
Quick but Odd Growth of Cacti∗

Sudeshna Kolay1, Daniel Lokshtanov2, Fahad Panolan1, and

Saket Saurabh1,2

1 Institute of Mathematical Sciences, Chennai, India

2 University of Bergen, Norway

Abstract

Let F be a family of graphs. Given an input graph G and a positive integer k, testing whether

G has a k-sized subset of vertices S, such that G \ S belongs to F , is a prototype vertex deletion

problem. These type of problems have attracted a lot of attention in recent times in the domain

of parameterized complexity. In this paper, we study two such problems; when F is either a

family of cactus graphs or a family of odd-cactus graphs. A graph H is called a cactus graph

if every pair of cycles in H intersect on at most one vertex. Furthermore, a cactus graph H is

called an odd cactus, if every cycle of H is of odd length. Let us denote by C and Codd, families

of cactus and odd cactus, respectively. The vertex deletion problems corresponding to C and

Codd are called Diamond Hitting Set and Even Cycle Transversal, respectively. In this

paper we design randomized algorithms with running time 12knO(1) for both these problems.

Our algorithms considerably improve the running time for Diamond Hitting Set and Even

Cycle Transversal, compared to what is known about them.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Even Cycle Transversal, Diamond Hitting Set, Randomized Algorithms

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.258

1 Introduction

In the field of parameterized graph algorithms, vertex (edge) deletion (addition, editing)

problems constitute a considerable fraction. In particular, let F be a family of graphs. Given

an input graph G and a positive integer k, testing whether G has a k-sized subset of vertices

(edges) S, such that G − S belongs to F , is a prototype vertex (edge) deletion problem.

Many well known problems in parameterized complexity can be phrased in this language. For

example, if F is a family of edgeless graphs, or forests or bipartite graphs, then it corresponds

to Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal, respectively.

Most of these problems are NP-complete due to a classic result by Lewis and Yannakakis [13],

and naturally a candidate for parameterized study (with respect to solution size). Vertex

Cover, Feedback Vertex Set and Odd Cycle Transversal are some of the most

well studied problem in the domain of parameterized complexity. These problems have led

to identification of several new techniques and ideas in the field.

Recent years have seen a plethora of results around vertex and edge deletion problems, in

the domain of parameterized complexity [3, 4, 8, 9, 10, 11, 12]. In this paper, we continue

this line of research and study two vertex deletion problems. In particular we study the

∗ The research leading to these results has received funding from the European Research Council (ERC)
via grants Rigorous Theory of Preprocessing, reference 267959 and PARAPPROX, reference 306992
and the Bergen Research Foundation via grant “Beating Hardness by Preprocessing".

© Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 258–269

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

S. Kolay, D. Lokshtanov, F. Panolan, and Saket Saurabh 259

problem of deleting vertices to get a cactus or an odd cactus graph. A graph H is called

a cactus graph if every pair of cycles in H intersect on at most one vertex. Furthermore,

a cactus graph H is called an odd cactus graph, if every cycle of H is of odd length. Let

us denote by C and Codd, families of cacti and odd cacti, respectively. The vertex deletion

problems corresponding to C and Codd are called Diamond Hitting Set and Even Cycle

Transversal, respectively. It is important to note here that the name of deleting vertices

to get into Codd is called Even Cycle Transversal, because it is equivalent to deleting a

k-sized subset S such that G − S does not have any cycle of even length. More precisely, we

study the following problems:

Even Cycle Transversal Parameter: k

Input: An undirected graph G and a positive integer k.

Question: Does there exist a set S such that G − S ∈ Codd?

Diamond Hitting Set Parameter: k

Input: An undirected graph G and a positive integer k.

Question: Does there exist a set S such that G − S ∈ C?

It needs to be mentioned that, in this paper, we refer to multigraphs (may have parallel

edges) as graphs. While Odd Cycle Transversal is one of the most well studied problem

in the realm of parameterized complexity, there is only one article about Even Cycle

Transversal in the literature. The structure of the graph without even cycles, or without

cycles 0 modulo some positive integer p, is simple. Thomassen showed that such graphs have

treewidth at most f(p) [16]. Misra et al. [15] used the structural properties of an odd-cactus

graph to design an algorithm for Even Cycle Transversal with running time 50knO(1).

They also give an O(k2) kernel for the problem. On the other hand the family of cacti C

can be characterised by a single excluded minor. In particular, let Θ be a graph on two

vertices that have three parallel edges, then a graph H ∈ C if and only if H does not contain

Θ as a minor. Since Θ is a connected planar graph we obtain a cknO(1) time algorithm as

a corollary to the main results in [8, 11, 12]. It also has O(k2) kernel [7]. However, we are

not aware of exact value of c as all these algorithms use a protrusion subroutine [2]. In this

paper we give the following algorithm for these problems.

