
Journal Pre-proof

RAN-aware adaptive video caching in multi-access edge computing networks

Shashwat Kumar, Doddala Sai Vineeth, A. Antony Franklin, Jiong Jin

PII: S1084-8045(20)30211-3

DOI: https://doi.org/10.1016/j.jnca.2020.102737

Reference: YJNCA 102737

To appear in: Journal of Network and Computer Applications

Received Date: 5 November 2019

Revised Date: 15 April 2020

Accepted Date: 31 May 2020

Please cite this article as: Kumar, S., Vineeth, D.S., Franklin, A.A., Jin, J., RAN-aware adaptive video
caching in multi-access edge computing networks, Journal of Network and Computer Applications
(2020), doi: https://doi.org/10.1016/j.jnca.2020.102737.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Credit Author Statement

Shashwat Kumar: Conceptualisation, Methodology, Software, Writing - Original Draft ;

Doddala Sai Vineeth: Software;

Antony Franklin A.: Supervision, Writing - Review & Editing;

Jiong Jin: Supervision, Writing - Review & Editing.

RAN-aware Adaptive Video Caching in Multi-access

Edge Computing Networks

Shashwat Kumara,b,∗, Doddala Sai Vineethc, Antony Franklin A.a, Jiong Jinb

aIndian Institute of Technology Hyderabad, India
bSwinburne University of Technology, Melbourne, Australia

cSamsung R&D Institute, Bangalore, India

Abstract

Videos are expected to be a primary contributor to an anticipated massive surge

in mobile network data. Caching the videos within the mobile network can

significantly reduce the network load and Operational Expenditure (OPEX)

for mobile network operators. Multi-access Edge Computing (MEC) can en-

able the video caching by providing processing and storage capabilities within

the network. However, content providers usually employ Dynamic Adaptive

Streaming over HTTP (DASH) for video streaming, which contains multiple

bit-rate representations of videos. Constrained by its capacity, MEC can not

cache all representations of popular videos. Video transcoding mitigates this

issue to a certain extent by converting the higher available video bit-rate to a

requested lower one; but, it can quickly exhaust the available edge processing

power by transcoding a large number of videos in parallel. Therefore, caching

appropriate video bit-rates that can serve the maximum number of users in

the network is a non-trivial problem. To resolve this problem and to efficiently

utilize the resources (processing and storage) at the network edge, we took a

∗Corresponding author: Shashwat Kumar (cs15resch11011@iith.ac.in)
Email addresses: cs15resch11011@iith.ac.in (Shashwat Kumar),

cs14btech11011@iith.ac.in (Doddala Sai Vineeth), antony.franklin@iith.ac.in (Antony
Franklin A.), jiongjin@swin.edu.au (Jiong Jin)

1Shashwat Kumar and Antony Franklin A. are with the Department of Computer Science
and Engineering, Indian Institute of Technology Hyderabad, India

2D. Sai Vineeth is with Samsung R&D Institute, Bangalore, India
3Jiong Jin and Shashwat Kumar is with the School of Software and Electrical Engineer-

ing, Faculty of Science, Engineering and Technology, Swinburne University of Technology,
Melbourne, VIC 3122, Australia.

Preprint submitted to Journal of Network and Computer Applications April 15, 2020

non-traditional approach for video caching that utilizes the network information

provided by MECs Radio Network Information (RNI) Application Program In-

terface (API). In particular, MEC offers the RNI API, which provides Radio

Access Network (RAN) status information that can be employed to estimate

the probability distribution of requested video qualities. In this work, we for-

mulate the video caching problem as an Integer Linear Programming (ILP) for

the hit-rate maximization. Since the optimization problem requires the knowl-

edge of all future requests, it obviously cannot be used in real-time. Therefore,

we develop a RAN-aware Adaptive VidEo cachiNg (RAVEN) method that uses

network information to make an informed decision for video bit-rate selection

in video caching coupled with transcoding and maximizes the number of served

users form the network edge. Simulation results demonstrate that the RAVEN

method significantly outperforms state-of-the-art algorithms in the domain and

performs closer to the optimal solution.

Keywords: Multi-access Edge Computing (MEC), Radio Network

Information (RNI), Video Caching.

1. Introduction

According to the Cisco Visual Networking Index (VNI) forecast [1], smart-

phone data traffic will surpass the PC traffic by 2022 and account for 44% of

the total IP traffic. By 2020, mobile data will reach 77.5 exabytes per month

and the existing cellular network backhaul will face severe congestion if Mobile

Network Operators (MNOs) do not take some preventive actions. Interestingly

by 2022, IP video traffic will account for 82% of all the IP traffic. MNOs should

optimize video content delivery in particular to avoid backhaul congestion. One

simple method to alleviate network congestion, due to data surge, is network

capacity expansion, which is not always viable and also requires a significant

capital investment. Obviously, network operators need alternative methods to

deliver this vast amount of data without congestion. In-network-caching is a

promising solution to handle backhaul congestion, which caches the popular

2

content within the cellular network. Other than avoiding congestion, caching

the frequently accessed content within the network also reduces the transit ser-

vice payments to Internet Service Providers (ISP). It thus reduces the opera-

tional cost of the cellular network and improves the user’s quality of experience

through fast content delivery by avoiding long-distance transmission [2]. Various

architectures such as Content-Centric Networking [3], Information-Centric Net-

working [4], and Multi-access Edge Computing (MEC) [5] enable the MNOs to

cache the content within the network. Being one of the key technologies for fu-

ture 5G networks [6] and its compatibility with contemporary cellular networks,

MEC befitting for in-network-caching in the cellular network. The European

Telecommunications Standards Institute (ETSI) standardized MEC to be com-

patible with the Network Function Virtualization (NFV) framework as well,

which makes it incredibly versatile for service or application deployment in cel-

lular networks. MEC brings the cloud computing capabilities (i.e., storage and

computation) at the network edge (e.g., base station), which enables the support

for Ultra-Reliable Low Latency Communication (URLLC) and high bandwidth

applications. Moreover, through various Application Program Interfaces (API)

such as Radio Network Information (RNI), MEC opens the possibility for intel-

ligent services that can make an informed decision using network and context

information. Conceiving it as an integral part of future cellular networks, we

adapted the MEC architecture in this work.

Most of the video streaming services use adaptive video streaming to serve a

diverse set of users with a good quality of experience. Adaptive video streaming

methods such as Dynamic Adaptive Streaming over HTTP (DASH) store differ-

ent bit-rate versions of a video on the server. For a video request, based on user

device characteristics and available bandwidth, an appropriate video bit-rate

is selected to ensure the best user experience. Video content providers (e.g.,

YouTube) offer multiple (five to six) bit-rate representations of a video to befit

the user requirements. If an MEC server at the edge of the network caches all

the bit-rate versions of the videos, the storage space of the MEC will not be suf-

ficient. For this reason, even with the known popularity distribution, the system

3

cannot cache all representations of the popular videos and thus video caching

poses a unique challenge compared to caching the content which has only one

representation. Video transcoding is able to solve this problem to some extent

by converting a higher bit-rate version of a video to a desired lower bit-rate

version [7]. Hence, by caching only the highest bit-rate version and using the

transcoding to serve the lower bit-rate video requests, the storage exhaustion

problem could be mitigated. However, transcoding is a computation intensive

task and transcoding multiple video streams in parallel can itself exhaust the

limited computational resources at the MEC. Consequently, it is important to

find an effective solution that utilizes the computation and storage resources on

MEC by caching the appropriate bit-rates of the videos. To solve the processing

power exhaustion problem without caching all bit-rate version of videos, a few

selected bit-rate versions of a video should be cached to avoid transcoding for

each lower bit-rate video request. In this case, selecting an appropriate video

bit-rate version for caching is a nontrivial problem, because bit-rate selection,

in adaptive video streaming, dominantly depends upon the available network

throughput to the client. If the available throughput is known to the cellular

network, this information can be utilized to make a wise video caching decision.

