Header menu link for other important links
X
Quantum fluctuation in thermopower at the topological phase transition in CaSrX (X: Si, Ge, Sn, Pb) studied from first principles theory
P.C. Sreeparvathy,
Published in Institute of Physics Publishing
2019
PMID: 30566909
Volume: 31
   
Issue: 9
Abstract
The present density functional calculations propose the compounds CaSrX (X: Si, Ge, Sn, Pb) as strong topological insulators, with appreciable thermoelectric properties. Emergence of Dirac semi-metallic states has been observed in CaSrX (X: Si, Ge, Sn, Pb), which is induced by uni-axial strain along 'b' axis. CaSrSi and CaSrGe evolved as normal semiconductors with uni-axial strain. The trivial and non-trivial topological phases are evaluated by band inversion and Z 2 topological invariants. A comprehensive analysis of thermopower, electrical conductivity scaled by relaxation time at these Dirac semi-metallic states exposes the highly oscillating behaviour, which gives insight to quantum oscillations driven by uni-axial strain. Further the thermoelectric properties at strong topological insulating states and normal insulating states have been summarized, which reveals the potential thermoelectric properties of these materials. © 2019 IOP Publishing Ltd.
About the journal
JournalJournal of Physics Condensed Matter
PublisherInstitute of Physics Publishing
ISSN09538984