◮ Theorem 1. There is a randomised algorithm for Diamond Hitting Set and Even

Cycle Transversal running in time 12knO(1).

Our Methods. Our algorithms use the same methodology that is used for the 4knO(1) time

algorithm for Feedback Vertex Set [1], and its generalization to Planar F Deletion [8].

In both our algorithms, we start by applying some reduction rules to the given instance.

After this, we show that the number of edges incident to any solution S of our problems, is

a constant fraction to the total number of edges in the graph. This counting lemma is our

main technical contribution. We also observe that the analysis for the counting lemma is

tight for an infinite family of graphs and thus the analysis of our randomized algorithms can

not be improved. It is in the same spirit as finding an infinite family of instances for which

an approximation algorithm achieves its approximation ratio.

To apply our reduction rules in a way that this fraction is as small as possible, we study

a more general problem than Even Cycle Transversal, which we call Parity Even

Cycle Transversal. In this problem we are given a graph G and a weight function

w : E(G) → {0, 1} and the objective is to delete a subset S of vertices of size at most k such

IPEC’15

260 Quick but Odd Growth of Cacti

that in G − S there is no cycle whose weight sum is even. Observe that if w assigns one to

every edge then it is same as Even Cycle Transversal. We conclude the introduction by

noting that Diamond Hitting Set and Even Cycle Transversal admit approximation

algorithms with factor 9 and 10 respectively [6, 15].

2 Preliminaries

We denote a graph as G, while its vertex set and edge set as V (G) and E(G) respectively. It

is possible that there are parallel edges between two vertices of a graph. The degree of a

vertex v ∈ V (G), denoted by dG(v), is the number of edges incident on v. The neighbourhood

of v, denoted by NG(v), is the set of vertices that have at least one edge with v. N2
G

(v) is

the set of vertices that have a path of length at most two with v. For a subset of vertices S,

the subgraph of G induced by S is denoted by G[S]. Similarly, for a subset of edges E′, the

subgraph of G induced by E′ is denoted by G[E′]. For S ⊆ V (G), G − S denotes the induced

subgraph G[V (G) − S]. Similarly, for E′ ⊆ E(G), G − E′ denotes the induced subgraph

G[E(G) − E′]. An edge between two vertices u, v ∈ V (G) is denoted by (u, v), while a path

between u, v is denoted by [u, v]. If a sequence of vertices v1, . . . , vt or edges e1, . . . et form

a path, then too we denote this path by [v1, . . . , vt] and [e1, . . . et] respectively. Given two

subsets V1, V2 ⊆ V (G), E(V1, V2) denotes the set of edges in E(G) that have one end point

in V1 and the other in V2. The subdivision of an edge e = (u, v) of a graph G results in a

graph G′, which contains a new vertex w, and where the edge e is replaced by two new edges

(u, w) and (w, v). A graph Ĝ is a subdivision of a graph G if there is a sequence of graphs

{G1, G2, . . . , Gt}, with G1 = G and Gt = Ĝ, where for each 1 < i ≤ t, Gi is obtained by the

subdivision of an edge of Gi−1.

◮ Definition 2. Given a graph G, a cut vertex of G is a vertex v such that G − {v} has

more components than G. A block of G is a maximal connected subgraph that does not

contain any cut vertices of G. A block-decomposition of G is the collection of all blocks.

It corresponds to a tree T , where a block X of G corresponds to a vertex tX of T , and

(tX , tY) ∈ E(T) if the intersection of the corresponding blocks X, Y is exactly one cut vertex.

A block decomposition of a graph can be built in polynomial time.

◮ Lemma 3 (†). 1 Let T be a tree. Let V1 = {v ∈ V (T) | dT (v) = 1}, V2 = {v ∈

V (T) | dT (v) = 2} and V3 = {v ∈ V (T) | dT (v) ≥ 3}. Then
∑

v∈V3
dT (v) ≤ 3|V1|.

◮ Definition 4. A cactus graph is a connected graph where any two cycles have at most

one vertex in common. Equivalently, every edge of the graph belongs to at most one cycle.

Another equivalent definition is that a block of a cactus graph can be either a cycle or an

edge. A graph where every component is a cactus graph is called a forest of cacti.

◮ Definition 5. Let H be a graph on a pair of vertices {u, v} that have 3 parallel edges

between them. A graph is called a diamond graph if it is obtained by a number of subdivisions

of H.

The following Proposition characterizes the class of forests of cacti.

◮ Proposition 6. A graph is a forest of cacti if and only if it does not have a diamond as a

subgraph.

1 Results marked with † can be found in the full version.

S. Kolay, D. Lokshtanov, F. Panolan, and Saket Saurabh 261

The definition of diamond graphs and the characterisation of forests of cacti have been taken

from [6]. Please refer to [5] for further details on notations and definitions in Graph Theory.