RNI API [8] of MEC[9] makes network information available to various services

deployed on the MEC platform. Applications or services deployed on MEC are

able to measure the available throughput of a user in the cell by using RNI

API, and same can be utilized to estimate the expected video bit-rate of the

user requests. In this work, we formulate the caching problem as an Integer

Linear Program (ILP) that maximizes the cache hit ratio subject to the cache

capacity and processing power constraints of the MEC. It is not possible to

solve the ILP for each user request or the requests in a time slot in real time,

because it takes a significant time due to its NP-completeness. Hence, we design

a RAN-aware Adaptive VidEo cachiNg (RAVEN) method that exploits the RNI

API to determine the probabilistic video bit-rate to make caching decision. The

RAVEN method attains a balance in the processing power and storage utiliza-

tion at MEC by selecting appropriate bit-rate versions of videos to cache. The

4

main contributions of this paper are summarized as follows:

• We introduce a central cache catalog, namely, central cache manager,

which ensures the collaboration and cache consolidation among the MEC

servers. It helps in avoiding the data duplication in MEC cache network,

and enables the storage and computation resources sharing among MEC

servers.

• We measure the scalability of the standalone transcoding solution on a

testbed to investigate its feasibility.

• We formulate the multi-bit rate video caching and transcoding as an ILP

based optimization problem with an objective of maximizing the hit ratio

in the MEC cache network.

• We design a RAN-aware adaptive video caching (RAVEN) method that

takes advantage of the RNI API to estimate the requested video bit-rate

and utilizes this information for cache replacement decisions. The RAVEN

method reduces the backhaul traffic and consequently reduces the OPEX

(operational cost) for the mobile network operators.

The rest of the paper is organized as follows. Previous works on content caching

are discussed in Section 2. In Section 3, we explain the motivation and define

the problem statement. Section 4 highlights the details of the proposed RAVEN

method. Results based on extensive simulations are presented and analyzed in

Section 5. Finally, we conclude the work in Section 6.

2. Related Work

Over the years, many solutions have been set forth to solve the network

congestion problem. Content Delivery Networks (CDNs) have been presented

5

as a viable solution to minimize the network congestion by storing the data

near the consumers ([10]). Other solution like Information Centric Networks

(ICNs) [11, 4, 12] and Data-Oriented Network Architecture (DONA) [13] tried to

address the network congestion by redesigning the network itself. Some authors

suggested the deployment of CDN in the cellular network to serve content to the

users from within the mobile network [10]. By doing so, MNOs can reduce the

load on backhaul links and the operational cost of downloading data through

ISPs. But being the primary cause for network congestion, it is essential to

optimize the video traffic, and most of the solutions do not consider the unique

attributes of video data. Therefore, they are not very effective in handling the

congestion.

Edge technologies such as MEC and fog computing offer solutions to deploy

micro cloud services at the edge of the network [5, 14]. With the increasing

demand for video streaming, various solutions have been introduced to cache

the data in the cellular network [15, 16, 17]. MEC offers the storage and com-

putation capabilities at the edge of the network [5]. But, MEC servers have

limited computation and storage resources; therefore, these resources should be

engaged with diligence. Considering the limited resources on MEC, collabora-

tive caching has been proposed to increase the video hit-ratio and share the

resources among the MEC servers [18]. Gharaibeh et al. in [19] came up with

a collaborative caching algorithm to minimize the total cost paid by the con-

tent providers in a multi-cell coordinated system. Ostovari et al. considered

unlimited cache space in their model to minimize the aggregated caching and

download cost for corroborative caching [20]. In [21], files are proactively cached

during off-peak periods based on popularity, correlations among users, and file

access patterns and these files are disseminated to user’s social ties via D2D

communications. For edge caching, Wang et al. in [22] deployed the content-

centric networking within the cellular network to minimize the delay and traffic

load. Golrezaei et al. used the femtocell-like base stations for caching with weak

backhaul links but large storage capacity [15].

Zhang et al. in [23] proposed a cooperative edge caching architecture with

6

the help of mobile edge computing but they did not consider the different rep-

resentation (multiple bit-rates) of same data. Bilal et al. proposed a collab-

orative caching and transcoding scheme to minimize the CDN cost and video

access delay [24]. Irrespective of network conditions, their algorithm, based on

processing availability, fetches the higher video bit-rates and transcode it to

serve the users and uses the LRU approach for cache replacement. In contrast,

the proposed method utilizes the RAN information to improve caching perfor-

mance and employ a profit-based strategy for cache replacement. Moreover,

our method delivers substantial improvement without the use of transcoding,

as well. In [25], authors formulate the QoE-traffic optimization with collabo-

rative edge caching as an integer non-linear programming (INLP) optimization

problem. They use network information for bit-rate adaptation and proposed

a retention based caching algorithm. In contrast to their work we use the net-

work information for video bit-rate selection in cache replacement and propose

an efficiently use of transcoding to serve different bit-rates to the users. In [26]

X. Tran and Dario Pompili proposed proactive cache placement and request

scheduling scheme. Their caching algorithm only works when video popularity

is known when popularity is not known they use the LRU algorithm on the other

hand our proposed method is a reactive caching scheme and works well with

known and unknown popularity. One other difference is the fact that we use the

cache consolidation along with collaborative caching to boost the performance.

Most of the works mentioned above deal with the caching in which content

has only one version to be cached, however, the Adaptive Bit Rate (ABR) pro-

tocol such as DASH supports multiple bit-rate versions of a video for different

network conditions. Therefore, video caching becomes more challenging and

requires intelligent decision making to select appropriate bit-rate versions of the

video for caching. Transcoding a video from higher to lower bit-rate version

is one of the solutions to handle the multiple versions of the same video con-

tent. In [27], various techniques to transcode a video from higher bit-rate to

lower bit-rate version are discussed and compressed-domain based approaches

such as bit-rate reduction and spatial resolution reduction are found to be most

7

Table 1: Possible number of real-time parallel transcodings from higher to lower resolution.

Using 8 Cores (2.4 Ghz) Using 4 Cores (2.4 Ghz)

720p 480p 360p 240p 720p 480p 360p 240p

1080p 3 6 10 14 2 3 4 6

720p - 7 12 18 - 4 6 9

480p - - 14 22 - - 8 11

effective among them. Pederson et al. proposed caching and processing for

multi-bitrate video streaming [16], unfortunately they do not consider the col-

laborative scheme of multiple caching servers. In Joint Collaborative Caching

and Processing (JCCP) [18], a collaborative caching and transcoding solution is

introduced in which MEC servers collaborate to share the cached content and

perform the transcoding if a higher bit-rate version is available in the cache.

However, their scheme considers replication of the content among the caches

that results in storage waste; furthermore, JCCP does not utilize the bit-rate

information in caching decision neither. In contrast, we design a consolidated

caching method in which content is not replicated within the MEC cache net-

work and it capitalizes on the network information to select the appropriate

bit-rate version for caching.

3. Motivation, System Architecture, and Problem Formulation

3.1. Motivation

A multifold increase in the data passing through the mobile network is antic-

ipated, and video data is expected to be a primary contributor to it [1]. Caching

the videos within the mobile network, with the help of MEC, can help in re-

ducing the network load and OPEX for mobile network operators. However,

in video streaming, content can have multiple representations (bit-rates) and

8

traditional caching schemes are agnostic to it. MEC, at the network edge, can

not cache all representations of popular videos because of capacity constraints.

Therefore, caching appropriate bit-rates of the videos, which can serve the maxi-

mum number of users, is a vital decision that impacts the caching performance.

Video transcoding, which can convert a high bit-rate video to lower bit-rate,

provides an ingenious solution to this issue. However, exclusively depending on

the transcoding, by only caching the highest available bit-rate video, may lead

to a processing power crunch on MEC servers.

