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Cantilever beams under the influence of electrostatic force form an important subclass of

microelectromechanical system (MEMS) and nanoelectromechanical system. Most of the studies

concerning these micro-nano resonators are centered around uniform cantilever beams. In this

paper, we have investigated another class of micro-resonators consisting of non-uniform cantilever

beams. The study is focused around investigating pull-in voltage and resonance frequency of

non-uniform cantilever beams when they operate in the linear regime about different static

equilibriums. In this paper, we term this frequency as “linear frequency.” Calculation of the linear

frequency is done at different static equilibriums corresponding to different DC voltages. We have

studied two classes of beams, one with increasing cross sectional area from the clamped edge

(diverging beam) and other with decreasing cross sectional area from the clamped edge (converging

beam). Within each class, we have investigated beams with linear as well as quartic variation in

width. We start by obtaining Euler beam equation for non-uniform cantilever beams considering

large deflection and their corresponding exact mode shapes from the linear equation. Subsequently,

using the Galerkin method based on single mode approximation, we obtain static and dynamic

modal equations for finding pull-in voltage and resonance frequency as a function of DC voltage,

respectively. We found that the linear frequency of converging beams increases with increase in

non-uniform parameter (a) while those of diverging beams decreases with a. A similar trend is

observed for pull-in voltage. Within the converging class, beams with quartic variation in width

show significant increase in both frequency and pull-in voltage as compared to corresponding

linearly tapered beams. In quantitative terms, converging beams with quartic variation in width and

a ¼ �0:6 showed an increase in linear frequency by a factor of 2.5 times and pull-in voltage by 2

times as compared to commonly used uniform beams. Our investigation can prove to be a step

forward in designing highly sensitive MEMS sensors and actuators.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4936321]

I. INTRODUCTION

Electrostatically actuated microelectromechanical

system (MEMS) cantilever beams form an excellent class of

resonator for various devices. Most of these resonant

MEMS/nanoelectromechanical system (NEMS) devices such

as mass sensor, temperature sensor, and pressure sensor1–3

operate at resonance frequency of the structure. In order to

improve the performance of MEMS devices, tuning of the

resonance frequency has caught attention of researchers in

the past.4–7 Attempts have been made to tune frequency of

cantilever beams by reducing the dimensions to nano scale,8

using nonlinear effect to soften or harden the system.5–7,9

Therefore, it is vital to compute an accurate resonance

frequency of such resonators during their design phase.

Apart from computing resonance frequency, knowledge of

the pull-in voltage is also important to achieve stable operat-

ing range.5 A system of cantilever beam separated from the

bottom electrode by a gap d0 forms a parallel plate capaci-

tance system as shown in Fig. 1(a). On application of volt-

age, the electrostatic force tends to attract cantilever towards

fixed electrode; however, the spring force (stiffness) of

cantilever resists this force. With further increase in voltage,

the electrostatic force dominates, and the beam is pulled

towards fixed electrode. This voltage at which restoring force

could no longer balance attractive electrostatic force is

known as pull-in voltage. Thus, the determination of the

pull-in voltage is extremely important before designing and

operating the device.

Researchers in the past have modeled resonators and

obtained pull-in parameters by accounting various effects.10–16

However, these models are limited to uniform cantilever

beams. At the same time, a few studies performed the compu-

tation of frequencies of non uniform cantilever beams as

well.17–20 Mabie and Rogers18 and Lau19 obtained the linear

frequency of double tapered beam with tip mass by expressing

the mode shape in terms of Bessel functions. In yet another

study, Mabie and Roger20 analyzed the beam with constant

width and linearly tapered thickness using same methodology.

At the same time, special cases of tapering were also studied

by William and Banerjee21 on axially loaded beams, Auciello

and Nole22 by obtaining solution in terms of Bessel Function,

and Wang23 with the help of hypergeometric functions. For

MEMS and NEMS applications, tapering in width (rather than

thickness) is of interest as it is pertinent to microfabrication

techniques where arbitrary planar geometry (with constanta)Electronic mail: ashok@iith.ac.in
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thickness) can be fabricated with existing methods. In this

regard, Mabie and Rogers20 and Wang24 numerically inte-

grated the differential equation corresponding to the beam with

varying width alone and obtained the frequency for various

taper parameters. Abrate25 proposed a method to transform the

linear governing equation for special type of nonuniform width

to that of a uniform beam by introducing a function. In this pa-

per, we focus on non-uniform cantilever beam and investigate

the effect of non-uniformity on frequency as well as pull-in

voltage of non-uniform cantilever based resonators. In present

study, we have used the transformation proposed by Abrate to

find mode shape based on linear equation; however, we use

this mode shape to study the influence of nonlinear curvature

effect due to large DC voltage on the linear frequency of non-

uniform cantilever beam using the Galerkin approach.

To compute the pull-in voltage in MEMS, several

authors have worked towards obtaining its closed form

expression. Nathanson et al.10 obtained simplest form of

pull-in voltage expression by modeling the cantilever beam

as a lumped spring-mass system considering uniform gap.

To include the effect of non-uniform gap between beams due

to deflection with respect to fixed electrode, Pamidighantam

et al.11 included the effects of partial electrodes, axial stress,

non-linear stiffening, charge-redistribution, fringing fields,

etc., to obtain closed form expression for pull-in voltage.

