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Abstract

In this article, we correlate the internal stress and the characteristics of a vibrational mode in

wet foam. Using microscope images, we estimate the average size of the bubbles in wet foam, at

specific time intervals, over a duration of twenty four hours. Raman spectra are also recorded at

the same time intervals, over the same time frame. We show that the internal stress, originated

from the macroscopic structural change of foam with ageing, can be related to the observed Raman

shift of the low frequency methylene rocking mode of the constituent surfactant molecules in foam.

In this report we also show the capability of the Raman spectroscopy to reveal the crystallinity in

foamy materials, when studied for a longer period of time.
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I. INTRODUCTION

Soft foam, a cellular fluid, is a two phase system. It consists of a collection of gas bubbles

surrounded by thin liquid films. With time, the spherical bubbles in fresh foam take the form

of polyhedra while minimizing the energy of the system. It can coarsen by the diffusion of gas

from smaller bubbles to larger bubbles [1]. Furthermore, the liquid between the bubbles can

drain out along the liquid channels (Plateau borders) in response to gravity. The adjacent

bubbles coalesce if the liquid film becomes too thin.

Soft foam exhibits interesting elastic properties. Under low applied shear stress, foam be-

haves as an elastic solid. With an increase in stress it becomes progressively plastic; beyond

a certain yield stress, the foam flows along with topological changes. Such characteristics

of foamy structure strongly depends on bubble size and wetness [2]. Both two- and three

dimensional foam can be accurately simulated using various models [3]. The computer sim-

ulation results suggest that, in the low compression limit, there exists a correlation between

the shear modulus and gas/liquid fraction in the tightly packed gas bubbles [4, 5, 6, 7, 8, 9].

These models, therefore, reveal a connection between the complex macroscopic rheological

behavior of foam and its underlying microscopic structure.

The complex foam structure is composed of extended polyatomic organic molecules (sur-

factants) and water. Raman spectroscopy is a powerful noninvasive tool to probe the molec-

ular structure and dynamics of a system. In wet foam, Raman scattering is caused by

deformation/stretching of different vibrational bonds of constituent molecules. Thus, if it is

assumed that macroscopic and microscopic behavior of wet foam can be related, one expects

that the analysis of Raman line profiles, which reveal molecular behavior, can be used to

probe the elastic properties of wet foam. The stress induced shift in the Raman lines has
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been reported for other soft matter, like soft polymers and polymer based fiber structures

[10, 11]. For example, it has been shown by Ward and Young, via polarized NIR Ra-

man measurements, that Raman bands of thermotropic aromatic copolyesters exhibit linear

shifts towards lower wavenumbers with stress and strain following the tensile deformation

[12]. The correlation between the architecture of the network and elastic properties of their

building blocks leads to interesting mechanical properties of such systems [13]. The main

difficulty in using Raman spectroscopy to probe wet foam arises due to multiple scattering

of light within the bubbles. The broad and strong background due to the scattered light

masks the Raman signal from the foamy structure by a large extent. Thus, in the literature,

we do not find too many articles on Raman studies of wet foam. The most significant one

is by Goutev and Nickolov [14], where the authors have studied the molecular structure of

Gillette foam, to some extent, using Raman spectroscopy. Recently, we have reported our

results on Raman measurements in Gillette foam, where we have analyzed the evolution of

the O-H vibrational bond of water molecules with ageing [15].

In this article, we probe, using Raman scattering, how the macroscopic changes in struc-

ture of bubbles in wet foam is manifested in changes in the molecular structure of the

surfactant molecules. Section II explains the reasons for the choice of our sample and also

describes other experimental details. The structural changes in foam with time have been

described in Section III. In Section IV, we have shown the effect of structural change in wet

foam on the molecular vibrational modes of Gillette foam, as obtained from Raman mea-

surements. We correlate the change in molecular vibrations with the evolution of internal

stress and crystalline structure of foam. Finally, in Section V, we summarize our results

with a few remarks.
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II. EXPERIMENT

4 cm

Probing direction

1 cm
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FIG. 1: The schematic of the foam container and the probing direction.