We empirically assess video transcoding scalability on a simple testbed using

ffmpeg [28] without using any specialized hardware for video encoding. The

main objective is to evaluate the video transcoding scalability, and not to observe

the correlation between engaged CPU cores and number of parallel transcodings,

therefor the evaluation is carried out only with two CPU configurations. In

Table 1, the first column of the table contains the source video bit-rate and

the second row indicates the target bit-rate for transcoding, and the values in

the cells present the number of feasible parallel transcodings. There are two

noteworthy deductions from the results in Table 1: first, the number of parallel

transcodings depends on the source and target video bit-rates; second, video

transcoding is not very scalable because in the best-case scenario (480p → 240p

transcoding) the system can serve only 22 users.

Furthermore, Figure 1(a) unveils that it takes less time to transcode from

a closest higher bit-rate version e.g., transcoding to 240p target bit-rate from

higher bit-rate sources (1080p, 720p, 480p, and 360p), 360p → 240p transcod-

ing takes the minimum time. Therefore an adequate video bit-rates selection,

for caching, should maximize the number of served users with optimal use of

transcoding. In a mobile network, UEs’ downlink throughput, which is utilized

to determine the video bit-rate, profoundly depends on its distance from the base

station. We simulate an LTE network in NS3 and results in Figure 1(b) shows

that the user who is further away from the BS tends to have lesser throughput

and, consequently, a lower video bit rate. Network information utilization can

improve video caching performance. For example, if most of the users are at

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 6 8 10

T
ra

n
s
c
o
d
in

g
 T

im
e
 (

S
e
c
.)

Video Length (Min.)

1080p → 720p

1080p → 480p

720p → 480p

1080p → 360p

720p → 360p

480p → 360p

1080p → 240p

720p → 240p

480p → 240p

360p → 240p

(a)

Bit-rate q1

Bit-rate q2

Bit-rate q3

Bit-rate q4

Bit-rate q1

Bit-rate q2

Bit-rate q3

Bit-rate q4

Distance (m)Distance (m)

D
is

ta
n

ce
 (

m
)

D
is

ta
n

ce
 (

m
)

00 5000500050005000

BSBSBS

(b)

Figure 1: (a) Time taken to transcode videos of different playtime from a higher bit-rate input

video to a lower bit-rate video. (b) Supportable video bit-rate (q1 > q2 > q3 > q4) based on

the UE distance from the cellular Base Station (BS).

the cell edge, then they are likely to get a lower downlink throughput and ex-

pected to consume the video in a lower bit-rate version. So, in this scenario,

it is not desirable to cache a higher bit-rate video at the network edge, which

might be requested only by some users who are near the base station and getting

a higher bandwidth. Since resources at the edge are limited, bit-rate agnostic

caching solutions are not effective for video caching. Using RNI API, MEC can

provide the network information, which can significantly enhance the cache per-

formance. In this work, we propose a solution that uses the network information

to cache appropriate video bit-rates coupled with transcoding to improve the

video caching performance.

3.2. System Architecture

Figure 2 depicts the system architecture, where MEC servers are deployed

alongside the eNBs in a cellular RAN, providing computation and storage capa-

bilities to enable caching at the edge of the network. MEC servers collaborate to

share their computing and storage resources. If an MEC server caches a video,

then the other MEC servers are able to fetch the video and serve the users with-

out caching it locally. The cache architecture has the following components:

10

MEC Server

MEC Server

EPC

Central

Cache

Manager

Main Content

Server

Internet

X2

X2 X2

eNB

eNB

eNB

MEC ServerMEC Server

Streaming

Server

Content

Popularity

RNI API

Video Cache

Lo
c
a
l
C

a
c
h

e

M
a

n
a
g

e
r

Transcoder

Mp1

Streaming

Server

Content

Popularity

RNI API

Video Cache

Lo
c
a
l
C

a
c
h

e

M
a

n
a
g

e
r

Transcoder

Mp1

Figure 2: MEC video caching system architecture.

Cache Storage: Cache storage caches the videos for future user requests

and managed by the local cache manager.

Local Cache Manager: Local cache manager resides on the MEC server

at the network edge. On receiving a video request, local cache manager searches

for the video in the local cache on the MEC server. If the video is not available

locally, then the local cache manager sends the request to the central cache

manager for the video location (MEC server) and forwards the received location

to the streaming server. When a video is cached or gets replaced in the local

cache, the local cache manager propagates this information to the central cache

manager.

Central Cache Manager: Central cache manager keeps track of all the

videos that are cached in the MEC network. Central cache manager empowers

the collaboration and cache consolidation among the MEC servers to avoid

replication of the same video in the cache network.

Streaming Server: The streaming server on each MEC server streams

the requested videos to the users by fetching the videos from the cache. If

the streaming server fetches the video from the main content server, then the

streaming server caches the video in the local cache.

11

Table 2: Notation
Representation Meaning

V Set of all video files

Q Set of available qualities

N Set of cache nodes

Rj Set of request on eNB j

Qmax, Qmin Highest and lowest available video bit-rate

Nj Cache node located at eNB j

Pj Processing power capacity at MEC on eNB j

P̄j Unused/available procession power at MEC on eNB j

Pq′→q Processing power required to transcode video from bit-rate q′ to q where q < q′

Pmin Minimum processing required to perform transcoding

pq Probability that a user will request for video in quality q

pv Probability of a user requesting the video v

rvq Size of the video v in quality q

Mj Caching capacity of MEC server j

Cj Filled cache size of MEC on eNB j (Cj ≤ Mj)

c
vq

j Indicate that video v in quality q is cached at MEC server j

ρ
vq
x Indicate that video vq is fetched from MEC server x

ζ
yvq′
x Indicate that video vq′ is fetched from MEC server x and transcoded at MEC server y to serve user request vq

Transcoder: Transcoder converts a video segment from high bit-rate to

a requested lower bit-rate version. After transcoding, transcoder forwards the

video segments to the streaming server to serve the user.

3.3. Problem Formulation

Definitions of the key notation used in this work are given in Table 2. N

denotes the set of all eNBs with MEC deployment. Cache capacity of an MEC

server j is Mj , where j ∈ N and Cj denotes utilized cache storage. A user

sends request for video vq : v ∈ V in quality q : q ∈ Q at server j and the

size of a video v of quality q is denoted with rvq : rvq
> 0 (as size of a file is

always positive number). The probability of a user, in an eNB, requesting the

video of quality q : q ∈ Q is pq that can be computed with the help of RNI

API. The probability of a user requesting a video v : v ∈ V , pv, is measured

by video popularity distribution. Either content provider can provide the video

popularity distribution or MEC be able to learn it based on user requests.

The variable c
vq

j ∈ {0, 1} : j ∈ N , v ∈ V , and q ∈ Q indicates if a video v

in quality q is cached on an MEC server j. If MEC server j caches the video

vq then c
vq

j = 1, otherwise c
vq

j = 0. To show how (with or without transcoding)

12

and from where the video is fetched to serve a user request vq, we define two

binary variables ρ and ζ. If MEC server j serves the video request vq from its

cache or cache of MEC server k then ρ
vq

j = 1 or ρ
vq

k = 1 : j, k ∈ N , j 6= k

respectively. Binary variable ζ
yvq′
x = 1 when a video vq′ is fetched from MEC x

and transcoded at server y to serve a the video request vq otherwise ζ
yvq′
x = 0.

When serving MEC j performs the transcoding, to server video request vq, after

fetching the video vq′ from its cache or some other server k then respectively

ζ
jvq′

j = 1 or ζ
jvq′=1

k : q′ > q. In other case, when MEC server k transfers the

requested video vq to serving MEC j after locally transcoding from vq′ then

ζ
kvq′

k = 1 : q′ > q. If video request vq can not be served locally then it is fetched

from the main content server which is represented by Ovq = 1.

