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Abstract: Continuous health monitoring in a vehicle enables the earlier detection of symptoms of

cardiovascular diseases. In this work, we designed flexible and thin electrodes made of polyurethane

for long-term electrocardiogram (ECG) monitoring while driving. We determined the time for reliable

ECG recording to evaluate the effectiveness of the electrodes. We recorded data from 19 subjects

under four scenarios: rest, city, highway, and rural. The recording time was five min for rest and

15 min for the other scenarios. The total recording (950 min) is publicly available under a CC BY-ND

4.0 license. We used the simultaneous truth and performance level estimation (STAPLE) algorithm to

detect the position of R-waves. Then, we derived the RR intervals to compare the estimated heart

rate with the ground truth, which we obtained from ECG electrodes on the chest. We calculated the

signal-to-noise ratio (SNR) and averaged it for the different scenarios. Highway had the lowest SNR

(−6.69 dB) and rural had the highest (−6.80 dB). The usable time of the steering wheel was 42.46%

(city), 46.67% (highway), and 47.72% (rural). This indicates that steering-wheel-based ECG recording

is feasible and delivers reliable recordings from about 45.62% of the driving time. In summary, the

developed electrodes allow continuous in-vehicle heart rate monitoring, and our publicly available

recordings provide the opportunity to apply more sophisticated data analytics.

Keywords: printed electrodes; digital prevention; smart car; health monitoring

1. Introduction

Health monitoring in private spaces such as vehicles enables digital prevention [1]. Ac-
cording to the World Health Organization (WHO), cardiovascular diseases cause 17 million
deaths per year worldwide [2]. Symptoms such as atrial fibrillation (AF) or other types
of arrhythmia can be spread over a longer period [3]. AF increases the risk of stroke,
and the onset of AF is often undiagnosed [4]. Daily and continuous monitoring enable
early detection of symptoms and early intervention, improving therapeutic outcomes and
decreasing mortality rates [5]. Moreover, it supports physicians in diagnosing the spread of
these symptoms in a timely manner [4].

In-vehicle monitoring has several advantages. On average, a person spends 30 min
per day in a vehicle [6]. Unobtrusive measurements do not require any additional action
of the driver. Furthermore, the layout in a vehicle is rather static, as compared to that
in an apartment. Therefore, a medical check-up can be integrated into daily life. An
electrocardiogram (ECG) shows several diagnostic parameters, e.g., the heart rate (HR), as
well as pathological changes and cardiac arrhythmia [7]. Some publications have reported
on the integration of ECG electrodes into a steering wheel. In 2007, Lee et al. used dry
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electrodes made of copper tape [8]. Baek et al. used copper plates with a length of a few
centimeters [9].

Vavrinský et al. mounted aluminum macroelectrodes to the steering wheel [10].
Shin et al. used conductive fabric electrodes for ECG measurement, and also recorded
a photoplethysmogram (PPG) [11]. Heuer et al. developed textile capacitive electrodes
placed in the seat [12]. Tomimori et al. integrated metal electrodes into the steering
wheel [13]. Gomez-Clapers and Casanella used a wireless steering wheel with four dry
stainless steel ECG electrodes [14], but did not integrate their system into a car. Silva et al.
used dry Ag/AgCl electrodes and electrolytes [15]. Jung et al. applied conductive fabric
electrodes on the steering wheel [16]. In 2019, Cassani et al. placed eight electrodes on the
steering wheel of a driving simulator [17]. Babusiak et al. developed a new steering wheel
design with two integrated ECG electrodes, which required the replacement of the steering
wheel [18].

Most of these articles reported a low signal-to-noise ratio (SNR) for steering-wheel-
based ECG recordings. However, features such as T-, R-, and P-waves were visible. The
design of electrodes for the steering wheel has specific challenges, especially since the
placement of electrodes should not obstruct the driver during driving. Nonetheless, existing
electrodes are inflexible and, therefore, have a small surface, which limits the hand positions
of the driver for recording the ECG. Furthermore, flat electrodes are advantageous. Research
still lacks an optimal design for electrodes.