Though complex in composition, Gillette shaving foam is often used for studying optical

properties of wet foam. It is reproducible and stable over the duration required for optical

measurements. For Raman measurements this commercial foam offers an extra advantage in

the following sense. When laser light is incident on foam, it undergoes multiple scattering.

In order to obtain the optimum Raman signal, the mean free path, l⋆,[ ∼= 3.5 × average

diameter of the bubbles (d)] of light within the foam should be comparable with the slit

width of the spectrometer collecting the scattered light [14]. The mean diameter of bubbles

in fresh Gillette shaving foam is close to 50 µm and the maximum diameter, which we have

studied, is ∼ 150 µm, which is comparable with the slit-width of our spectrometer (∼ 100

µm).

In this commercial foam, the basic ingredients [triethanolamine stearate with small

amount (< 1%) of sodium lauryl sulphate and polyethylene glycol lauryl ether and emulsified

liquid hydrocarbon gases] are kept in an aqueous solution under high pressure. The foam

is produced after expansion of the above mixture in the aqueous solution. The experiments

have been carried out by taking the foam from the can in a closed rectangular quartz cell of
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dimension 1cm × 1cm × 4cm [Fig. 1]. In the beginning, the material fills ∼ 2.5 cm of the

whole cell volume from the bottom. The cell is then sealed with paraffin films to prevent

direct evaporation. Raman measurements and imaging experiments have been carried out

at a distance 1 cm from the bottom of the cell [Point P in Fig. 1]. To observe the effect of

ageing, the measurements have been continued at the same point throughout the duration

of the experiment. The experiments have been repeated for two other heights on the column

of foam to check the reproducibility of the results.

The change in the structure of foam with aging, is probed through optical images using

a Metzer Biomedical microscope (model: MEGA-6021). These images are analyzed using

Image-J image-processing software. Simultaneously, Raman spectra are recorded in a back-

scattering geometry using TRIAX550 single monochromator equipped with a notch filter

and CCD as a detector. An argon ion laser of wavelength 488 nm and of power 30 mW

on the sample has been used as an excitation source. For more details of the technique

and spectrometer, see [16]. As the spot size of the laser, used as an excitation source

in Raman measurements, is ∼ 0.5 mm (much more than the size of the channels between

bubbles or Plateau border region); at present, it is not possible for us to distinguish, whether

the measured Raman signals are confined only to the Plateau border region or within the

thin film between two bubbles or in both. All measurements and analysis of data have

been carried out for three different sets of experiments to check the reproducibility of the

results. Raman spectra are fitted with Lorentzian line shape keeping peak position, width

and intensity as fitting parameters in order to estimate them properly, for each observed

feature.
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FIG. 2: Microscopic images of liquid foam at different time scale: the corresponding magnification

of the images are shown in each figure.

0 20 40 60 80 100 120 140 160

0.96

0.97

0.98

0.99

 

 

g

Time (hr)

FIG. 3: Variation in gas fraction with aging. The solid line is a guide to the eye.

III. SHAPE AND STRUCTURE

As mentioned earlier, aging effects on foam structure can be seen through microscopy.

More precisely, we recorded the images of foam at an interval of 15 minutes in the beginning

(till 12 hrs) and less frequently at the end, over 7 days. Fig.2(a) to (f) show few characteristic
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microscopic images at different stages of aging. Initially, the bubbles are spherical, separated

by Plateau borders touching the quartz cell wall. Subsequent snapshots show that the

bubbles take on a polyhedral structure due to coarsening of the bubbles and liquid drainage.

The three-dimensional (3D) gas fraction, (φg), is the commonly used parameter to de-

scribe a foam. φg can be estimated from the following relation

φg = 1−
ρ1

ρ2
, (1)

Here, ρ1 and ρ2 are the mass densities of the foam and the liquid phase (ρ2=0.997 gm/cc

[17]). Foam mass density was obtained from the measured weight of the foam. The variation

in 3D-gas fraction with time is shown by filled square in Fig. 3(b). The solid line is the

guide to the eye. It is to be noted that the gas fraction varies for the foam expelled from

different portions of the can [14].