When a user requests a video, system fulfills the request following only one

of the above cases, and the following constraint enforce this condition

ρ
vq

j + ζ
jvq′

j +
∑

k 6=j

(ρ
vq

k + ζ
kvq′

k + ζ
jvq′

k) +Ovq = 1; ∀j, k ∈ N , v ∈ V

The system objective is to serve most of the requests from the MEC servers

hence to maximize the hit ratio. A video request that is served by MEC servers

in the network is regarded as a cache hit, and if the content server serves the

content, a cache miss. The objective function of the formulation for a cache hit

maximization is as follows

Cache Hits (H)=
∑

j∈N

∑

vq∈Rj

(ρ
vq

j + ζ
jvq′

j +
∑

k 6=j

(ρ
vq

k + ζ
kvq′

k + ζ
jvq′

k))

We model the caching problem as a hit-rate maximization problem, so the

MEC server at the network edge can serve most of the user requests. Available

processing power and cache size on MEC servers are imposed as constraints for

the formulation. The objective function in Eq. (1a) represents the number of

cache hits. Constraints in Eqs. (1b) and (1c) make sure that decision variables

(ρ
vq
j and ρ

vq

k) are set to one only if vq is cached on MEC server j or k, respectively.

The Constraints in Eqs. (1d), (1e), and (1f) ensure that ζ
jvq′

j , ζ
kvq′

k , and ζ
jvq′

k

13

set to one, when video v is cached in higher bit-rate version q′ and need to be

transcoded to the requested bit-rate q. The Constraint in Eq. (1g) administrator

maximize
∑

j∈N

∑

vq∈Rj

(ρ
vq

j + ζ
jvq′

j +
∑

k 6=j

(ρ
vq

k + ζ
kvq′

k + ζ
jvq′

k)) (1a)

subject to

ρ
vq
j ≤ c

vq

j , ∀j ∈ N , v ∈ V, q ∈ Q,

(1b)

ρ
vq
k ≤ c

vq
k , ∀k ∈ N , j 6= k, v ∈ V, q ∈ Q,

(1c)

ζ
jvq′

j ≤ min(1,

Qmax∑

q′=q+1

c
vq′

j), ∀j ∈ N , v ∈ V, q ∈ Q,

(1d)

ζ
jvq′

k ≤ min(1,

Qmax∑

q′=q+1

c
vq′

k), ∀k ∈ N , j 6= k, v ∈ V, q ∈ Q,

(1e)

ζ
kvq′

k ≤ min(1,

Qmax∑

q′=q+1

c
vq′

k), ∀k ∈ N , j 6= k, v ∈ V, q ∈ Q,

(1f)

ρ
vq

j + ζ
jvq′

j +
∑

k 6=j

(ρ
vq
k + ζ

kvq′

k + ζ
jvq′

k) +Ovq = 1 ∀j, k ∈ N , j 6= k,

(1g)

∑

vq∈Rj

rvqc
vq

j ≤ Mj ∀j ∈ N ,

(1h)

∑

vq∈Rj

Pq′→q(ζ
jvq′

j +
∑

k 6=j,k∈N

ζ
jvq′

k) +
∑

k 6=j,k∈N

∑

vq∈Rk

Pq′→qζ
jvq′

j ≤ Pj ,∀j, k ∈ N , j 6= k, q′ > q,

(1i)

ρ
vq

j , ρ
vq
k , ζ

jvq′

j , ζ
kvq′

k , ζ
jvq′

k , Ovq ∈ {0, 1}, ∀j, k ∈ N , j 6= k, v ∈ V, q ∈ Q

(1j)

14

that content is fetched, from only on place, either from an MEC server in the

network or the main server. The Constraint in Eq. (1h) makes sure that the

system does not violate the cache capacity and Constraint in Eq. (1i) put up-

per bound on consumed processing power. The formulated problem is an ILP

and proved to be NP-Complete in theorem 3.1, therefore it cannot be solved

in polynomial time. Moreover, knowledge of all the future video requests is

required to solve the ILP and that is unattainable, so formulated ILP cannot

be solved in real time. Therefore, we design a method which uses the RNI and

video popularity distribution and makes the caching decision in real time. The

offline solution of ILP is regarded as an optimal benchmark to compare the

performance of the proposed method.

Theorem 3.1. The video caching problem in Eq. (1a) is NP-complete.

Proof. Feasibility of any given solution of Eq. (1a) can be checked in polynomial

time, thus the problem is NP. Now, we show that problem is NP-hard through

the reduction of an instance of 0-1 knapsack problem, which is known to be

NP-complete, to our problem. In the collaborative environment, a set of MEC

servers on eNBs can be considered as a knapsack with the capacity equivalent

to cache size, the profit of caching (users served from the edge) a video as the

item’s value, and storage space requirement for caching as the weight of the

items. Then the knapsack problem is naturally transformed into the problem of

maximizing caching benefits of MEC servers. Hence the 0-1 knapsack problem

can be reduced to the problem defined by Eq. (1a), with a one-to-one mapping

between a set of MEC servers and knapsack. Therefore the solution of Eq. (1a)

will correspond to the solutions of the knapsack problem.

4. RAN-aware Adaptive VidEo cachiNg (RAVEN)

We propose RAVEN for multi-bitrate video caching in the cellular network

through MEC. The proposed caching algorithm makes the caching decision

based on the value of caching profit, where profit represents the expected number

15

of satiable requests on caching a video in a given bitrate. The video popularity,

network conditions, and processing power availability affect the value of caching

profit. RAVEN avoids the content replication in the caching network by em-

ploying cooperation among the MEC servers which enables a MEC to serve the

videos that are cached on the other MEC servers in the network. The proposed

algorithms strive to maximize the hit-ratio by caching the videos with higher

profits.

Algorithm 1 and 2 represent the procedures used in RAVEN for online

caching and transcoding. The algorithm starts with empty caches and video

catalogs and P unit of available processing power. On a request (vq) of video v

in quality q on MEC server at eNB j, Algorithm 1 first checks if vq is cached on

MEC j (line 3). If the video is available in the local cache (c
vq

j == 1) then it is

served to the users locally. Otherwise, the algorithm searches for vq on the other

MEC servers with the help of central cache manager. If the video is cached on

one of the other MEC servers (c
vq
k == 1; k 6= j), then the video is fetched from

there and served to the user (line 5). If the video is not available on any of the

MEC servers in the requested quality, then the algorithm searches for a higher

bit-rate (q′) version of the same video (v) on the local MEC server (j) (line

7). When the video is cached (c
vq′

j == 1; q′ > q) locally in higher bit-rate and

MEC server has sufficient available processing power (P̄j > Pq′→q) to transcode

the video, then user is served after transcoding of the video to the bit-rate q.

If neither the video is cached (in requested bit-rate) on local MEC server nor

the local MEC server have the processing power to transcode the video (when

a higher bit-rate video is cached), then using central cache manager algorithm

searches for the video on the other MEC servers in the network (line 10). If the

video is available on one of the other MEC servers in higher bit-rate, then it is

transcoded either on local MEC server or on the MEC server where it is cached

based on processing power availability (preferably on the other MEC server)

and streamed to the user (line 14). If the requested video is not available on

any of the MEC servers in the network, either in the same bit-rate or higher

bit-rate, then the video is fetched from the content server and cache replacement

16

Algorithm 1 RAVEN Algorithm

Input: User request (vq) for a video v in quality q on MEC server j.

Initialize: Available processing power P̄1, . . . , P̄N = P .

Initialize: Cache on MEC servers C1, . . . , CN = φ
1: for j ∈ 1, . . . , N do

2: for each request vq on MEC j do

3: if c
vq
j == 1 then # vq is cached on serving MEC.

4: Serve the user from the cache on MEC j.

5: else if c
vq

k == 1; k 6= j then

6: Fetch the video from MEC server k and serve the user.

7: else if c
vq′

j == 1 and Pq′→q < P̄j ; q
′ > q then

8: Transcode the video (vq′ to vq) on MEC j and serve the user.