Osterberg and Senturia12 proposed another closed form

expression for pull-in voltage including the corrections based

on finite element simulations. Chowdhury et al.26 obtained a

closed form model for calculating the pull in voltage based

on capacitance formula given by Van Der Meijs and

Fokkema.27 Later, Ramakrishnan and Srinivasan28 found

that the model obtained by Chowdhury et al.26 is limited to a

range of selective dimensions. Consequently, they proposed

closed form models based on different capacitance models

available in literature to calculate the pull-in voltage. After

validating the models with Finite Element Analysis (FEA)

based software, they concluded that different capacitance

models have to be used for different ranges of beam dimen-

sions. Later, Tilmans and Legtenberg13 used minimum

energy principle to discuss pull in instability of clamped-

clamped beam. To include the effect of large deformation,

Chaterjee and Pohit29 numerically studied the variation of

pull-in instability for uniform cantilever beam considering

the effect of large deflection. Li and Aluru30 performed pull-

in analysis in the linear, nonlinear, and mixed regime of

MEMS fixed-fixed as well as cantilever beams. Based on

their analysis, they concluded that different theories should

be used for beams with different configurations and dimen-

sions. A similar study was performed by Rasekh and

Khadem31 to do pull-in analysis of carbon nanotube based

cantilever beams. Rahaeifard et al.32 used modified coupled

stress theory to capture the size effect on pull-in voltage of a

nanoscaled beam. Subsequently, Baghani33 included nonlin-

ear geometric effects along with size effect to obtain the pull

in voltage. However, most of the above studies were limited

to uniform beams. To capture fringing effect due to non-

uniform shape of the fixed electrode, Cheng et al.34 studied

pull-in parameters of rectangular cantilever torsion actuator

due to electrostatic actuation with respect to elliptical, hyper-

bolic, and parabolic electrodes. Similarly, Lemaire et al.,35

Raulli and Maute,36 and Abdalla et al.37 worked towards

optimizing geometry and studied its effect on pull-in param-

eters. Najar et al.38,39 employed differential quadrature

method to study the pull-in parameters of beam with varying

thickness, width, and distance from the fixed bottom elec-

trode. Another study by Joglekar and Pawaskar40 focused on

the static pull-in analysis of linearly tapered cantilever beams

using numerical technique. Almost all studies concerning

non-uniform beams (fixed-fixed and cantilever) have

resorted to using numerical techniques or other transforma-

tion methods to find the pull-in voltage. In this paper, we

present the pull-in voltage and the frequency analysis of

non-uniform cantilever beams with varying widths and non-

linear curvature effect by using the Galerkin method based

on the exact mode shape of linear non-uniform cantilever

beam.

To do the analysis, we first derived governing equation

of motion of electrostatically excited non-uniform cantilever

beam considering large deflection effect using the Hamilton’s

Principle based on approach described by Chaterjee and

Pohit29 for a uniform beam. Subsequently, we obtained mode

shapes from linear governing equation for non-uniform canti-

lever beams with linear and quartic varying widths. To obtain

the corresponding frequency and mode shape, we trans-

formed linear equation for a non-uniform beam into the equa-

tions of equivalent uniform beam using method as described

by Abrate.25 However, such transformations exist for quartic

tapered beam without any approximation and linearly tapered

beam with some approximation. Using the appropriate

boundary conditions, we finally obtained the corresponding

FIG. 1. (a) Transverse vibration of a cantilever beam subjected to electrostatic excitation. (b) Variation of width of a non-uniform cantilever beam with taper-

ing parameter a as bðxÞ ¼ b0ð1þ axÞn, where n¼ 1 and 4 imply beam with linear and quartic taper in width, respectively. Here, a < 0 corresponds to converg-

ing beam, a > 0 corresponds to diverging beams, and a¼ 0 implies uniform beam. Given figure depicts a quartic converging beam with a < 0 and n¼ 4.
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frequency equations and mode shapes of non-uniform beams

with linear and quartic variation in width. Using mode shape

of linear equation, we applied the Galerkin method based on

single mode approximation to obtain nonlinear static and

dynamic modal equations. Subsequently, we obtained the

pull-in voltage as well as frequency of non-uniform beam

with different types of tapering. After validating the model

with available results, we discuss the effects of tapering on

pull-in voltage as well as linear frequency of non-uniform

beams.

II. EQUATION OF MOTION

In this section, we derive governing equation of trans-

verse motion w(x,t) along z direction considering large

deflection for nonuniform cantilever beam under the influ-

ence of electrostatic force Qs as shown in Fig. 1. To derive

the equation, we consider a cantilever beam of length L,

width b(x), thickness h, area moment of inertia I(x), density

q, and effective modulus E ¼ E0

ð1�v
2Þ, where E

0 is the Young’s

modulus, and v is the Poisson’s ratio. If u(x, t) is an axial

extension under large deflection, then the axial strain fxx at

neutral axis can be written as41

fxx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
@u x; tð Þ

dx

� �2

þ
@w x; tð Þ

dx

� �2
s

� 1; (1)

and the curvature k as42

k ¼ 1þ
@u

@x

� �

@2w

@x2
�
@2u

@x2
@w

@x
: (2)

Writing the kinetic energy KE and bending strain energy

Us as

KE ¼
1

2

ðL

0

qA xð Þ _u2 þ _w2f gdx;

Us ¼
1

2

ðL

0

EI xð Þk2dx;

and then using the virtual work done by external force such

that dQ ¼ Qs, we apply the Hamilton’s principle

ðt2

t1

ðdKE� dUs � dQÞdt ¼ 0; (3)

to obtain the governing equation. After substituting the

energy expression and using an approximate expression of

u0 ¼ �w02=2 under inextensibility condition, i.e., fxx ¼ 0, the

governing equation with non-linear terms upto Oð�3Þ for

undamped forced vibration can be written as

qAðxÞ€w � EIðxÞðw00Þ3 þ w0qAðxÞ �

ðx

0

ðw0
€w0 þ ð _w0Þ2Þdx

þ w0ðEIðxÞw00w0Þ00 þ ðEIðxÞw00Þ00 ¼ QsðtÞ; (4)

where QsðtÞ is the electrostatic force considering fringing

field effect which is given by40

Qs tð Þ ¼
1

2

�0b xð Þ V þ v tð Þð Þ2

d0 � wð Þ2
1þ

2 d0 � wð Þ

pb xð Þ

 !

; (5)

where �0 ¼ 8:854� 10�12 F/m is the permittivity of free

space, V is DC voltage, and v(t) is AC voltage.