IV. MOLECULAR VIBRATIONAL BANDS - RESULTS AND DISCUSSION

A. Low frequency methylene rocking mode

In the Raman spectrum of Gillette foam, the time evolution of the out of plane methylene

rocking modes, at around 725 cm−1 [18], is shown in Fig. 4. The intensity is scaled to show

the variation in spectral frequency with the ageing of foam. Here, we have shown a few

characteristic spectra; though we recorded the Raman spectrum over the same period and

at similar intervals, as was done in the imaging experiment. This Raman line corresponds

to the trans- conformation of the methylene chain. The direction of the arrow is along the

increase in time (the average diameter of the bubbles increases during the ageing process).

Interestingly, the Raman shift of the peak at around 725 cm−1 exhibits a non-monotonous

behavior with ageing (see the dotted red line).
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FIG. 4: The variation in the methylene rocking modes due to aging of Gillette foam. The direction

of the arrow is along the increase in average diameter of bubbles (43,75,93,117,135,144,157,182,222,

283,318, 400 and 440 µm). The red dashed curve is a guide to the eye to show the non-monotonic

variation in Raman shift.

At this point we draw an analogy between the behavior of a solid and a foam network.

For solids, the magnitude of the shift in Raman wavenumber for the modes of quantized

lattice vibration can be related to the component of the stress tensor of the system along

different directions via a constant, which has the unit of frequency change per unit stress

[19]. A compressive stress results in a higher wavenumber shift in the Raman line, whereas,

a tensile stress shifts the Raman line in the opposite direction. To the best of our knowledge,

any such study on a foamy structure is not available in the literature. Nevertheless, it is to

be noted that soft matter exhibits behavior, which is, at times, closer to that of a solid. The

surfactant molecules are fastened together in a group rather rigidly and are constrained at

the mesoscopic scale to behave more like a solid. The interaction of the constituent molecules

within these groups determine the macroscopic behavior of foam. On the other hand, these
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FIG. 5: (a) A plot of ∆ω vs t for methylene rocking mode as observed from Raman measurements

(filled squares) as obtained from Fig. 4. The solid line is a guide to the eye. (b)Variation in average

bubble diameter with aging.

molecular groups do move like the molecules in a simple fluid [20]. In view of these facts,

we attempt to explain the non-monotonous change in Raman shift, as shown in Fig. 4, by

assuming a correlation between the Raman shift of the vibrational mode and the internal

stress in wet foam, as done in the case of solids.

We define the difference between the Raman frequency (ωt) of the above mode from the

surfactant of foam at time t, and the Raman frequency of the same (ω0) in fresh Gillette

foam as ∆ω (∆ω = ωt − ω0). The variation of |∆ω| with t, is shown in Fig. 5(a) [filled

squares]. The magnitude of the difference (∆ω) increases with increase in t till t = t′ ∼ 4
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hr (Region I, the left hand side of the dashed-red line, in Fig. 5), indicating a compressive

stress in the liquid film to be the origin of the shift. Then it decreases with a further increase

in time (Region II, the right hand side of the dashed-red line, in Fig. 5), indicating a gradual

release of the stress.