9: P̄j = P̄j − Pq′→q #for transcoding duration

10: CacheReplacement(vq,Cj)

11: else if c
vq′

k == 1 and Pq′→q < P̄k; q
′ > q, k 6= j then

12: Fetch the video from MEC k after transcoding (vq′ to vq).

13: P̄k = P̄k − Pq′→q #for transcoding duration

14: CacheReplacement(vq,Cj)

15: else if c
vq′

k == 1 and Pq′→q < P̄j ; q
′ > q, k 6= j then

16: Fetch the video from MEC k and transcode (vq′ to vq) on MEC j.

17: P̄j = P̄j − Pq′→q #for transcoding duration

18: CacheReplacement(vq,Cj)

19: else

20: Fetch the video (vq) from content server and serve the user.

21: CacheReplacement(vq,Cj)

22: end if

23: end for

24: end for

algorithm (Algorithm 2) is used to make the caching decision (line 19).

For cache replacement, we introduce a profit based cache replacement algo-

17

Algorithm 2 RAVEN’s Cache Replacement Algorithm

Input: New video (vq) v in quality q and current cache (Cj).

1: if (Cj + rvq
) ≤ Mj then # If cache has empty space

2: c
vq

j = 1

3: Cj = Cj + rvq

4: else if P̄j ≥ Pmin then

5: Find q′′ : q′′ ≤ q and
∑q

i=q′′ Pq→i ≤ P̄j

6: Calculate dvqq′′ # indirect profit for caching video v

7: dv
′

min = minCd
j # cached video v′ with minimum profit value

8: if dv
′

min < dvqq′′ then # checking if profit for v is greater than v′

9: Replace v′ with vq

10: end if

11: else if P̄j ≤ Pmin then # processing power is not available.

12: Calculate dvq # direct profit for caching video v

13: dv
′

min = minCd
j

14: if dv
′

min < dqv then

15: Replace v′ with vq

16: end if

17: end if

rithm (Algorithm 2) in which the profit is defined as hits per consumed resources

(storage and processing). On a cache miss, the algorithm replaces the least profit

cached video with new video if it has a higher profit value. When an uncached

video is requested, then the algorithm calculates the hit-rate profit for caching

that video utilizing the video popularity and probability of getting the video

request in same or lower quality. If the profit of the video is higher than the

least profit cached video, then the algorithm performs the replacement other-

wise discard the video after serving the user. The profit for caching a video

is the ratio of number of requests (either for the same or lower video bit-rate)

that can be served by caching the video and the weighted sum of normalized

18

values of required storage space and processing power (to transcode the video

to lower bit-rate versions to fulfill the future requests). The algorithm considers

two types of profits, namely, direct and indirect profit when replacing a video.

Direct profit represents the normalized probability of a video being requested

by a user in the same bit-rate, and indirect profit represents the normalized

probability of video being requested in either the same or lower bit-rate version.

Direct profit is defined as

dvq =
pvpq

r̂vq
(2)

where r̂vq is the normalized size of the video v in quality q and pq is the probabil-

ity of a user in the cell requesting a video in the quality q. pq is calculated with

the help of RNI API on MEC [8]. MEC measures the throughput of all UEs in

a cell using RNI API, and the highest supported video bit-rate is assessed using

these throughput values. A probability distribution, pq :
∑Qmax

q=Qmin
pq = 1, of

requested video bit-rates is estimated using throughput data for all users in a

cell, and it depends on the users distribution in the cell, e.g., if most of the users

are at the edge of the cell then probability of a request begin in lower bit-rate

is high. If processing power is not available for transcoding, then only direct

profit is considered for cache replacement. In indirect profit, processing cost

for transcoding a cached video is also considered along with the storage cost.

Indirect profit is defined as

dvqq′′ =
pv

∑q

i=q′′ pi

αr̂vq
+ β

∑q

i=q′′ P̂q→i

(3)

where P̂q→i is normalized processing power, r̂vq
is the normalized size to cache

the video v in quality q, and α, β are weight parameters. Algorithm 2 illustrates

the procedure of cache replacement algorithm. On a cache miss, for a user

request of video vq, the algorithm checks if available processing power (P̄) is

greater than minimum processing power (Pmin) for transcoding (line 6). If

the MEC has enough processing power, then algorithm finds a bit-rate level

(q′′) up to which MEC can transcode from requested bit-rate (q) with available

19

processing power (line 7). Afterward, it calculates the indirect profit (dvqq′′) and

finds a cached video (v′q) with the minimum profit value (d
v′

q

min). If the profit

for vq is greater than v′q, then it replaces the later with vq (line 10). If the

MEC does not have enough processing power for transcoding (line 13), then the

algorithm calculates the direct profit (dvq) and compares it with the minimum

profit among the cached videos for replacement (line 16). Theorem 4.1 shows

that the time complexity of RAVEN isO(⌈ Cj

rmin
⌉). Furthermore, RAVEN attains

a 2-approximation ratio for video caching, which can be established as follows.

Each MEC server in the caching network makes the caching decision locally

while sharing the cache information with other MEC servers. Each video, in a

given bitrate, is associated with a profit value, and MEC servers successively

cache the most profitable videos. Therefore, it is a cooperative caching algorithm

that is local-greedy. Contrary to a central server populating all the caches, under

RAVEN, each MEC server locally takes the caching decision to maximize the

global hit-ratio; hence RAVEN is distributed in this sense. This sort of local-

greedy algorithm ascertained to achieve a 2-approximation ratio [29].

Theorem 4.1. Complexity of RAVEN is O(⌈ Cj

rmin
⌉).

Proof. Algorithm 1 executes for every user request. If video is cached on the

MEC server in requested bit-rate, it can be searched in constant time O(1) using

hash tables; therefore, the algorithm takes a constant time C for this step. If

video is not cached in requested bit-rate on the MEC server then after fetching

the video Algorithm 2 is executed for cache replacement. In lines 7, 9, and 15,

Algorithm 2 searches for minimum profit video in the cache, which contributes

to its time complexity. In worst case, line 7 carries up to |Q| iterations, and

lines 9 and 15 require up to ⌈ Cj

rmin
⌉ iterations where Cj is cache size of MEC

server j and rmin is size of a video in lowest bit-rate. Therefore the worst-case

run time complexity of proposed algorithm is O(|Q|+ ⌈ Cj

rmin
⌉) where |Q| is the

number of available video bit-rates and usually a small number (i.e., 5). Hence

the complexity can be reduced to O(⌈ Cj

rmin
⌉).

20

5. Results and Discussions

In simulations, we consider a Urban Macro (UMa) cell model with four

eNBs, each eNB using transmission power of 46 dBm and 20 MHz of channel

bandwidth. Each eNB serves 20 active users that are uniformly distributed in a

cell of 5 km radius. An MEC server is deployed at each eNB to offer the caching

and processing resources. Video library V consists of 1000 videos, playtime

of each video is 5 minute, a video can be served in any of the available four

bit-rate variants (0.4 Mbps, 1.2 Mbps, 2.5 Mbps, and 5 Mbps, for 360p, 480p,

720p, and 1080p video resolutions, respectively), and size of different bit-rate

variants of a video are 50 MB, 80 MB, 100 MB, and 150 MB. Each user generates

video requests independently following Poisson process with mean inter request

interval of 8 minutes. The user’s video requests follow the Zipf’s popularity

distribution [30] which determines the probability of next request to be for ith

popular video. It is given by Eq. (4) and used to calculate the value of pv.