The boundary conditions for non-uniform cantilever

beam can be written as

w 0ð Þ ¼
@w

@x

�

�

�

�

x¼0

¼ 0;
@2w

@x2

�

�

�

�

x¼L

¼ 0;

@

@x
EI xð Þ

@2w

@x2

� �

�

�

�

�

x¼L

¼ 0: (6)

A. Non-dimensionalisation

To obtain non-dimensional form of governing equation

given by Eq. (4) and boundary conditions given by Eq. (6),

we define the following non-dimensional parameters:

x� ¼
x

L
; w� ¼

w

d0
; t� ¼

t

L2
ffiffiffiffiffiffiffiffi

qA0

EI0

r

 ! ; c ¼
d0

L
;

f1 xð Þ ¼
E~I xð Þ

EI0
; f2 xð Þ ¼

q ~A xð Þ

qA0

; (7)

where EIðxÞ ¼ EI0þE~IðxÞ ¼ ð1þ f1ðxÞÞEI0 and qAðxÞ ¼ qA0

þq ~AðxÞ ¼ ð1þ f2ðxÞÞqA0, I0 and A0 are the area moment of

inertia and cross-sectional area at the fixed end of cantilever

beam, respectively. We substitute nondimensional parame-

ters in Eqs. (4) and (6) rearrange the terms to get the equiva-

lent non-dimensional governing equation as (after dropping

the superscript * for convenience)

1þ f2 xð Þð Þ€w þ 1þ f1 xð Þð Þw00
� �00

� c2 1þ f1 xð Þð Þ

� w00ð Þ3 þ c2 1þ f3 xð Þð Þw0

ðx

0

ð _w0Þ2 þ w0
€w0

� 	

dx

þc2w0 � 1þ f1 xð Þð Þw00w0
� �00

�
1

2

�0b xð Þ V þ v tð Þð Þ2L

c3EI0 1� wð Þ2

�
�0 V þ v tð Þð Þ2L2

pc2EI0 1� wð Þ
¼ 0; (8)

and the boundary condition as

w 0ð Þ ¼
@w

@x

�

�

�

�

x¼0

¼ 0;
@2w

@x2

�

�

�

�

x¼1

¼ 0;

@

@x
1þ f1 xð Þð Þ

@2w

@x2

�

�

�

�

x¼1

¼ 0:

(9)

In Sec. II B, we obtain exact mode shape from linear

undamped equation under free vibration corresponding to

uniform as well as non-uniform beams.

B. Derivation of linear mode shape

In this section, we obtain exact mode shape of cantilever

beam with uniform as well as linear and quartic tapering in

width. To obtain the mode shape, we consider governing
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equation under linear, undamped, and free vibration condi-

tions, thus, neglecting the nonlinear, damping, and forcing

terms. After substituting the expressions for f1 and f2 in

Eq. (8), the resulting linear equation for non-uniform beam

can be written as

@2

@x2
EI xð Þð Þ

@2w

@x2

� �

þ
EI0

qA0

qA xð Þð Þ
@2w

@t2
¼ 0: (10)

To obtain mode shape, we convert the equation for non-

uniform beam into an equivalent governing equation of uni-

form beam by following the approach as proposed by Abrate.26

Taking a function rðxÞ such that vðxÞ ¼ rðxÞwðxÞ, the equation
for uniform beam can be written as

@4 rwð Þ

@x4
þ
@2 rwð Þ

@t2
¼ 0: (11)

Writing the expanded form of Eqs. (10) and (11) as

I00w00 þ Iw0000 þ 2I0w000ð Þ þ
I0

A0

A xð Þ€w ¼ 0; (12)

and

ðr0000wþ4r000w0þ6r00w00þ4r0w000þrw0000Þþr€w¼ 0; (13)

and then comparing the terms on left hand side of Eqs. (12)

and (13), we get the following relationship:

6r00

I00
¼

4r0

2I0
¼

r

I
¼

A0r

I0A xð Þ
: (14)

Taking rðxÞ such that r0000 and r000 are either zero or negligi-

ble, and satisfying Eq. (14), we find rðxÞ; IðxÞ and A(x)

corresponding to each type of tapered beam, separately.

Consequently, for computed form of r, I(x), and A(x),

Eq. (10) for non-uniform beam and Eq. (11) for uniform

beam with vðxÞ ¼ rw become equivalent. Based on equiva-

lent uniform beam, the exact mode shape for Eq. (11) is

readily available as43

vðxÞ ¼ A1 sinðkxÞ þ A2 cosðkxÞ þ A3e
kx þ A4e

�kx: (15)

Using boundary conditions for cantilever beam, the form of

mode shape can be rewritten as

v xð Þ ¼ r xð Þw xð Þ ¼ A1




sin kxð Þ � sinh kxð Þ

�
sin kxð Þ þ sinh kxð Þ

cos kxð Þ þ cosh kxð Þ
cos kxð Þ þ cosh kxð Þð Þ

�

: (16)

Finally, the mode shape of non-uniform beam with given

tapering can be found from the relation wðxÞ ¼ vðxÞ
rðxÞ. Now,

we apply above concept in computing mode shapes of uni-

form and non-uniform beams with different types of taper-

ing and mention the frequency equation to obtain

corresponding frequency parameter, k.

