds give a range over which the average

SSIM index can be expected to lie. This however, is not directly

useful in a bit-allocation problem, where a single score for the

expected SSIM index is desired. In this example, the average of

Laplacian upper and lower bounds is used as a coarse estimate

of the expected SSIM index. The decision rule is to choose the

combination of rates that gives the highest estimate of the SSIM

index from the Laplacian bounds. This decision rule is empir-

ical, based on the results for over 50 training images from the

‘Austin and its Vicinity’ database. The results are reported for

six test images (popularly used in the literature) in Table I.

From the table we see that the correct combination is chosen

(based on true SSIM Indices), five of the six times. Even the

erroneous choice is not very expensive in terms of the reduction

of the SSIM index. The most important test for the bit-allocation

technique is the visual quality check. The main motivation to

derive these bounds is the fact that the SSIM index is a powerful

IQA algorithm. It means that high SSIM Indices correspond to

high visual quality of the images in question (and low scores

correspond to poor visual quality). The bit-allocation results for

the Boats image is shown in Fig. 14. We see that the image
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TABLE I
ESTIMATE OF THE SSIM INDEX OF SIX QUANTIZED NATURAL IMAGES BASED ON THE LAPLACIAN BOUNDS. THE DCT COEFFICIENTS OF THESE

IMAGES HAVE BEEN DIVIDED INTO FOUR GROUPS, AND QUANTIZED AT DIFFERENT RATE COMBINATIONS [(5, 1, 1, 1), (4, 2, 1, 1),
(3, 3, 1, 1), AND (2, 2, 2, 2)] SUCH THAT A BIT BUDGET OF 128 BITS IS SATISFIED. THE COMBINATION THAT GIVES

THE HIGHEST SSIM INDEX ESTIMATE IS CHOSEN TO BE SSIM-OPTIMAL AT THE GIVEN BIT BUDGET p = 0:9

quantized using the rate combination (5, 1, 1, 1) in Fig. 14(b) has

the highest visual quality and SSIM index. The fact that our bit-

allocation technique does indeed pick this image provides the

strongest validation of the usefulness of the proposed bounds.

Note that the true score is reported only to validate the choice

based on the estimates. Through this example, we demonstrate

that the proposed bounds could be used in a practical image

coding scenario.

D. Discussion

The results have shown that the proposed bounds work well

over a range of sources. It must be noted that the bounds were

not accurate for a very small percentage of examples, espe-

cially when working with natural images. The bounds are di-

rectly impacted by the choice of the numbers and . It is

important that these are as general as possible, while remaining

as tight as possible. A straightforward choice for is 0, and

for is (for the case of bounded sources), where is

the extent of the granular region of the quantizer. This choice

was found to give loose bounds, especially the lower bound.

For the case of uniform sources, it is easy to see that

not only make the bounds hold with , but also give good re-

sults over a large set of examples. The minimum and maximum

values are determined from the data that is actually quantized,

and the quantization levels of the quantizers used. The maxima

and minima are global over the set of random variable realiza-

tions or DCT coefficients.
For the case of unbounded inputs (Gaussian and Laplacian

sources), it was found that choosing in (10) gives
bounds that are tight over a large set of images. Further, the
expressions in (10) are conservative in the sense that letting

actually gives bounds that hold with a probability close
to 1.

The results have demonstrated several useful properties of
the bounds. The key to arriving at the bounds is the relation
between the SSIM index and the MSE (see Appendix for de-
tails). Once the relation between the SSIM index and MSE is
established, the well-known result for fixed rate uniform quan-
tization of a general random variable MSE is
used to formulate the bounds. This MSE result is very strong
over the range of quantization rates generally used in image and
video coding applications. This is one of the main reasons for the
strength of the proposed bounds. It also explains the relatively
poorer performance of the bounds at lower rates. Further, the
expression for is accurate for all the three distributions con-
sidered in this analysis. Finally, since the distribution of DCT
coefficients of natural images is well approximated by either a
Gaussian or Laplacian pdf, the bounds for Gaussian and Lapla-
cian sources are well-behaved even for natural images. One
other useful property that the proposed bounds possess is their
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Fig. 14. Rate allocation example. (a) The original Boats image. (b) Original quantized using the 5, 1, 1, 1 rate profile. SSIM index = 0:7743, Laplacian estimate
of SSIM index = 0:7865; MSE = 130:28. (c) Original quantized using the 4, 2, 1, 1, rate profile. SSIM index = 0:7551, Laplacian estimate of SSIM index =