pi =
i−α

∑|V|
j=1 j

−α
(4)

where α = 0.8 is Zipf parameter [15] and |V| is total number of videos in

the library. UMa path loss model with a non-line-of-site (NLOS) condition as

specified in 3GPP TR36.814 V9.2.0 [31] is used to calculate the available Down-

Link (DL) throughput of the users in the cell. Expected video bit-rate of user

requests is estimated by utilizing the UEs’ throughput. The probability distri-

bution of video bit-rates, pq, is measured by employing the expected bit-rate of

all the users in the cell, which is used to calculate the direct and indirect profit

of caching a video. On MEC platform, a service or an application can calcu-

late the UEs’ throughput using RNI API over the Mp1 reference point [8]. For

simplicity, we consider the stationary users and stable network conditions; users

send requests for the entire videos in specific bit-rates, which is selected based

on available bandwidth. By changing the granularity of users’ requests to video

chunks, the proposed method can be used for time-varying video bit-rates where

caching decision are made for each video chunk instead of the entire video. The

21

Table 3: Simulation Parameters

Parameter Value

No. of MEC servers 4

UEs per MEC 20 (Uniformly distributed in the cell)

Number of videos 1000

Video bit-rates 0.4Mbps, 1.2Mbps, 2.5Mbps, and 5Mbps

Video size 50 MB, 80 MB, 100 MB, and 150 MB

Delay between MECs [20, 60] ms

Delay between MECs and Content server [100, 200] ms

Processing power (P) 1

Zipfs’ parameter (α) 0.8

Transmission power 46 dBm

Channel Bandwidth 20 MHz

Operating Frequency (freq) 5.3 GHz

Path loss model [31] 36.7 log10(d[m]) + 22.7 + 26 log10(freq[GHz])

end-to-end latency for fetching the video content is randomly assigned between

[5,15] ms uniformly for local eNB, [20, 60] ms for neighboring MEC servers, and

[100, 200] ms for origin content server or CDN on the Internet. Cache size rep-

resents the percentage of video library size that can be cached (e.g., 10% cache

size means cache on each MEC server is able to store 10% of the video library).

The processing power of 1 (P = 1) symbolizes the transcoding capability of an

8-core machine. Values from Table 1 determines how many parallel transcodings

are possible, and what fraction (one 1080p → 240p transcoding takes 1/14 of the

processing power of an 8-Core machine) of processing power (P) is consumed

for a transcoding operation. In Table 3, we define the simulation parameters

used for the evaluation. Following metrics are considered performance in the

evaluation:

• Hit ratio - the fraction of requests fulfilled from any one of the MEC

servers.

• Average access delay - average time taken to download initial fragments

of the video (sufficient to start the video playback) from any one of the

22

MEC servers or CDN/content server to the user device.

• External traffic load - the amount of data fetched from CDN/content

server to fulfill the user requests.

We compare the RAVEN caching method with the following approaches:

• Optimal - Optimal solution to the caching problem based on the ILP

formulation for the given set of user requests. The solver knows all future

requests to make the caching decision.

• CachePro - A caching and transcoding method for cellular RAN [16]. In

this work, the authors did not consider the collaboration among the MEC

servers. Comparison of the results with this approach demonstrates the

great merit of collaboration among MEC servers.

• CoCache - A collaborative caching policy without transcoding. Compari-

son of the results with this method is important to understand the effect

of transcoding in a collaborative caching system.

• Joint Collaborative Caching and Processing (JCCP) - In JCCP, the au-

thors proposed a joint collaborative caching and transcoding scheme [18].

In this work, MEC servers collaborate with each other to share the re-

sources, and the video cached at one server can be served to the user who

is connected to some other server. But in this work, the authors did not

consider the cache consolidation and they deploy the simplistic Least Re-

cently Used (LRU) cache replacement scheme. In contrast to their work,

we come up with cache consolidation and also introduce a RAN aware

cache replacement policy.

• Highest-bitrate video caching - In this case, only the highest bit-rate of

the video is cached on the MEC servers, and the request for lower bit-rate

videos are served after transcoding the highest bit-rate version [7].

The approaches are compared for different cache sizes, available process-

ing powers at the MEC servers, and content popularity distribution. Cache-

23

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 5 10 15 20 25 30 35 40 45 50

H
it
 R

a
ti
o
 (

%
)

Inter request arrival time

RAVEN (Proposed)

Highest bit-rate Caching

(a) Hit Ratio

 40

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25 30 35 40 45 50

D
e
la

y
 (

m
s
)

Inter request arrival time

RAVEN (Proposed)

Highest bit-rate Caching

(b) Delay

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30 35 40 45 50

E
x
te

rn
a
l
D

a
ta

 (
G

B
)

Inter request arrival time

RAVEN (Proposed)

Highest bit-rate Caching

(c) External Data

Figure 3: Change in hit ratio, delay, and external data on varying the inter request arrival

rate (λ).

Pro, CoCache, and JCCP algorithms perform a search operation in the cache

for requested video and use the LRU algorithm for cache replacement. With

an efficient implementation using hash tables, search operation and LRU algo-

rithm execution can be performed in constant time (O(1)). Therefore CachePro,

CoCache, and JCCP have a constant time complexity (O(1)). The proposed

RAVEN method also provides a constant time complexity, which is equivalent

to the time complexity of the stated algorithms.

5.1. Effect of change in request-arrival rate

To determine the scalability of caching only the highest bit-rate version of

videos, we study the performance of the RAVEN method and highest bit-rate

caching on different load conditions. To change the load, we reduce the inter-

24

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14

H
it
-R

a
ti
o
 (

%
)

Cache Size (% of video library size)

Optimal

RAVEN (Proposed)

JCCP

CoCache

CachePro

(a) Hit Ratio

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 2 4 6 8 10 12 14

D
e
la

y
 (

m
s
)

Cache Size (% of video library size)

Optimal

RAVEN (Proposed)

JCCP

CoCache

CachePro

(b) Delay

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 6 8 10 12 14

E
x
te

rn
a
l
D

a
ta

 (
G

B
)

Cache Size (% of video library size)

Optimal

RAVEN (Proposed)

JCCP

CoCache

CachePro

(c) External Data

Figure 4: Change in hit ratio, delay, and external data with increase in cache size.

request arrival time (λ) in the simulation, which determines how often a user

is sending the requests. Fig. 3 shows that in highest bit-rate video caching,

the performance drops with the increase in load because it relies solely on the

available processing power to serve the lower bit-rate users requests. In contrast,

the change in the load does not affect the RAVEN, as it does not solely rely

on the processing power of the MEC server to serve the users. The RAVEN

method also beats the highest bit-rate caching in the lightly loaded condition

(λ = 50). As caching the highest bit-rate video is not a scalable solution and

well outmatched by RAVEN, we exclude the comparison with it hereafter.

5.2. Effect of change in cache size

Figure 4(a) shows the change in hit-ratio on the increase in the cache size at

a fixed processing power of 1 and displays that for cache size of 12%, the RAVEN

25

algorithm outperforms the JCCP algorithm by 10% (for 10% of the cache) and

performs close to the optimal solution. CachePro performs the worst since it

does not have any collaboration among the MEC servers and hence the MEC

servers could not fetch the content cached on other MEC servers. Figure 4(b)

depicts that the delay reduces with an increase in the cache capacity of MEC

servers. For the cache size of less than 9%, RAVEN takes the minimum time to

serve the users, and for higher cache size JCCP surpasses the RAVEN. JCCP

replicates the content on different MEC servers and large cache size (9% cache

size means that all four MEC servers can collectively cache 36%) quashes the

performance impact of replication, leading to a lesser delay. On the contrary,

RAVEN does not replicate the content to save the storage, and transfers the

content from one MEC server to another to serve the user requests that induce

some additional delay. For small cache size, RAVEN performs better (11.5%

less delay for 5% cache size compared to JCCP) than other schemes. Likewise,

in Figure 4(c), downloaded data from the Internet decreases when the cache

size is increased. RAVEN downloads 60% lesser data at cache size of 10%

compared to JCCP and other schemes. Results indicate that CachePro performs

the worst in all aspects, although it utilizes both processing and caching. On

this basis, it is important to have collaboration among the MEC servers for

efficient cache utilization. CoCache performs better than CachePro as it enables

collaboration among the MEC servers, but it does not use the processing power

for transcoding, thus it’s outperformed by RAVEN and JCCP. For caching,

JCCP practices both transcoding and collaboration, but because of content

replication, it wastes the storage. In RAVEN, the cache is consolidated through

collaboration, and it exploits the network information for cache replacement.