1. Uniform beam: For uniform cantilever beam, we get

rðxÞ ¼ 1; AðxÞ ¼ A0, and IðxÞ ¼ I0. Consequently, for

vðxÞ ¼ wðxÞ, the mode shape is given by Eq. (16). Using

appropriate boundary conditions, the value of frequency

parameter k can be numerically obtained by solving the

following transcedental equation:

2k6ð2þ ek cosðkÞ þ e�k cosðkÞÞ ¼ 0: (17)

2. Non-uniform beam with linear tapering: For a non-

uniform cantilever beam with linearly tapered width, bðxÞ
¼ b0ð1þ axÞ, where �1 < a < 0 corresponds to converg-

ing type and a > 0 corresponds to diverging case. The

area moment of inertia and area can be written as IðxÞ
¼ I0ð1þ axÞ and AðxÞ ¼ A0ð1þ axÞ, respectively. The

corresponding expression of r can be obtained from

Eq. (14) as rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ axÞ
p

, thus, AðxÞ ¼ A0rðxÞ
2
and

IðxÞ ¼ I0rðxÞ
2
. Since the above relationship of r and a in

case of linearly tapered width is obtained by neglecting

higher order differential terms r0000 and r000, the error asso-

ciated with such assumptions grows rapidly as jaj > 0:5.
For given boundary condition, the frequency parameter k

can be found from the frequency equation

k2

8 1þ að Þ4
16 cos kð Þeka4k4 þ 64 cos kð Þe�k
�

� ak4 þ 12 cos kð Þe�ka4kþ 64 cos kð Þekak4

�12 cos kð Þeka4k� 48 sin kð Þe�ka2k3

þ12 sin kð Þe�ka4kþ 64 cos kð Þe�ka3k4

þ 96 cos kð Þeka2k4 þ 16 cos kð Þe�ka4k4 þ 32k4

� 6a4 þ 192a2k4 þ 32a4k4 þ 128a3k4

þ128ak4 þ 64 cos kð Þeka3k4 þ 48 cos kð Þe�ka2

� k3 þ 16 cos kð Þe�ka4k3 þ 48a3k3e�k cos kð Þ

� 48 cos kð Þeka2k3 � 16 cos kð Þeka4k3 � 48

� cos kð Þeka3k3 þ 12ek sin kð Þa3kþ 16e�kak3

� cos kð Þ þ 12e�k sin kð Þa3k� 16ek cos kð Þak3

þ 96 cos kð Þe�ka2k4 � 12ek cos kð Þa3k� 16ekak3

� sin kð Þ þ 12 cos kð Þe�ka3k� 16e�k sin kð Þak3

þ16ekk4 cos kð Þ þ 3eka4 cos kð Þ þ e�k16 cos kð Þk4

þ3e�ka4 cos kð Þ � 48 sin kð Þeka2k3 þ 12 sin kð Þ

� eka4k� 48 sin kð Þeka3k3 � 48 sin kð Þk3e�ka3

�16ek sin kð Þa4k3 � 16 sin kð Þe�ka4k3Þ ¼ 0: (18)

Finally, for given k and r, the mode shape can be obtained

from wðxÞ ¼ vðxÞ
rðxÞ, where v(x) is given by Eq. (16).

3. Non-uniform beam with quartic tapering: For a non-

uniform cantilever beam with quartic variation in width, we

take bðxÞ ¼ b0ð1þ axÞ4, where �1 < a < 0 corresponds

to converging type and a > 0 corresponds to diverging

case. Although there is no restriction over validity of Eq.

(14) in this case, we restrict the value of a to 0.6 for quartic

tapered beam. The area moment of inertia and area can be

written as IðxÞ ¼ I0ð1þ axÞ4 and AðxÞ ¼ A0ð1þ axÞ4,
respectively. Corresponding expression of r can be

obtained from Eq. (14) as rðxÞ ¼ ð1þ axÞ2, thus, AðxÞ ¼
A0rðxÞ

2
and IðxÞ ¼ I0rðxÞ

2
. The frequency parameter k

can be found from the frequency equation
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2k2

1þ að Þ4
�12 sin kð Þe�ka4k� 4ek cos kð Þ � ak3 � 12ek sin kð Þa3kþ 4e�k cos kð Þak3
�

þ 24ek sin kð Þa3k2 � 12ek sin kð Þa2k3 � 24

� e�k sin kð Þa3k2 � 12e�k sin kð Þa2k3 þ 12ek � cos kð Þa4k� 12ek cos kð Þa2k3 þ 4ek cos kð Þ

� ak4 � 12e�k cos kð Þa4kþ 12e�k cos kð Þ � a2k3 þ 4e�k cos kð Þak4 þ ek cos kð Þa4k4

þe�k cos kð Þa4k4 � 4ek sin kð Þa4k3 � 4e�ka4 � sin kð Þk3 � 4ek cos kð Þa4k3 þ 4ek cos kð Þa3k4

þ4e�k cos kð Þa4k3 þ 4e�k cos kð Þa3k4 þ 12ek � sin kð Þa4k2 � 12ek sin kð Þa3k3 � 12e�k sin kð Þ

� a4k2 � 12e�k sin kð Þa3k3 � 12ek cos kð Þ � a3k3 þ 6ek cos kð Þa2k4 þ 12e�k cos kð Þ

� a3k3 þ 6e�k cos kð Þa2k4 � 12ek sin kð Þa4kþ 12ek cos kð Þa3kþ 12ek sin kð Þa2k2 � 4ek

� sin kð Þak3 � 12e�k cos kð Þa3k� 12e�k � sin kð Þa2k2 � 4e�k sin kð Þak3 þ 24a4 � 12a3

� e�k sin kð Þk� 12e�k cos kð Þa4 þ ek cos kð Þk4

þ e�k cos kð Þk4 � 12ek cos kð Þa4 þ 8ak4 þ 2a4k4 þ 8a3k4 þ 12a2k4 þ 2k4ÞÞ ¼ 0: (19)

Like linearly tapered beam, for given k and r, the mode

shape can be obtained from wðxÞ ¼ vðxÞ
rðxÞ, where v(x) is given

by Eq. (16).