To explain the above variation of stress with time in wet foam, we take a re-look at the

variation in average bubble diameter d with time (a few characteristic image frames are

shown in Fig. 2). Assuming the bubbles to be nearly spherical at all stages, we measured

the average diameter of 200 bubbles for each time frame. In Fig. 5(b) the variation in

measured d with time is shown by the filled squares. The time scale of evolution of the

cellular pattern can be taken to be inversely proportional to the length scale. Hence, the

average diameter of the bubbles follows the scaling behavior [21, 22],

d ∝ (t− t′)1/2. (2)

Here, t′ is a constant. In Fig. 5(b) the best fitted line to the data points with Eqn. 2, is

shown by the solid line. In a strict sense, Eqn. 2 is valid for dry foam [23]. This explains

the slight deviation of the fitted line from the experimental data in Fig. 5(b). Here it is

interesting to note that the smooth variation of d with t in Fig. 5 (b) can be decomposed

into two parts with two distinct slopes (shown by dotted black lines). Again we find that

in Region I, ie. till time t= 4 hr. (same time during which the compressive stress on the

molecules reaches maximum in Fig. 5(a)) the increase in d with t is relatively sharp, then

it gradually slows down.

When the diameter of a bubble in fresh foam fluctuates to one which is infinitesimally

larger in size, the diameter of the neighboring bubble shrinks by the same amount. Due to

the larger internal pressure in the smaller bubble, the air flows from it to the larger bubble.

As a result, the size of the smaller bubble decreases further in size. This phenomenon causes
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an increase in average bubble diameter in foam. The relatively rapid increase in diameter of

the bubble in Region I in Fig. 5 (b) compresses the liquid film between bubbles, resulting

in a compressive stress in the film (a ‘jamming’ effect), shown in Region I of Fig. 5 (a). At

this point we refer to the pioneering work by Friberg and Langlois [24], where it has been

shown that two phases can exist in wet foam. Though the liquid phase in foam is known

to be isotropic at the initial stage, with ageing, the formation of lamellar phase results in

the crystal-like structure in foam [14]. The small lamellae gets parallel to the interface

and gradually forms a large bilayer structure. The interface of gas-liquid has a noticeable

effect on this lamellar phase, more than what is observed for the isotropic phase [25]. For a

spherical bubble in a liquid, the pressure difference between the gas-liquid interface normally

confirms the Laplace-Young law. The Laplace pressure acting outward on the surface is given

by ∆p = 4γ
R
, with γ being the surface tension between gas-liquid interface and R being the

local radius of curvature of the surface. Due to the formation of lamellar phase in foam

at a later time, the pressure acting in the film between bubbles is gradually released with

an increase in R. Also note that at a later time (Region II in Fig. 5), the growth rate is

also less. In addition, we need to keep in mind that from a wet foam liquid drains out with

time. All three effects, effectively, cause a release in pressure in the film. Fig. 5(a) and

(b) possibly indicate two coupled and competitive dominating phenomena (coarsening and

drainage) in the ageing process of the foam.

In the above, we have tried to explain the variation of the Raman frequency of one of the

strongest molecular vibrational modes of Gillette foam by taking into account the internal

stress in the system. We would like to mention that, such an effect of aging on Raman shift

has not been observed for other vibrational modes in wet foam [14]. A possible explanation

can be that the other features corresponding to stretching molecular vibrations, are, usually,
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FIG. 6: The change in Raman spectrum of Gillette foam with aging in the region between 1000

and 1450 cm−1.

convoluted with many other modes and therefore, this effect is masked. Moreover, the effect

of internal shear (which eventually cancels out when we take ensemble average) in foam is

expected to be more for angular deformation of the local bonds rather than bond stretching.

B. Characteristics of other C-H vibrations

To illustrate the time evolution of the molecular structure of Gillette foam, few char-

acteristic Raman spectra over the range between 1000 and 1450 cm−1 are shown in Fig.

6. The experiments have been carried out for 7 days. The main features are indicated by

arrows. Four types of vibrations are observed, namely stretching and deformation of C-H

and C-C bonds. The peaks at 1063 and 1131 cm−1 are the in-phase and out-of-phase C-C

rocking vibrational modes for the functional group
\

/
C(CH3)2. These features indicate trans

intra-molecular conformation. Here we would like to point out that for gauche conformation,

the Raman lines are expected to appear between 1085 and 1095 cm−1, which are absent in

Fig. 6. In addition, here we mention, especially, the following features. The C-C skeletal
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vibration in -C(CH3)3 functional group and C-H symmetric vibration of the -CH3, which

appear at 1224 cm−1 and 1383 cm−1. One expects two overlapping bands, one at 1368 and

the other at 1352 cm−1, due to C-H deformation vibrations in CH. These two features merge

and appear as one peak at 1360 cm−1. The C-H deformation vibration in -(CH2)n- appears

at around 1305 cm−1, the intensity of this feature in expected to increase with n. All the

above features along with others, shown by arrows in Fig. 6, and their assignments are

tabulated in Table I.