3 Counting Lemma

In this section, we consider a graph G which has a set S, the deletion of which results in a

cactus graph. Moreover, each vertex of the cactus graph has at least three distinct neighbors

in G or shares at least two edges with S. Then, it is possible to bound the number of edges

in E(G − S) by the number of edges in E(S, V (G) \ S). In fact, we exhibit a family of graphs

where this bound is tight, up to a constant difference.

◮ Lemma 7. Let G be a graph and S ⊆ V (G) such that G − S is a cactus graph and for all

v ∈ V (G) \ S one of the following two conditions holds:

1. v has at least 3 distinct neighbors in G, or

2. there are at least two edges in E(v, S)

Then |E(G − S)| ≤ 5|E(S, V (G) \ S)|.

Proof. Let G′ = G−S. We know that G′ is a cactus graph. Let T be the block decomposition

tree of G′ rooted at a vertex of degree one. Let B = E(G′) and C = E(S, V (G) \ S) We

need to show that |B| ≤ 5|C|.

Towards the proof, we first define some notations. Let X is a block of size at most 2 (an

edge or a cycle of length 2) in G′ such that tX has only one child, which is a leaf node in T .

Then we say X and Y together form a super block. If blocks X and Y form a super block Z,

where tY is a leaf node, then by parent of the super block Z, we mean the parent of tX in T .

All other blocks, which are not part of any super block, are called a normal blocks. By size

of a (super/normal) block Z, denoted by size(Z), we mean the number of edges in the block

Z. To bound the number of edges in G′ it is enough to bound the total number of edges in

super blocks and normal blocks. Let Bℓ be the set containing all super blocks and normal

blocks which correspond to leaves in T . Let Bn be the set of normal blocks which are not

part of Bℓ. Now we define Bℓ as the set of edges in the (normal/super) blocks which are

part of Bℓ, and Bn as the set of edges in the normal blocks which are part of Bn. To bound

the cardinality of B, it is enough to bound the cardinality of Bℓ and Bn, individually. We

partition the edges in C as follows. We say an edge e ∈ C is incident to a (super/normal)

block Z if it is incident to a vertex u in Z, which is not the cut vertex shared with the parent

of Z. We use EZ to denote the set of edges in C, which are incident to the (super/normal)

block Z. Let Cℓ be the set of edges in C which are incident to (super/normal) blocks in

Bℓ. Similarly, let Cn be the set of edges in C which are incident to blocks in Bn. Let ri be

the number of blocks of size i in Bℓ. Let B
(i)
ℓ

be the set of edges in blocks of size i in Bℓ.

Let C
(i)
ℓ

be the set of edges in Cℓ which are incident to blocks of size i in Bℓ. Notice that

Bℓ =
⊎

i
B

(i)
ℓ

and Cℓ =
⊎

i
C

(i)
ℓ

.

◮ Claim 1. ri ≤
|C

(i)

ℓ
|

2 for i ≤ 4 and ri ≤
|C

(i)

ℓ
|

i−3 for i ≥ 5.

Proof.

Bound on r1. Let X be a block of size one in Bℓ. That is, the block X is a single edge

(x, y) and there is a vertex in {x, y} which has degree one in G′. Let x be the degree one

vertex. By our assumption at least 2 edges in C
(1)
ℓ

are incident on x. This implies that

|EX | ≥ 2. Thus we have that |C
(1)
ℓ

| =
∑

{X:size(X)=1} EX ≥ 2r1. Hence r1 ≤
|C

(1)

ℓ
|

2 .

IPEC’15

262 Quick but Odd Growth of Cacti

Bound on r2. Let X be a block of size two in Bℓ. If X is a normal block, then the block

X is a cycle y, x, y of length 2. Since X is leaf block, there is a vertex in X which is not a

cut vertex in G′. Let x be the vertex in X such that x is not a cut vertex. This implies

that NG′(x) = {y}. Thus, by our assumption, either |E(x, S)| ≥ 2 or x has two neighbors

in S. In either case, |E(x, S)| ≥ 2. That is, |EX | ≥ 2. If X is a super block, then X

consists of two blocks Y and Z of size 1 each, such that tY has only one child tZ and tZ

is a leaf node in T . Let Z = (x, y) be such that x has degree one in G′. Thus, by our

assumption, we can conclude that |E(x, S)| ≥ 2. That is, |EX | ≥ 2. Thus, we have that

|C
(2)
ℓ

| =
∑

{X:size(X)=2} EX ≥ 2r2. Hence, r2 ≤
|C

(2)

ℓ
|

2 .