C. Static and dynamic equations

To determine pull-in voltage and frequency at different

DC voltages, we first obtain the static and dynamic deflec-

tion equations for non-uniform cantilever beams with differ-

ent tapers. Since the net transverse deflection, w(x, t), is

composed of a static deflection zsðxÞ due to application of

DC bias and dynamic deflection z(x, t) due to AC voltage,

w(x, t) becomes

wðx; tÞ ¼ zsðxÞ þ zðx; tÞ: (20)

Substituting the assumed deflection in nondimensional gov-

erning equation as given by Eq. (8) and setting the time-

varying dynamic terms as zero, we obtain equation govern-

ing static deflection as

f 001 z
00
s þ 2f 01z

000
s þ 1þ f1ð Þz0000s � c2 1þ f1ð Þ z00s

� �3

þc2z0s f 001 z
00
s z

0
s þ 2f 01z

000
s z

0
s þ 2f 01 z00s

� �2
þ 1þ f1ð Þz0000s z0s

�

þ 3 1þ f1ð Þz000s z
00
s Þ �

1

2

�0b xð ÞV2L

c3EI0 1� zsð Þ2
�

�0V
2L2

pc2EI0 1� zsð Þ
¼ 0:

(21)

Similarly, the dynamic equation is obtained by substituting

Eq. (20) in Eq. (8), where the static deflection zs is obtained

from Eq. (21). Expanding the forcing term about z¼ 0 and

retaining terms upto first order, we obtain corresponding lin-

ear dynamic equation by neglecting the nonlinear terms and

forcing terms as

1þ f2ð Þ€z þ 1þ f1ð Þz0000 þ 4z0sz
00f 01c

2 þ 3c2z0sf1z
000 þ 2c2z0sf

00
1 z

0 þ 3c2z0f1z
000
s þ 3c2z0sz

000 þ 3c2z0z000s
� �

z00s

þ �3c2f1 � 3c2
� �

z00s
� �2

þ c2 z0s
� �2

f 001 þ 3c2z0sf1z
000
s þ3c2z0sz

000
s þ f 001

� 	

z00 þ 2c2z0sf1z
0000
s þ4c2z0sf

0
1z

000
s þ 2c2f 01 z00s

� �2
þ 2c2z0sz

0000
s

� 	

z0

þ c2f1z
0000 þ 2c2f 01z

000 þ c2z0000
� �

z0s
� �2

þ c2
ðx

0

z000z0sf2 þ z000z0s
� �

dx

� �

z0s þ 2f 01z
000 �

�0V
2L

c2EI0

b xð Þ

c 1� zsð Þ3
þ

L

p 1� zsð Þ2

 !

z ¼ 0:

(22)

III. REDUCED ORDER MODEL

In order to find the reduced order equations, we approxi-

mate static and dynamic deflections based on first transverse

mode as zðx; tÞ ¼ PðtÞ/ðxÞ and zs ¼ A/ðxÞ, respectively,

where /ðxÞ is the mode shape of non-uniform cantilever

beam with different tapering as obtained in Section III.

However, it is to be noted that for the first flexural mode, the

static deflection due to applied DC is not very different from

the mode shape. As a result, the static deflection is assumed

in terms of the mode shape. However, this approximation is

valid only for the first resonance mode. At higher modes, the

shape of static deflection will no longer be equal to dynamic

deflection, i.e., the mode shape. Here, we carried out further

analysis only for the first resonance mode. Subsequently, we

apply the Galerkin method to reduce static and dynamic

equations given by Eqs. (21) and (22), respectively, to

reduced order form. The reduced form of static equation

governing amplitude of static deflection A is given by
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ð1

0

f 001 / xð Þ00/ xð Þ þ 2f 01/ xð Þ000/ xð Þ þ 1þ f1ð Þ/ xð Þ/ xð Þ0000
� �

dx

 !

A

þ

ð1

0

�c2 1þ f1ð Þ � / xð Þ00
� �3

/ xð Þ þ c2 / xð Þ0
� �2

f 001 / xð Þ00/ xð Þ þ c2/ xð Þ02f 01/ xð Þ000/ xð Þ0/ xð Þ þ 2c2f 01 / xð Þ00
� �2

�

 

�/ xð Þ/ xð Þ0 þ 1þ f1ð Þc2 / xð Þ0
� �2

/ xð Þ0000/ xð Þ þ 3 1þ f1ð Þc2/ xð Þ0/ xð Þ/ xð Þ000/ xð Þ00
	

dx

�

A3

�
1

2

�0V
2L

c3EI0

ð1

0

b xð Þ/ xð Þ

1� A/ xð Þð Þ2

 !

dx�
�0V

2L2

pc2EI0
�

ð1

0

/ xð Þ

1� A/ xð Þð Þ

� �

dx ¼ 0; (23)

and the dynamic equation becomes

ð1

0

1þ f2ð Þ / xð Þð Þ2dx

" #

€P þ

ð1

0

1þ f1ð Þ � / xð Þ0000 þ 4/ xð Þ0/ xð Þ00f 01c
2 þ 3c2/ xð Þ0 � f1/ xð Þ000 þ 2c2/ xð Þ0f 001 / xð Þ0 þ 3c2/ xð Þ0

���

"

� f1/ xð Þ000 þ 3c2/ xð Þ0/ xð Þ000 þ 3c2/ xð Þ0 � / xð Þ000Þ/ xð Þ00 þ

�

�3c2f1 � 3c2
� �

/ xð Þ00
� �2

þ c2 / xð Þ0
� �2

f 001 þ 3c2/ xð Þ0f1/ xð Þ000

þ3c2/ xð Þ0 � / xð Þ000 þ f 001
�

/ xð Þ00 þ c2
ðx

0

/ xð Þ000/ xð Þ0f2 þ / xð Þ000/ xð Þ0
� �

dx

�

/ xð Þ0 þ 2c2/ xð Þ0f1/ xð Þ0000
��

þ 4c2/ xð Þ0f 01/ xð Þ000 þ 2c2f 01 / xð Þ00
� �2

þ 2c2 � / xð Þ0/ xð Þ0000Þ/ xð Þ0 þ c2f1/ xð Þ0000 þ 2c2f 01 � / xð Þ000 þ c2/ xð Þ0000
� �

/ xð Þ0
� �2

ÞÞA2

þ2f 01/ xð Þ000 �
�0V

2L

c2EI0

b xð Þ/ xð Þ

c 1� A/ xð Þð Þ3
þ
L

p

/ xð Þ

1� A/ xð Þð Þ2

 !
#

/ xð Þdx

#

P ¼ 0: (24)

In Secs. III A and III B, we obtain pull-in voltage and frequency variation of first transverse mode of non-uniform beams.