Therefore, it attains the best results among the compared schemes in all aspects

for small cache size.

5.3. Effect of change in processing power

Figure 5(a) shows that the hit-ratio increases with an increase in processing

power at a fixed cache size (12%). The RAVEN algorithm performs better than

26

 50

 60

 70

 80

 90

 100

 0.5 1 1.5 2 2.5 3

H
it
-R

a
ti
o
 (

%
)

Processing Power (P)

Optimal

RAVEN (Proposed)

JCCP

CoCache

CachePro

(a) Hit Ratio

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.5 1 1.5 2 2.5 3

D
e
la

y
 (

m
s
)

Processing Power (P)

Optimal

RAVEN (Proposed)

JCCP

CoCache

CachePro

(b) Delay

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.5 1 1.5 2 2.5 3

E
x
te

rn
a
l
D

a
ta

 (
G

B
)

Processing Power (P)

Optimal

RAVEN (Proposed)

JCCP

CoCache

CachePro

(c) External Data

Figure 5: Change in (a) hit ratio, (b) delay, and (c) external data with increase in processing

power.

the JCCP and increases hit-rate by 8% for processing power of 1. The results in

Figure 5(b) illustrate the effect of the change in processing power on delay. The

delay decreases with the increase in processing power. The RAVEN method has

13% more delay compare to JCCP with 1 processing power. RAVEN does not

replicate the content, it thus achieves a better hit-ratio. For the same reason,

it transfers the content from one MEC server to another to serve the users.

Figure 5(c) shows that the RAVEN downloads 54% less external data compared

to JCCP on 1.2 processing power. Interestingly, the optimal solution does not

exhibit any significant change with the change in processing power because it

converges at around 12% of the cache size and does not improve any further.

Results clearly establish that RAVEN outperforms JCCP and other schemes and

27

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it
-R

a
ti
o
 (

%
)

Zipf Parameter(α)

RAVEN (Proposed)

JCCP

CoCache

CachePro

(a) Hit Ratio

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y
 (

m
s
)

Zipf Parameter(α)

RAVEN (Proposed)

JCCP

CoCache

CachePro

(b) Delay

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
x
te

rn
a

l
D

a
ta

 (
G

B
)

Zipf Parameter(α)

RAVEN (Proposed)

JCCP

CoCache

CachePro

(c) External Data

Figure 6: Change in hit ratio, delay, and external data with change in skewness of video

popularity distribution.

gives a better performance for smaller cache and processing power. As CoCache

does not transcode the cached videos, its results do not change with the change

in processing power. However, it still performs better than CachePro, which

employs the transcoding but does not have any collaboration among the MEC

servers.

5.4. Effect of change in skewness of video popularity distribution

The proposed RAVEN method uses the video popularity distribution along

with network information for caching decision, with this in mind, we evaluate

it for different shapes of popularity distributions. To change the shape of un-

derlying popularity distribution, we vary the value of Zipf parameter a in [0.1

1.0] that is used in video request generation. For the value of a = 1, video

28

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 100 200 300 400 500 600 700 800 900 1000

H
it
-R

a
ti
o
 (

%
)

No. of Videos

RAVEN (Proposed)

JCCP

CoCache

CachePro

(a) Hit Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

D
e
la

y
 (

m
s
)

No. of Videos

RAVEN (Proposed)

JCCP

CoCache

CachePro

(b) Delay

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600 700 800 900 1000

E
x
te

rn
a

l
D

a
ta

 (
G

B
)

No. of Videos

RAVEN (Proposed)

JCCP

CoCache

CachePro

(c) External Data

Figure 7: Effect of change in number of videos in library on hit-rate, reduction in delay, and

downloaded data.

popularity is very skewed and rank one video gets twice as much request as

rank two videos, and a = 0 means that all the videos will get the same number

of requests following a uniform distribution. For the comparison, we assign 5%

cache storage on each MEC server and P = 1 processing power. Results in

Figure 6 show that when the popularity skewness increases, the performance

of all the schemes improves and their performance gap shrinks because most

of the users will request only a few popular videos. Results in Figure 6(a)

display that the RAVEN algorithm raises the hit-ratio by 20% compared to

other schemes for a = 0.1 and 9% more hit-ratio of maximum skewed popular-

ity. Figure 6(b) depicts that RAVEN clearly outperforms the other schemes for

a = 0.1. However, for a = 1.0, JCCP performs close to RAVEN, because JCCP

29

replicates the popular content on different MEC servers and RAVEN instead

transfers the content from one MEC server to another without replication. Fur-

thermore, RAVEN saves 33% more data compared to JCCP for a = 0.1 and

55% for a = 1.0. Results in Figure 6 confirm that for different video popularity

distributions, the RAVEN method consistently outperforms the other schemes

with a good margin and it also attains the best results when video popularity

distribution is uniform.

5.5. Effect of change in video library size

Here, we analyze the effect of video library size on the performance of the

RAVEN. For this evaluation, we use Zipf parameter a = 0.8, a fixed 5% (of 1000

video library) cache size, and processing power P = 1. Results in Figure 5.3

indicate that the performance of different methods gradually declines on the

increase in the number of videos in the library. For a small number of videos

(100), the performance of different methods is identical, which is reasonable

because MEC can cache a significant part of the small video library. Therefore

the proposed method’s efficiency is not advantageous for a substantially small

number of videos. An increase in the number of videos necessitates the efficient

use of available cache storage, and it is evident from the performance difference

in the results. RAVEN outperforms all the other methods for a significantly

higher number of videos (400 or higher) across all the performance metrics.

5.6. Video caching without transcoding

To assess the impact of transcoding and benefits of the caching in the absence

of it, we evaluate the proposed RAVEN and other methods when MEC does not

perform the transcoding. Results in Fig. 8 points that when transcoding is en-

gaged along with video caching, RAVEN attains an improvement of ≈ 14% in

hit ratio that is at least 4% higher than the performance gain by other meth-

ods. Therefore it is plausible to say that RAVEN employs computation power

more diligently. Although transcoding has an impact on performance, RAVEN

30

 0

 20

 40

 60

 80

 100

R
AVEN

JC
C
P

C
oC

ac
he

C
ac

he
Pro

P
e
rc

e
n
ta

g
e

Using Transcoding

Without using Transcoding

(a) Hit Ratio

 0

 20

 40

 60

 80

 100

R
AVEN

JC
C
P

C
oC

ac
he

C
ac

he
Pro

R
e
d
u
c
ti
o
n
 i
n
 D

e
la

y
 (

%
)

Using Transcoding

Without using Transcoding

(b) Delay

 0

 20

 40

 60

 80

 100

R
AVEN

JC
C
P

C
oC

ac
he

C
ac

he
Pro

R
e
d
u
c
ti
o
n
 i
n
 D

o
w

n
lo

a
d
e
d
 D

a
ta

 (
%

) Using Transcoding

Without using Transcoding

(c) External Data

Figure 8: Effect of the use of transcoding on hit-rate, reduction in delay, and downloaded

data.

significantly outperforms the other methods in both cases (wih or without using

transcoding). Furthermore, RAVEN delivers a competing performance without

using the transcoding as compared to the results achieved by other methods

while utilizing the transcoding. CoCache does not use transcoding in video

caching; thus, there is no noticeable difference in its performance with or with-

out transcoding. Results in Fig. 8 reports that MNOs can benefit from video

caching, even without using the transcoding, that can serve 70.43% of the users

form the network edge and consequently decreases the average delay by 56.6%

and reduces the download data from ISP by 68.5% which can notably cut the

network load and OPEX.