TABLE I: Assignment of Raman vibrational bands between 1000 to 1450 cm−1 for Gillette foam

Assignment Wavenumber (cm−1) Ref.

C-C rocking mode in
\

/
C(CH3)2 1063 & 1131 [14]

C-C stretching mode in
\

/
C(CH3)2 1163 [26]

C-C stretching in phospholipid bilayer 1108 [14]

C-C skeletal vibration in -C(CH3)3 1224 [26]

C-H deformation vibration in -(CH2)n 1305 [18]

C-H deformation vibrations in CH 1360 [26]

C-H symmetric vibration in -CH3 1383 [26]

acyl chain of polyethylene 1410 [27]

From Fig. 6 it is clear that except the intensities of the features at 1383,1305, and 1224

cm−1, the intensities of the other peaks remain nearly constant with aging. The increase in

intensities of the Raman lines at 1224 and 1305 cm−1 indicate formation of longer polymeric

chains, (CH3)3 and (CH2)n, with the aging of foam. Vibrational spectra of the C-H stretching

region are complex due to Fermi-resonance interactions between the symmetric methylene

C-H stretching mode and the overtones of the CH2 rocking modes. Unlike the C-H stretching

vibrations, the CH2 rocking modes participate significantly in intermolecular coupling and

are thus influenced by the lateral packing order. Due to the Fermi resonance interaction of
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FIG. 7: The variation of intensity ratio (R1) of the Raman lines at 1305 and 1383 cm−1 with aging

of foam.

CH2 rocking with symmetric C-H stretching, the latter indirectly gets affected by the lateral

packing order. On the other hand, the asymmetric C-H stretching mode is forbidden by

symmetry for Fermi-resonance interactions and is thus insensitive to the lateral ordering.

Thus, one can expect that the asymmetric vibrational mode at 1305 cm−1 should depend

only on chain conformation, while the symmetric vibrational mode at 1382 cm−1 should

be modified by the lateral packing order. Consequently, the ratio (R1) of intensity of the

feature at 1305 cm−1 to that at 1383 cm−1 can be used as a parameter which is sensitive

to both the lateral packing and to conformational order within the chains. The variation

of the ratio R1 with t is shown in Fig. 7. The value of this ratio is expected to be 0.7 for

completely melted hydrocarbon chains, 1.5 for vibrationally decoupled all-trans chains, and

2.2 for a highly ordered crystalline lattice [28]. From Fig. 7 it is clear that the surfactant

molecules undergoes a gradual structural change with time. After ∼ 40 mins the value of R1

reaches the value ∼ 1.6, indicating that the constituent molecules are in trans conformation,

however gradually they organize into an ordered multilayer or crystal structure (with R1 =

14



2.1).

V. SUMMARY

As far as we know, this is the first report where Raman spectroscopy has been used to

determine the internal stress in wet foam. In other words, here we have shown that Raman

spectroscopy has the potential to extract information about internal stress in the system. We

have related the observed shift in the low frequency Raman peak position of the methylene

rocking mode with the variation in internal stress in the system.

The composition of commercial shaving foams is quite complex and its physico-chemical

properties are ill defined. Though, our method can be used as a quick and noninvasive tool

to measure the strain and hence, the stability, of a commercial foam; it is worth to check the

above claim for simple foamy material with well controlled composition, specially made in

a laboratory. Further, experiments on known surfactants will also indicate if the observed

behavior of the wet foam originates from the characteristics of the surfactant itself or from

its foamy structure.
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