0:7676;MSE = 191:62. (d) Original quantized using the 3, 3, 1, 1 rate profile. SSIM index = 0:6689, Laplacian estimate of SSIM index = 0:6704; MSE =

301:39. p = 0:9. (a) Original. (b) 5111. (c) 4211. (d) 3311.

ease of implementation, even for large DCT block sizes [as com-
pared to (8)]. This is again a byproduct of the underlying MSE
result.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented bounds on the SSIM index as a

function of quantization rate for fixed-rate uniform quantiza-

tion. The proposed bounds make use of a well-known relation

between MSE and quantization rate for fixed rate uniform quan-

tization under the high rate assumption. We have demonstrated

the strength of the proposed bounds using a wide variety of ex-

amples, and their usefulness in a practical scenario. Through

these results, we have taken a step in the path of designing per-

ceptually optimal image coding algorithms, and more generally

in designing perceptually optimal image processing algorithms

that leverage the strength of the emerging IQA algorithms.

Several improvements to the proposed bounds could be made

for future research. It is well known that one of the main rea-

sons for the compression efficiency of transform based coding

is the unequal perceptual importance of the transform coeffi-

cients (DCT or wavelet). Our results currently do not incorpo-

rate this feature of DCT coefficients. The SSIM index would

have to be modified to do so, and we hope to address this soon.

Similar analysis for the wavelet transform would also be very

useful. We believe that such an analysis would be similar in
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flavor to the current analysis. An extension to video would in-

volve applying the current results on a frame-by-frame basis.

Finally, the bounds could be improved by a more careful choice

of constants.

APPENDIX

In the following, we present the Proof of Theorem 3.1 and the

derivation of for uniform, Gaussian, and Laplacian sources.

Let and

represent a vector and its quan-

tized version in the DCT domain, respectively. The subscripts

index the appropriate code points in the joint

granular region of the quantizer denoted by . We assume

that is the DC coefficient. Further, let and represent the

space domain versions of and respectively.

Proof: Let vector

be a set of quantization levels corresponding to

SSIM with

(19)

where corresponds to the mean term, and corresponds to

the structure term. It is easy to show that (for natural

images), and . Now

(20)

To simplify the denominator in the above equation, a variable

is introduced. Since is large for

the most interesting case of an 8 8 DCT, the distribution of

can be approximated well by a Gaussian distribution due to the

central limit theorem. For a specified probability , choose

and such that . The term

is subtracted from since it is larger than the highest value

that any of quantizer levels can take. Since is Gaussian, it

follows that the expression for that make the bounds hold

with probability is given by (10), where the first and second

moments of are computed based on the source distribution.

Since , the following bound holds with probability

(21)

Applying the expectation operator, using the high-rate uniform

quantization result MSE [1], [15], and the inde-

pendence assumption

(22)

Replacing with and rearranging terms

SSIM

(23)

The derivation of the term for different source types is

given below. For simplicity, we assume that is zero-mean.

The results hold irrespective of this assumption.

A. Uniform Source

The source pdf is given by

if

elsewhere

and the expression

substituting in the first integral

and using the standard result in the second

(24)
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B. Gaussian Source

For this case, we present the expression for the contribution

to only from the first term in the numerator of . The contri-

bution from in the numerator cannot be evaluated in closed

form. Note that the presence of in the denominator helps

remain stable. Here, , and

substituting

and simplifying

(25)

where , is the exponential

integral.

C. Laplacian Source

Here, . We present the

steps for the case where , and , and assume

that there are intervals that satisfy this case. The other cases

follow similar steps

using partial fraction expansions for both terms

with

and simplifying

(26)
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