Bound on r3. Let X be a (super/normal) block of size three in Bℓ. That is, either the

block X is a cycle x, y, z, x of length 3, or it is a super block consisting of two blocks, where

one of them is a cycle of length 2 and other is an edge. If X is a cycle x, y, z, x, then tX is a

leaf in T . Let z be the only cut vertex in {x, y, z}. This implies that the degrees of x and y

are exactly 2 in G′. Thus, by our assumption, |E(x, S)| ≥ 1 and |E(y, S)| ≥ 1. This implies

that |EX | ≥ 2.

Suppose X is a super block. Then X consists of a cycle x, y, x and an edge (y, z). In this

case, only one vertex, either x or z, will be shared with the parent of X and all other vertex

will not have a neighbor in G′ − X. Suppose x is the shared vertex with the parent of the

block X. Then the number of distinct neighbors of y and z are exactly 2 and 1 respectively in

G′. This implies that |E(y, S)| ≥ 1 and |E(z, S)| ≥ 2. Consequently, |EX | ≥ 3. By a similar

argument, we can show that if z is the shared vertex of the super block X with its parent,

then |EX | ≥ 3. Thus, we have that |C
(3)
ℓ

| =
∑

{X:size(X)=3} EX ≥ 2r3. Hence, r3 ≤
|C

(3)

ℓ
|

2 .

Bound on r4. Let X be a (super/normal) block of size four in Bℓ. That is, either the block

X is a cycle of length 4 or it is a super block consisting of two blocks. If X is a cycle of

length 4, then tX is a leaf in T . This implies that the degree of every vertex in X, except

the cut vertex shared with the parent block, is exactly 2 in G′. This implies that |EX | ≥ 3.

Suppose X is a super block consisting of two blocks Y and Z, where size of Y is at most

2 and tZ is a leaf node in T . If size(Y) = 1, then Z is a cycle of length 3. This implies that

at least two vertices in Z has degree exactly 2 in G′. Thus, by our assumption, |EZ | ≥ 2 and

this implies that |EX | ≥ 2.

If size(Y) = 2, then both Y and Z are cycles of length 2. Let x, y, x be the block Y and

y, z, y be the block Z. Thus, the number of distinct neighbors of y and z in G′ is 2 and 1

respectively. By our assumption, this implies that |E(y, S)| ≥ 1 and |E(z, S)| ≥ 2. Thus, we

have that |EX | ≥ 3. Hence, we conclude that |C
(4)
ℓ

| =
∑

{X:size(X)=4} EX ≥ 2r4. This means,

r4 ≤
|C

(4)

ℓ
|

2 .

Bound of ri for i ≥ 5. Let X be a (super/normal) block of size at least five in Bℓ. That

is, either the block X is a cycle of length i, or it is a super block consisting of two blocks Y

and Z such that Z is a cycle of length at least i − 2 and tZ is a leaf in T . In either case,

X contains at least i − 3 vertices (excluding the cut vertex shared with the parent block)

having exactly 2 distinct neighbors in G′. This implies that |EX | ≥ i − 3. Hence, we have

that |C
(i)
ℓ

| =
∑

{X:size(X)=i} EX ≥ (i − 3)ri. Thus, ri ≤
|C

(i)

ℓ
|

i−3 . ◭

S. Kolay, D. Lokshtanov, F. Panolan, and Saket Saurabh 263

•

•

•

X

Y1

Y2

•

•

•

X

Y1

Y2

•

•

•

X

Y1

Y2

•

•

•

X

Y1

Y2

Figure 1 A schematic diagram, when a block X of size at most 2 has only one child which is a

super block composed of Y1 and Y2. Here the red colored dotted edges belongs to E(S, V (G) \ S).

Now we can bound the cardinality of Bℓ. Let C(≤4)

ℓ
=

⋃

i≤4 C
(i)
ℓ

and C(≥5)

ℓ
=

⋃

i≥5 C
(i)
ℓ

.

|Bℓ| =
∑

i

|B
(i)
ℓ

| =
∑

i

i · ri (1)

≤ 2|C(≤4)

ℓ
| +

∑

i≥5

i

i − 3
|C

(i)
ℓ

| (By Claim 1)

≤ 2|C(≤4)

ℓ
| +

5

2
|C(≥5)

ℓ
| (2)

What remains is to bound the cardinality of Bn. Let B(≥3)
n be the set of blocks in Bn

such that the corresponding nodes in T have degree at least 3. That is,

B(≥3)

n = {X ∈ Bn | dT (tX) ≥ 3}.