A. Pull-in voltage

Pull-in voltage is the DC voltage at which the electrostatic force becomes equal to elastic force. Consequently, the static

deflection of beam approaches to infinite when the voltage increases beyond pull-in voltage, i.e., dA
dV

jV¼VPI
! 1 or

dV
dA
jV¼VPI

¼ 0. Therefore, in order to obtain pull-in voltage, we differentiate the reduced form of static equation given by Eq.

(23) with respect to A to get

ð1

0

f 001 / xð Þ00/ xð Þ þ 2f 01/ xð Þ000/ xð Þ þ 1þ f1ð Þ � / xð Þ
� �

/ xð Þ0000dx

 !

þ 3

ð1

0

�c2 1þ f1ð Þ/ xð Þ � / xð Þ00
� �3

�

 

þ c2 / xð Þ0
� �2

f 001 / xð Þ00/ xð Þ þ c2 � / xð Þ02f 01/ xð Þ000/ xð Þ0/ xð Þ þ 2c2/ xð Þ0f 01

� / xð Þ00
� �2

/ xð Þ þ 1þ f1ð Þc2 / xð Þ0
� �2

/ xð Þ � / xð Þ0000 þ 3 1þ f1ð Þc2/ xð Þ/ xð Þ0/ xð Þ00/ xð Þ000Þ � dxÞA2

�
�0L

c2EI0

V

c

dV

dA

ð1

0

b xð Þ/ xð Þ

1� A/ xð Þð Þ2

 !

dxþ
V2

c

ð1

0

b xð Þ/ xð Þ2

1� A/ xð Þð Þ3

 !

dxþ
2LV

p

dV

dA

ð1

0

/ xð Þ

1� A/ xð Þð Þ

� �

dxþ
LV2

p

2

4

�

ð1

0

/ xð Þ2

1� A/ xð Þð Þ2

 !

dx

#

¼ 0: (25)

After substituting dV
dA
jV¼VPI

¼ 0 for the condition at pull-in, we obtain the following expression of pull-in voltage:

VPI ¼
c2EI0

�0L

S

E


 �1
2

; (26)

where

E ¼
1

c

ð1

0

b xð Þ/ xð Þ2

1� API/ xð Þð Þ3

 !

dxþ
L

p

ð1

0

/ xð Þ2

1� API/ xð Þð Þ2

 !

dx

" #

;

and
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S ¼

ð1

0

½f 001 /ðxÞ
00
/ðxÞ þ 2f 01/ðxÞ

000
/ðxÞ þ ð1þ f1Þ/ðxÞ/ðxÞ

0000�dxþ 3A2
PI �

ð1

0

½�c2ð1þ f1Þð/ðxÞ
00Þ3/ðxÞ

þ c2ð/ðxÞ0Þ2f 001 /ðxÞ
00
/ðxÞ þ c2/ðxÞ02f 01/ðxÞ

000 � /ðxÞ0/ðxÞ þ 2c2/ðxÞ0f 01ð/ðxÞ
00Þ2/ðxÞ þ ð1þ f1Þc

2ð/ðxÞ0Þ2/ðxÞ0000/ðxÞ

þ 3ð1þ f1Þ � c2/ðxÞ0/ðxÞ/ðxÞ000/ðxÞ00�dx;

where API is the static deflection at pull-in voltage. The static

deflection from Eq. (23) at pull-in parameters is solved along

with Eq. (26) to obtain the pull-in voltage.

B. Normal mode frequency

To find the frequency of first transverse mode of the

system, we re-write Eq. (24) of dynamic deflection in the fol-

lowing form:

M €P þ KP ¼ 0: (27)

Consequently, the frequency x of oscillating cantilever beam

about statically deflected position due to applied DC is given by

x ¼

ffiffiffiffiffi

K

M

r

: (28)

On comparing Eqs. (24) and (27), we get the expression for

M and K in terms of amplitude of static deflection A, DC

Voltage V, beam dimensions, and properties as

M ¼

ð1

0

ð1þ f2Þð/ðxÞÞ
2
dx;

and

K ¼

ð1

0

"

1þ f1ð Þ/ xð Þ0000 þ 4/ xð Þ0/ xð Þ00f 01c
2 þ 3c2/ xð Þ0f1/ xð Þ000 þ 2c2/ xð Þ0f 001 / xð Þ0 þ 3c2/ xð Þ0

��

� f1/ xð Þ000 þ 3c2/ xð Þ0/ xð Þ000 þ 3c2/ xð Þ0/ xð Þ000Þ/ xð Þ00 þ �3c2f1 � 3c2
� �

/ xð Þ00
� �2

þ c2 / xð Þ0
� �2

f 001 þ 3c2 � / xð Þ0f1/ xð Þ000
�

þ 3c2/ xð Þ0/ xð Þ000 þ f 001 Þ/ xð Þ00 þ c2
ðx

0

/ xð Þ000/ xð Þ0f2 þ / xð Þ000/ xð Þ0
� �

dxÞ/ xð Þ0

þ 2c2/ xð Þ0f1/ xð Þ0000 þ 4c2/ xð Þ0f 01/ xð Þ000 þ 2c2f 01 � / xð Þ00
� �2

þ 2c2/ xð Þ0/ xð Þ0000
� 	

/ xð Þ0 þ c2f1/ xð Þ0000
�

�

þ 2c2f 01/ xð Þ000 þ c2/ xð Þ0000
�

/ xð Þ0
� �2

		

A2 þ 2f 01/ xð Þ000 �
�0V

2L

c2EI0

b xð Þ/ xð Þ

c 1� A/ xð Þð Þ3
þ
L

p

/ xð Þ

1� A/ xð Þð Þ2

 !
#

/ xð Þdx:

Finally, it is important to note that the frequency equation

considers nonlinear curvature effect which becomes impor-

tant at large static deflection under large DC voltage. Any

nonlinearity in the motion amplitude of AC component,

leading to so-called Duffing resonance, is not considered in

this paper.