31

6. Conclusion and Future Work

In this work, we design a RAN-aware adaptive video caching (RAVEN)

method. RAVEN utilizes the radio network information provided by RNI API

of MEC to select an appropriate bit-rates for video caching. We formulate the

cache problem on MEC as an ILP to maximize the hit-ratio to serve most of the

user requests from the network edge itself. As the optimization cannot be solved

in real time, this work introduces a profit-based caching method to cache the

video content on MEC servers. It utilizes the video popularity distribution and

estimated video request bit-rates for caching decisions. RAVEN ensures the col-

laboration among the MEC servers, to avoid the replication, that has a positive

impact on the cache performance. Further, RAVEN performs the transcoding

to serve the different bit-rate requests from a cached video. Simulation results

establish that the RAVEN outperforms the state-of-the-art caching schemes and

performs close to the optimal solution as compare to others.

The introduction of Virtual Reality (VR) has brought new applications and

use cases to the horizon. 360◦ video and VR are powerful techniques that of-

fer the viewers an immersive experience and becoming increasingly popular.

Caching a 360◦ video and AR/VR content is more challenging, compared to a

regular video, because they demand a high bit-rate for streaming and compar-

atively huge storage space for caching. In addition, all the transmitted data is

not consumed by the user, hence it presents an interesting problem, and we will

explore it in our future work.

References

[1] C. V. Forecast, Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2017-2022.

[2] M. Belshe, More Bandwidth Doesn’t Matter (Much), www.belshe.com/

2010/05/24/more-bandwidth-doesnt-matter-much/.

32

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

R. L. Braynard, Networking named content, in: Proceedings of the 5th

International Conference on Emerging Networking Experiments and Tech-

nologies, CoNEXT ’09, ACM, 2009, pp. 1–12.

[4] I. Abdullahi, S. Arif, S. Hassan, Survey on caching approaches in Informa-

tion centric networking, Journal of Network and Computer Applications 56

(2015) 48 – 59. doi:https://doi.org/10.1016/j.jnca.2015.06.011.

[5] ETSI, Mobile-Edge Computing - Introductory Technical White Paper.

[6] ETSI, Mobile Edge Computing (MEC); MEC in 5G networks.

[7] S. Kumar, D. S. Vineeth, A. F. A, Edge assisted dash video caching mech-

anism for multi-access edge computing, in: 2018 IEEE International Con-

ference on Advanced Networks and Telecommunications Systems (ANTS),

2018, pp. 1–6.

[8] ETSI, Mobile Edge Computing (MEC); Radio Network Information API.

[9] ETSI, Mobile Edge Computing (MEC); Technical Requirements.

[10] J. Liu, Q. Yang, G. Simon, Optimal and practical algorithms for imple-

menting wireless CDN based on base stations, in: 2016 IEEE 83rd Vehic-

ular Technology Conference (VTC Spring), 2016, pp. 1–5.

[11] E. D. Kutscher, S. Eum, et al., Information-Centric Networking (ICN)

Research Challenges, RFC 7927 (July 2016).

[12] M. D. de Assuno, A. da Silva Veith, R. Buyya, Distributed data stream

processing and edge computing: A survey on resource elasticity and future

directions, Journal of Network and Computer Applications 103 (2018) 1 –

17. doi:https://doi.org/10.1016/j.jnca.2017.12.001.

[13] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, I. Stoica, A data-oriented (and beyond) network architecture,

33

ACM SIGCOMM Computer Communication Review 37 (4) (2007) 181–

192.

[14] P. Hu, S. Dhelim, H. Ning, T. Qiu, Survey on fog computing: architecture,

key technologies, applications and open issues, Journal of Network and

Computer Applications 98 (2017) 27 – 42. doi:https://doi.org/10.

1016/j.jnca.2017.09.002.

[15] K. Shanmugam, et al., Femtocaching: Wireless content delivery through

distributed caching helpers, IEEE Tran. on Information Theory 59 (12)

(2013) 8402–8413.

[16] H. A. Pedersen, et al., Enhancing mobile video capacity and quality us-

ing rate adaptation, RAN caching and processing, IEEE/ACM Tran. on

Networking 24 (2) (2016) 996–1010.

[17] T. X. Tran, A. Hajisami, D. Pompili, Cooperative hierarchical caching in

5G cloud radio access networks, IEEE Network 31 (4) (2017) 35–41.

[18] T. X. Tran, P. Pandey, A. Hajisami, D. Pompili, Collaborative multi-bitrate

video caching and processing in mobile-edge computing networks, in: 2017

13th Annual Conference on Wireless On-demand Network Systems and

Services (WONS), 2017, pp. 165–172.

[19] A. Gharaibeh, et al., A provably efficient online collaborative caching algo-

rithm for multicell-coordinated systems, IEEE Tran. on Mobile Computing

15 (8) (2016) 1863–1876.

[20] P. Ostovari, J. Wu, A. Khreishah, Efficient Online Collaborative Caching

in Cellular Networks with Multiple Base Stations, in: 2016 IEEE 13th

International Conference on Mobile Ad Hoc and Sensor Systems (MASS),

2016, pp. 136–144.

[21] E. Bastug, et al., Living on the edge: The role of proactive caching in 5G

wireless networks, IEEE Comm. Magazine 52 (8) (2014) 82–89.

34

[22] X. Wang, et al., Cache in the air: exploiting content caching and delivery

techniques for 5G systems, IEEE Comm. Magazine 52 (2) (2014) 131–139.

[23] K. Zhang, S. Leng, Y. He, S. Maharjan, Y. Zhang, Cooperative content

caching in 5g networks with mobile edge computing, IEEE Wireless Com-

munications 25 (3) (2018) 80–87. doi:10.1109/MWC.2018.1700303.

[24] K. Bilal, E. Baccour, A. Erbad, A. Mohamed, M. Guizani, Collaborative

joint caching and transcoding in mobile edge networks, Journal of Network

and Computer Applications 136 (2019) 86 – 99. doi:https://doi.org/

10.1016/j.jnca.2019.02.004.

[25] A. Mehrabi, M. Siekkinen, A. Yl-Jski, QoE-Traffic Optimization Through

Collaborative Edge Caching in Adaptive Mobile Video Streaming, IEEE

Access 6 (2018) 52261–52276. doi:10.1109/ACCESS.2018.2870855.

[26] T. X. Tran, D. Pompili, Adaptive Bitrate Video Caching and Processing

in Mobile-Edge Computing Networks, IEEE Transactions on Mobile Com-

puting 18 (9) (2019) 1965–1978. doi:{10.1109/TMC.2018.2871147}.

[27] B. Shen, et al., Caching strategies in transcoding-enabled proxy systems for

streaming media distribution networks, IEEE Tran. on Multimedia 6 (2)

(2004) 375–386.

[28] FFmpeg, https://www.ffmpeg.org/, Accessed on 05-11-2019.

[29] S. Borst, V. Gupta, A. Walid, Distributed caching algorithms for content

distribution networks, in: 2010 Proceedings IEEE INFOCOM, 2010, pp.

1–9.

[30] M. Zink, K. Suh, Y. Gu, J. Kurose, Characteristics of YouTube network

traffic at a campus network measurements, models, and implications, Com-

puter Networks 53 (4) (2009) 501 – 514.

[31] 3GPP, TR36.814 v9.2.0: Evolved Universal Terrestrial Radio Access (E-

UTRA); Further advancements for E-UTRA physical layer aspects.

35

Conflicts of Interest Statement

Manuscript title: RAN-aware Adaptive Video Caching in Multi-access Edge Computing

Networks

The authors whose names are listed immediately below certify that they have NO affiliations with or

involvement in any organization or entity with any financial interest, or non-financial interest in the

subject matter or materials discussed in this manuscript.

Authors Names:

Shashwat Kumar

Doddala Sai Vineeth

Antony Franklin A.

Jiong Jin