Let B(≥3)
n be the set of edges present in the blocks in B(≥3)

n . We first bound the cardinality

of B(≥3)
n and then the cardinality of Bn \ B(≥3)

n . For a set X ⊆ V (G′) let numcutX and

numnoncutX denote the number of cut vertices and non-cut vertices in X, respectively.

|B(≥3)

n | =
∑

X∈B
(≥3)
n

|X|

=
∑

X∈B
(≥3)
n

numcutX + numnoncutX (3)

The quantity
∑

X∈B
(≥3)
n

numcutX , is at most
∑

X∈B
(≥3)
n

dT (tX). This is bounded by three

times the number of leaves in T (by Lemma 3). Thus by Claim 1,

∑

X∈B
(≥3)
n

numcutX ≤
3

2
|C(≤4)

ℓ
| +

3

2
|C(≥5)

ℓ
| (4)

Let C≥3
n be the set of edges in Cn which are incident to blocks in B(≥3)

n , and C≤2
n be the set of

edges in Cn which are incident to blocks in Bn \ B(≥3)
n . For each non-cut vertex x in the block

X ∈ B(≥3)
n , there is at least one edge from C(≥3)

n which is incident on x. This implies that
∑

X∈B
(≥3)
n

numnoncutX ≤ |C(≥3)

n | (5)

Applying Equations 4 and 5 in Equation 3, we get that

|B(≥3)

n | ≤
3

2
|C(≤4)

ℓ
| +

3

2
|C(≥5)

ℓ
| + |C(≥3)

n | (6)

Now we bound the cardinality of Bn \ B(≥3)
n . First, we bound the number of edges in the

blocks in Bn \ B(≥3)
n which are not incident to any edge in Cn. Let X be a block in Bn \ B(≥3)

n ,

IPEC’15

264 Quick but Odd Growth of Cacti

•

•

•

X

Y

Z

•

•

•

X

Y

Z

•

•

•

X

Y

Z

•

•

•

X

Y

Z

Figure 2 A schematic diagram, when a block X of size at most 2 has only one child Y such that

size(Y) ≤ 2 and dT (tY) = 2. Here the red colored dotted edges belongs to E(S, V (G) \ S).

such that there is no edge from Cn incident on it. Since tX has degree 2 in T , the number of

cut vertices in X is 2. Now, we claim that size(X) ≤ 2. Suppose not. Then there is a vertex

x in X such that the degree of x in G′ is two. Thus, by our assumption, x is incident to

an edge from Cn. This contradicts the fact that there is no edge from Cn is incident on X.

Since X is a block in Bn \ B(≥3)
n , we have that tX has only one child. Let the child of tX be

tY . Now we have the following claim.

◮ Claim 2. Either dT (tY) ≥ 3 or Y ∈ Bn \ B(≤3)
n such that there is an edge from C(≤2)

n

incident on Y .

Proof. Towards the claim, we first show that Y /∈ Bℓ. Suppose not. If Y is a normal

block in Bℓ, then X and Y together will form a super block and it contradicts the fact that

X ∈ Bn \ B(≥3)
n . Suppose Y is a super block in Bℓ. Let Y be the block consisting of blocks Y1

and Y2 where tY2
is a leaf in T (See Figure 1). Consider the shared vertex x by the blocks

X and Y1. The number of neighbors of x in G′ is 2. Thus, by our assumption, x is incident

with a vertex in Cn. This contradicts the fact that X be a block in Bn \ B(≥3)
n which is not

incident to any edge in Cn. Now to prove the claim the only case remaining is Y ∈ Bn \ B(≥3)
n ,

but dT (tY) = 2 and there is no edge from C(≤2)
n incident on Y (See Figure 2). Then, the

size of Y is at most 2. Consider the shared vertex x by the blocks X and Y . The number of

neighbors of x in G′ is 2. Thus by our assumption x is incident with a vertex in Cn. This

contradicts the fact that X be a block in Bn \ B(≥3)
n which is not incident to any edge in Cn.

This proves the claim. ◭

Using the above claim we can show that the total number of edges in the blocks in

Bn \ B(≥3)
n which are not incident to any edge in Cn is bounded by

2

|C(≤2)

n | +
∑

{t∈V (T):dT (t)≥3}

1

 ≤ 2|C(≤2)

n | + 2
∑

i

ri

≤ 2|C(≤2)

n | + |C(≤4)

ℓ
| + |C(≥5)

ℓ
| (By Claim 1) (7)

Now, we bound the number of edges in the blocks in Bn \ B(≥3)
n which are incident to some

edges in Cn. Let X be a such a block. If the size of X is at least 3, then there are i − 2

vertices in X such that each of these vertices will have only two neighbors in G′. By our

assumption, this implies that there are at least i − 2 edges from C(≤2)
n which are incident on

X. Thus, the total number of edges, in the blocks in Bn \ B(≥3)
n , which are not incident to

any edge in Cn, is bounded by 3|C(≤2)
n |. Hence,

|Bn \ B(≥3)

n | = 5|C(≤2)

n | + |C(≤4)

ℓ
| + |C(≥5)

ℓ
| (By Claim 1) (8)

S. Kolay, D. Lokshtanov, F. Panolan, and Saket Saurabh 265

•

•

• •

•

• • •

•

• •

•

. . .

e1 e2

e3

s

Figure 3 A tight example of Lemma 7. Here S = {s}.