IV. RESULTS AND DISCUSSION

In this section, we discuss the effect of non-uniformity

parameter, a, on above mentioned phenomenon for the

uniform beam as well as beams with linear and quartic taper

in width. Again, we mention that a > 0 and �1 < a < 0 cor-

respond to diverging and converging beams, respectively.

The uniform beam corresponds to the case when a¼ 0. In

Sec. IVA, we discuss the effect of taper parameter on linear

frequency at zero DC voltage, when nonlinear curvature

effect is negligible for different beams. Subsequently, we use

the linear mode of different tapered beams to obtain pull-in

voltage and frequency of non-uniform cantilever beam with

nonlinear curvature effects. Finally, we compare results with

available values in literature for some cases and then discuss

about the importance of tapering.

A. Frequency analysis at zero DC voltage

The transcendental Eqs. (17), (18), and (19) correspond-

ing to the uniform beam, beams with linear tapers, and

beams with quartic tapers, respectively, can be solved

numerically to obtain resonance frequencies for different a.

Although, these equations can be used to obtain frequencies

for higher modes as well, here, we compute the frequency of

only first flexural mode. Frequencies for all the three cases

for various a are tabulated in Tables I and II, where a¼ 0

corresponds to uniform beam. Results for uniform and

linearly converging beams are also compared with that of

Mabie and Roger20 in which the linear frequency is obtained

using numerical integration without finding the mode shape.

As previously mentioned in Section II B, the transformation

of linearly tapered beam into equivalent uniform beam is

done with some approximation. The effect of this approxi-

mation can be observed from Table I. By comparing the
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computed results with available results, we get percentage

errors of 1.5% and 12.5% corresponding to taper parameter,

a, of �0.4 and �0.6, respectively. Additionally, we have

found that for alpha ¼ �0:5, percentage error in computing

pull-in voltage from the proposed method is less than 1% or

2% when compared with finite element method or semiana-

lytical solution as mentioned by Joglekar and Pawaskar40 in

Table IV. Therefore, the approximation considered in non-

uniform beam with linear taper in width gives negligible

error when jaj � 0:4, the percentage error for 0:5 � jaj �
0:6 can be assumed to be less than 12.5%. Thus, the

approach adopted in this paper is validated and can be

extended to compute frequencies of non-uniform beams with

different tapering. Figure 2 shows variation of linear fre-

quency with a for both converging and diverging beams

with linear and quartic taper in width. We observe that the

frequency for diverging beams decreases with an increase in

a, while that of a converging beam increases. For converging

beam with quartic taper in width, the frequency is about 2.5

times greater than that of a uniform beam. The correspond-

ing mode shape can be obtained for different beams for given

values of a as discussed in Section II B. As a result, applica-

tion of non-uniform cantilever beam (in particular, beams

with quartic variation in width) can prove to be an excellent

means in improving the performance of resonant sensors and

actuators which operate at resonance frequency. In Secs.

IVB and IVC, we discuss the pull-in voltage and the reso-

nance frequency of various non-uniform beams by including

the non-linear curvature effect.

B. Pull-in analysis

To obtain the pull-in voltage for different tapered beams

by following the approach as explained in Section IIIA, we

first validate our model for pull-in voltage of a uniform beam

with five different results from the literature as mentioned in

Table III. Taking dimensions and material properties for each

case as: (1) L ¼ 20 000 lm, b ¼ 5000 lm, h ¼ 57lm, d0
¼ 92lm, E0 ¼ 155:8 GPa, and v¼ 0.06; (2) L ¼ 20 000 lm,

b ¼ 5000lm, h ¼ 57lm, d0 ¼ 92lm, E0 ¼ 155:8 GPa, and

v¼ 0.06; (3) L ¼ 100lm, b ¼ 50lm, h ¼ 3 lm, d0 ¼ 1 lm,

E0 ¼ 169 GPa, and v¼ 0.06; (4) and (5) L ¼ 300lm, b

¼ 50lm, h ¼ 1 lm, d0 ¼ 2:5lm, E0 ¼ 77 GPa, and

v¼ 0.33, computed results from the developed model are

found to be in good agreement with available results. To

compare the accuracy of non-uniform beam, when a is non-

zero, we take few cases of converging beam with linear varia-

tion in width and compare the results with that of Joglekar

and Pawaskar40 in Table IV. The dimensions and the material

TABLE I. The non dimensional fundamental frequency of converging (neg-

ative a) and diverging (positive a) beam with linear taper in width.

a Present Mabie and Roger20

0.0 3.516 3.516

�0.1 3.628 …

�0.2 3.747 3.717

�0.3 3.865 …

�0.4 3.954 3.892

�0.5 3.940 …

�0.6 3.540 4.048

a Present

0.0 3.516

0.1 3.413

0.2 3.321

0.3 3.237

0.4 3.162

0.5 3.096

0.6 3.036

TABLE II. The non dimensional frequency of converging (negative a) and

diverging (positive a) beam with quartic tapering in width.

a Frequency

0.0 3.516

�0.1 3.994

�0.2 4.588

�0.3 5.336

�0.4 6.298

�0.5 7.558

�0.6 9.235

a Frequency

0.0 3.516

0.1 3.124

0.2 2.799

0.3 2.526

0.4 2.294

0.5 2.096

0.6 1.924

FIG. 2. Effect of taper parameter (a) on the linear frequency for various

cases of tapering.

TABLE III. Comparison of the pull-in voltage of uniform cantilever beam

with existing literature.

