Header menu link for other important links
X
Quantized point vortex equilibria in a one-way interaction model with a Liouville-type background vorticity on a curved torus
Published in American Institute of Physics Inc.
2022
Volume: 63
   
Issue: 6
Abstract
We construct point vortex equilibria with strengths quantized by multiples of 2π in a fixed background vorticity field on the surface of a curved torus. The background vorticity consists of two terms: first, a term exponentially related to the stream function and a second term arising from the curvature of the torus, which leads to a Liouville-type equation for the stream function. By using a stereographic projection of the torus onto an annulus in a complex plane, the Liouville-type equation admits a class of exact solutions, given in terms of a loxodromic function on the annulus. We show that appropriate choices of the loxodromic function in the solution lead to stationary vortex patterns with 4n point vortices of identical strengths, n N. The quantized point vortices are stationary in the sense that they are equilibria of a "one-way interaction"model where the evolution of point vortices is subject to the continuous background vorticity, while the background vorticity distribution is not affected by the velocity field induced by the point vortices. By choosing loxodromic functions continuously dependent on a parameter and taking appropriate limits with respect to this parameter, we show that there are solutions with inhomogeneous point vortex strengths, in which the exponential part of the background vorticity disappears. The point vortices are always located at the innermost and outermost rings of the torus owing to the curvature effects. The topological features of the streamlines are found to change as the modulus of the torus changes. © 2022 Author(s).
About the journal
JournalData powered by TypesetJournal of Mathematical Physics
PublisherData powered by TypesetAmerican Institute of Physics Inc.
ISSN00222488