Hence,

|B| = |Bℓ| + |B(≥3)

n | + |Bn \ B(≥3)

n |

=
9

2
|C(≤4)

ℓ
| + 5|C(≥5)

ℓ
| + 5|C(≤2)

n | + |C(≥3)

n | (By Equations 2,6 and 8)

≤ 5|C|

This completes the proof of the Lemma. ◭

The bound given in Lemma 7 is in fact tight. Figure 3 represents a family of tight instances.

From the figure, let S = {s}. Let Ecross = E(S, V (G) \ S). Let E′ = Ecross − {e1, e2, e3}. Let

Ecactus = E(G − S). We see that for every pair of consecutively occuring triangle and double

parallel edges in the cactus, there is an edge in Ecross. Thus, |Ecactus| = 5(|E′|). This means

that |Ecactus| = 5(|Ecross| − 3). Hence, this is a family of tight instances.

4 Algorithm for Even Cycle Transversal

In this section, we give a randomized FPT algorithm for Even Cycle Transversal. This

problem is a special case of the following problem.

Parity Even Cycle Transversal Parameter: k

Input: A graph G, a weight function w : E(G) → {0, 1} and positive integer k

Question: Is there a set S ⊆ V (G) of size k such that G − S does not contain any cycle

C with Σe∈E(C)w(e) = 0 mod 2?

We call a cycle C an even-parity (odd-parity) cycle if Σe∈E(C)w(e) = 0 mod 2 (Σe∈E(Cw(e) =

1 mod 2). For compactness of notation, we define the function parity : 2E(G) → {0, 1}, where

for an edge set E′ ∈ E(G), parity(E′) = Σe∈E′w(e) mod 2. In other words, for an even-parity

(odd-parity) cycle C, parity(E(C)) = 0 (parity(E(C)) = 1). This should not be confused with

cycles of even (odd) length, since we will refer to these cycles simply as even and odd cycles.

In what follows, we give a randomized FPT algorithm for Parity Even Cycle Trans-

versal, that runs in 12knO(1) time. First, we preprocess the input graph by applying

some reduction rules. A reduction rule reduce an instance (I1, k) of a problem Π to another

instance (I2, k′) of Π. The reduction rule is safe when (I1, k) is a Yes instance if and only if

(I2, k′) is a Yes instance. We describe the reduction rules below and prove their safeness.

We apply the following rules exhaustively.

◮ Reduction Rule 1. If there is a vertex v in G which is not part of any even-parity cycle,

then delete v from G.

◮ Lemma 8 (†). Reduction Rule 1 is safe.

IPEC’15

266 Quick but Odd Growth of Cacti

x y z x z

Figure 4 Reduction Rule 2. Here weight of new edge (x, z), w((x, z)) = (w((x, y)) + w((y, z))

mod 2.

In the following Lemma, we show that, on a graph where all edges have weight 1, testing

whether a vertex is contained in an even cycle can be done in polynomial time.

◮ Lemma 9. Given a graph G, where every edge has weight 1, and a vertex v ∈ V (G), there

is a polynomial time algorithm that checks whether there is an even cycle containing v.

Proof. The vertex v is contained in an even cycle C if and only if there is a neighbour

u ∈ NG(v) such that the edge (u, v) ∈ E(C). For each u ∈ NG(v), we check whether there is

an even cycle containing the edge (u, v). This is equivalent to checking whether there is an

odd path P between v and w in the graph G′ = G − (u, v). In [14], the Parity Multiway

Cut (PMWC) problem was posed: If we are given a graph with a set of terminal vertices

To ⊎ Te, does there exist a set S of at most k vertices such that G − S does not have any

even path between vertices of Te and odd paths between vertices of To. It was shown that

this problem has an FPT algorithm, when parameterised by the size k of the deletion set S.

The running time of the algorithm is 22O(k)

nO(1). We observe that our problem is a special

case of the above problem. In our case, To = {u, v}, Te = ∅ and k = 0. In other words, we

wish to check whether there are any odd paths between u, v in G′. Since 22O(k)

= O(1), the

algorithm for PMWC enables us to check in polynomial time, whether there are no odd

paths between u and v in G′. If the algorithm returns Yes, then we know that there are no

even cycles in G containing the edge (u, v). Otherwise, we conclude that there is an even

cycle in G containing v. If, for every edge e ∈ E(G) adjacent to v, there is no even cycle

containing the edge e, then we conclude that there is no even cycle in G that contains v. ◭

This also gives us a polynomial time algorithm to check whether a vertex of a (0, 1)

edge-weighted graph is contained in an even-parity cycle.