Sample

number

VPull�in (V)

(present model)

VPull�in (V)

(reference) Reported by (method)

1 65.19 68.5 Hu et al.44 (experimental)

2 65.19 66.78 Chaterjee and Pohit29 (numerical)

3 37.15 37.84 Chowdhury et al.26 (numerical)

4 2.23 2.27 Chowdhury et al.26 (numerical)

5 2.23 2.29 Joglekar and Pawaskar40 (analytical)

204303-8 Singh, Pal, and Pandey J. Appl. Phys. 118, 204303 (2015)



properties for cases (1) and (2) are taken as L ¼ 200 lm,

b ¼ 40lm, h ¼ 1 lm, d0 ¼ 2lm, E0 ¼ 169 GPa, and

v¼ 0.06, and that of (3) and (4) are taken as L ¼ 100 lm,

b ¼ 15lm, h ¼ 1lm, d0 ¼ 2 lm, E0 ¼ 169 GPa, and

v¼ 0.06.

On comparing the pull-in voltage of linearly tapered

beam for a ¼ �0:25 and �0.5 obtained from the present

method with the results from Joglekar and Pawaskar40 in

Table IV, we get percentage error of about 2%. Although

nonlinear curvature effect is neglected in their models, it

may be insignificant for the given geometry. Now, we extend

the analysis to different types of tapered beams. Figure 3(a)

shows the pull-in voltage with different taper parameters (a)

for beams with linear and quartic variation in width. The

dimensions and the material properties for each case

are taken as L ¼ 200 lm, b ¼ 40 lm, h ¼ 1 lm, d0 ¼ 2 lm,

E0 ¼ 168:39GPa, and v¼ 0.06. Figure 3(b) shows compari-

son of percentage difference in computing the pull-in voltage

with and without fringing field effects of different non-

uniform beams at different taper parameters. For a quartic

tapered beam with taper parameter of a ¼ �0:6, we get a

maximum percentage difference of about 7%. From our anal-

ysis, we find that for a converging beam, the pull-in voltage

increases with an increase in a, while for diverging beam, it

decreases. This trend was expected because of the changes in

stiffness of converging and diverging beam with a. Similar

changes were also observed in case of linear frequency in

Sec. IVA. The linear frequency for diverging beam

decreases with an increase in a which implies that stiffness

effect (or spring force) decreases. As a result, at a lower volt-

age, the electrostatic forces balance the spring force, and

then the pull-in occurs. While in case of converging beam,

frequency (or stiffness) is more, and as a result a higher volt-

age is needed for electrostatic forces to overcome the spring

force offered by cantilever beam. Consequently, we see that

pull-in voltage increases by more than 100% in case of con-

verging beam with quartic tapering as compared to uniform

beam. Thus, employing a cantilever beam with quartic varia-

tion in width gives us a larger voltage threshold which is

about 2 times as that of a widely used uniform beam for the

operation of MEMS devices.

C. Frequency analysis at finite DC

To study the vibration of different types of cantilever

beams under the application of DC voltage, we solve the

static deflection Eq. (23) at different V to get static deflection

A. Using obtained value of A, we find frequency from

Eq. (28) for different values of DC voltage. Figure 4 shows

variation of the frequency with applied DC for various types

of beams. Frequencies are normalized with their correspond-

ing frequencies at zero DC voltage. From Figure 4, we see

that increase of DC voltage causes the system to soften and

frequency decreases with an increase in voltage. We know

that geometrical non-linearity has stiffening effect, while in-

ertial nonlinearity and linear electrostatic forces have soften-

ing effect. However, overall effect on the dynamics depends

on relative strength of each nonlinearity. In our analysis, we

have neglected higher order terms of dynamic deflection in

order to obtain the linear frequency at finite DC. With an

increase of applied DC voltage, the linear frequency is found

to decrease; thus, the system undergoes softening effect due

to linear electrostatic forces. This trend is obtained as the

TABLE IV. Comparison of the pull-in voltage of converging beam with lin-

early tapered width with existing literature.

Sample

number a

Pull-in voltage by

present model (V)

Pull-in voltage by Joglekar

and Pawaskar40 (V)

1 �0.25 5.45 5.59 (analytical)

2 �0.25 5.45 5.61 (FEA)

3 �0.5 24.74 24.26 (analytical)

4 �0.5 24.74 24.68 (FEA)

FIG. 3. (a) Effect of taper parameter

(a) on pull-in voltage Vf
p including

fringing effects for various cases of

tapering. (b) Variation of percentage

error in computing pull-in voltage with

fringing effect, Vf
p, and without fring-

ing effect, Vwf
p , with taper parameter.

FIG. 4. Variation of linear, non-dimensional frequency with applied DC

voltage for various types of beams. x0 is the frequency at zero DC.
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initial gap to beam length ratio (c) is less than 0.3 where the

stiffening effect of geometrical nonlinearity is minimal. For

c > 0:3 and higher DC, the combined effect of geometrical

nonlinearity and nonlinear electrostatic force with higher

order terms becomes inevitable.31 While this study considers

geometrical nonlinearity, the higher order nonlinear terms of

electrostatic forces are neglected.

V. CONCLUSIONS

In this paper, we have developed theoretical model for

computing the frequency as well as the pull-in voltage of

non-uniform cantilever beam with nonlinear curvature

effects. The non-uniformity considered in this paper is for

the cantilever beams with linear and quartic tapering in

width. To develop this model, we first obtained the exact

mode shape from linear equation for beams with different

non-uniformities. Subsequently, we apply the Galerkin

method based on single mode shape to find the formulation

for pull-in voltage and frequency from corresponding static

and dynamic equations, respectively. From our analysis, we

have observed that the linear frequency can be increased by

more than 2.5 times, whereas the pull-in voltage can also be

increased by 2 times simply by varying the order of tapering

in the quartic tapered beam. Such findings can be utilized not

just to increase the sensitivity of cantilever based devices,

but it also increases the operating range of bias voltage.
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