◮ Lemma 10 (†). Given a graph G, where every edge has weight 0 or 1, and a vertex

v ∈ V (G), there is a polynomial time algorithm that checks whether there is an even-parity

cycle containing v.

◮ Reduction Rule 2. Let [x, y, z] be a path in G and degree of y is exactly 2. Then delete y

from G and add a new edge e1 = (x, z). w(e1) = w((x, y))+w((y, z)) mod 2. (See Figure 4).

◮ Lemma 11. Reduction Rule 2 is safe

Proof. Suppose C is a cycle of parity p in G, which contains the vertex y. Then, since

dG(y) = 2, C must contain the path [x, y, z]. In the reduced graph G′, C is reduced to a

cycle C ′ which contains the edge e1 = (x, z). By definition of w(e1), the parity of the reduced

cycle is still p. On the other hand, if C ′ is a cycle of parity p in the reduced graph G′, and

C ′ does not contain the new edge e1, then C ′ is a cycle of the original graph G. Otherwise,

there is a corresponding cycle C in G, which contains the path [x, y, z] instead of the newly

added edge e1. Again, by definition of w(e1), the parity of C ′ and C are the same.

Now, suppose (G, k) is a Yes instance for Parity Even Cycle Transversal. Let

S be a solution set in G. Then S hits all even-parity cycles of G. We have argued that

any cycle in G that contains y also contains x and z. Thus, if y was contained in S, then

S. Kolay, D. Lokshtanov, F. Panolan, and Saket Saurabh 267

x y z
0

1
x z

0

1

Figure 5 Reduction Rule 3.

x1 y x2

0

1

0

1

x1 x2

0

1

Figure 6 Reduction Rule 4.

S ∪ {x} − y is also a solution that hits all even-parity cycles of G. Since the parity of cycles is

preserved by this reduction, it implies that S ∪ {x} − y is a solution that hits all even-parity

cycles of the reduced graph, and that the reduced instance is also a Yes instance.

On the other hand, suppose the reduced instance is a Yes instance. let S′ be a solution

set of G′. We will show that S′ is also a solution for G. Suppose there is an even-parity

cycle C in G, that is not hit by S′, then this cycle must have the vertex y. This implies that

the cycle must have the path [x, y, z]. Let P = C − {y}. Look at the cycle C ′ = P ∪ e1 in

G′. This is also an even-parity cycle which is not hit by S′. This contradicts the fact that

S′ is a solution set of G′. Thus, (G, k) must be a Yes instance of Parity Even Cycle

Transversal. ◭

◮ Reduction Rule 3. Let x, y be two vertices with two parallel edges e1 and e2. Let w(e1) =

1, w(e2) = 0. Further, e3 = (y, z) is an edge in G, with z 6= x, and dG(y) = 3. Then delete y

from the graph G and add two new edges f1, f0 = (x, z). Define w(f1) = 1 and w(f0) = 0

(See Figure 5).

◮ Lemma 12 (†). Reduction Rule 3 is safe

◮ Reduction Rule 4. Let {x1, y} be a pair of vertices that have two parallel edges e1 and e2,

with w(e1) = 1, w(e2) = 0. Let there be another vertex x2 6= x1 such that {x2, y} have two

parallel edges e3 and e4. It also holds that w(e3) = 1, w(e4) = 0. Let dG(y) = 4. Then delete

y from G and add two new parallel edges f1, f0 between x1 and x2. We define w(f1) = 1

and w(f0) = 0. (See Figure 6).

◮ Lemma 13 (†). Reduction Rule 4 is safe

We give the definition of an odd-parity (even-parity) cactus graph and relate it to Parity

Even Cycle Transversal.

◮ Definition 14. A cactus graph, where the edges have weights from {0, 1}, is an odd-parity

(even-parity) cactus graph when every block of the graph is either an odd-parity (even-parity)

cycle or an edge.

◮ Lemma 15 (†). Let G be a connected graph and w : E(G) → {0, 1} be a weight function

on the edges. G does not contain any cycle C with w(C) = 0 mod 2 if and only if G is an

odd-parity cactus.

Given a graph G, let S be a set of vertices that hits all even-parity cycles. Then each

component of G − S does not contain an even-parity cycle. By Lemma 15, it follows that

G − S is a forest of odd-parity cacti.

IPEC’15

268 Quick but Odd Growth of Cacti

◮ Observation 1 (†). Each connected component of the reduced graph for Parity Even

Cycle Transversal satisfies the conditions of Lemma 7.

Now, we are ready to describe the algorithm for Parity Even Cycle Transversal.

◮ Theorem 16. Parity Even Cycle Transversal has a randomized algorithm running

in 12knO(1) time.

Proof. Let S be a solution set of at most k vertices such that G − S is a forest of odd-parity

cacti. By Lemma 7, for each component C of G, |E(C − S)| ≤ 5
6 |E(C ∪ S)|. This implies

that |E(G − S)| ≤ 5
6 |E(G)|.

Our algorithm is as follows: We define a set S = ∅ to start with. We pick an edge

e = (u, v) ∈ E(G) uniformly at random and then, with equal probability, we pick one of the

two endpoints. We delete this vertex from the current graph and put it into S. In other

words, we pick a vertex with probability proportional to its degree. We do this for k steps,

at the end of which we check if the constructed set S is a solution set for Parity Even

Cycle Transversal. Recognising a forest of odd-parity cacti is equivalent to building

a block-decomposition and checking if a block is a odd-parity cycle or an edge. Thus, the

entire procedure can be implemented in polynomial time.

Notice that the final set S is a solution set if in each step i, with respect to the current

set of vertices in S, we pick a vertex v such that in G − S there is a k − i-sized solution set

Si containing v. We will call such a vertex a good vertex for the step i. In step i ≤ k, the

probability, that a good vertex of step i is picked, is at least 1
2 · 1

6 = 1
12 . We succeed in finding

a solution set S for Parity Even Cycle Transversal if every step picks a good vertex of

that step. Thus, the probability of failure in the k-step procedure is at most 1 − (1
12)k. We

repeat the above procedure 12k times and if in any round we obtain a solution set S of size

at most k, we output that set. The probability of failure of this many-round procedure is at

most (1 − (1
12)k)12k

∼ e−1. The running time of the many-round procedure is 12knO(1). ◭

◮ Corollary 17. Even Cycle Transversal has a randomized algorithm running in

12knO(1) time.

5 Algorithm for Diamond Hitting Set

In this section, we give a randomized FPT algorithm for Diamond Hitting Set. It was

shown in [6] that there is a set of safe reduction rules that can be applied to reduce the input

graph to a graph with certain properties.

◮ Proposition 18 ([6]). There are polynomial time reduction rules, on application of which,

the input instance of Diamond Hitting Set is reduced to an equivalent instance where

every vertex either has at least three distinct neighbours or three parallel edges.

◮ Observation 2 (†). Each connected component of the reduced graph for Diamond Hitting

Set satisfies the conditions of Lemma 7.

Now, we can design an algorithm for Diamond Hitting Set, that is very similar to the

algorithm for Parity Even Cycle Transversal.

◮ Theorem 19 (†). Diamond Hitting Set has a randomized algorithm running in 12knO(1)

time.

S. Kolay, D. Lokshtanov, F. Panolan, and Saket Saurabh 269

References

1 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop

cutset problem. (JAIR), 12:219–234, 2000.

2 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (meta) kernelization. In FOCS 2009, pages 629–638, 2009.

3 Yixin Cao. Unit interval editing is fixed-parameter tractable. In ICALP 2015, volume 9134

of LNCS, pages 306–317. Springer, 2015.

4 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Transac-

tions on Algorithms, 11(3):21:1–21:35, 2015.

5 R. Diestel. Graph Theory. Springer, Berlin, second ed., electronic edition, February 2000.

6 Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. Hitting diamonds and growing cacti.

In IPCO 2010, pages 191–204, 2010.

7 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saur-

abh. Hitting forbidden minors: Approximation and Kernelization. In Thomas Schwentick

and Christoph Dürr, editors, STACS 2011, volume 9 of (LIPIcs), pages 189–200, Dagstuhl,

Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

8 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar f-deletion:

Approximation, kernelization and optimal FPT algorithms. In FOCS 2012, pages 470–479,

2012.

9 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for min-

imum fill-in. SIAM J. Comput., 42(6):2197–2216, 2013.

10 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.

Uniform kernelization complexity of hitting forbidden minors. In ICALP 2015, volume

9134 of LNCS, pages 629–641. Springer, 2015.

11 Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé. Hit-

ting and harvesting pumpkins. SIAM J. Discrete Math., 28(3):1363–1390, 2014.

12 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi

Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion

decompositions. In ICALP 2013, volume 7965 of LNCS, pages 613–624. Springer, 2013.

13 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-

ties is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980.

14 Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of multiway cut with

parity constraints. In ICALP 2012, pages 750–761, 2012.

15 Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Parameter-

ized algorithms for even cycle transversal. In WG 2012, pages 172–183, 2012.

16 Carsten Thomassen. On the presence of disjoint subgraphs of a specified type. Journal of

Graph Theory, 12(1):101–111, 1988.

IPEC’15

	Introduction
	Preliminaries
	Counting Lemma
	Algorithm for Even Cycle Transversal
	Algorithm for Diamond Hitting Set