Moreover, ECG signal processing methods already exist to recognize cardiovascular
diseases (CVDs). In 2016, Ahmed et al. published a survey for ECG signal preprocess-
ing [19]. They discussed CVD recognition based on preprocessing, QRS detection, feature
extraction, and classification, and pointed out that baseline wander and noise removal
can be performed adaptively [20], or using median [21] and bandpass filters [22]. QRS
detection often is based on derivatives [23], wavelet transform [24], neural networks [25],
or hidden Markov models [26]. Ahmed et al. categorized the features for classification in
time-, frequency-, and time–frequency-based features [19]. In the literature, the variety of
classifiers ranges from neural networks [27] to k-nearest neighbors [28]. In 2021, Hua et al.
developed an approach for information divergences based on divergence-based matrix
information geometry detectors [29]. Moreover, Jain et al. implemented an application-
specific integrated circuit (ASIC) on a smartphone to detect symptoms in an energy-efficient
manner [30]. Furthermore, several works have published multisensor or multichannel
approaches [31,32].

However, we focused on in-vehicle monitoring and a simple approach for the clas-
sification of reliable and unreliable signals. To investigate whether continuous health
monitoring with steering-wheel-based ECG recordings is feasible, we focused on designing
electrodes and answering the question “What percentage of the driving time results in
reliable ECG signals?”.

In Section 2, we explain the development process of the ECG electrodes, the sensor
system for the recording, the experimental design, how a person can access the recorded
data, and the generation of the ground truth. Section 3 presents a comparison of the
SNRs between different driving scenarios and the steering wheel ground-truth data. We
discuss the applied methods and the results in Section 4. Our paper ends with a conclusion
(Section 5).

2. Materials and Methods

2.1. Electrode Design

To derive the positions and shape of the electrodes, we generated a 3D model of the
steering wheel of our research vehicle (VW Tiguan, Volkswagen, Wolfsburg, Germany). We
converted this 3D model into a 2D shape to derive the 2D electrode shape (Figure 1).
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Figure 1. Design process: (a) 3D model of the steering wheel, (b) 2D model.

We used a thermoplastic polyurethane (TPU) substrate with screen-printed silver
paste on top. The base film (IntexarTM TE-11C, DuPont, Wilmington, NC, USA) had
three different layers: high-recovery TPU, melt-adhesive TPU, and a temperature-stable
carrier [33]. The silver paste (IntexarTM PE-874, DuPont, Wilmington, NC, USA) has a high
conductivity [34]. Furthermore, these materials are stretchable and flexible. Both materials
were designed for wearable applications and, therefore, exhibit inherent stretchability. The
fabricated screen-printing frame had a size of A3+ with 39 threads per cm (screen-printing
frame 39T of size 61 cm × 51 cm, Siebdruckversand, Magdeburg, Germany). The mesh
size of each thread was 172 µm, and the fabric thickness was 142 µm. A sieve filtered the
silver paste. The electrodes were dried at 130 ◦C for 15 min in the oven (LCD-1, Despatch
Industries, Minneapolis, MN, USA). The electrode shape has two larger circles that are
connected by a curved trace. To increase comfort during driving and to maintain maximum
contact, the electrodes cover the lower half of the steering wheel (Figure 2).

 

Figure 2. Recording system with the ECG electrodes in the research car.

2.2. Sensor System

On the bottom of the electrodes, we placed an adhesive electrode (AgCl electrodes,
Covidien, Dublin, Ireland) to establish a connection to the ECG sensor (Explorer Kit,
Biosignalplux, Lisbon, Portugal) and the electrodes (Figure 2).

Another ECG sensor (Explorer Kit, Biosignalplux, Lisbon, Portugal) was used to record
the reference ECG with adhesive electrodes, which we attached to three positions of the
thorax: the right arm (positive), left arm (ground), and left leg (negative). The sampling
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rate of both ECG sensors was 500 Hz. Before each recording, we conducted a pretest to
ensure that the electrodes were in the correct position.

We synchronized the timing of our recordings using a channel hub (Explorer Kit,
Biosignalplux, Lisbon, Portugal). We mounted the channel hub at the backside of the
moving steering wheel, and wirelessly connected it to a single-board computer (Raspberry
Pi, model 4, 8 GB RAM, Raspberry Pi Foundation, Cambridge, UK) via Bluetooth. For data
access, we used the Python application programming interface [35].

2.3. Experimental Design

We recorded ECG data from 19 healthy subjects with four scenarios (Figure 2):
Rest: the engine is on, and the subject sits in a comfortable position while moving the

steering wheel.
City: the subject drives in a city, with a maximum speed of 50 km/h.
Highway: the subject drives on a highway, with a speed limit of 130 km/h.
Rural: the subject drives in a rural area. The route passes through villages and a

railway crossing. The speed limit for the rural roads is 100 km/h.
The recording time was 5 min for rest and 15 min for city, highway, and rural. We pre-

scribed the driving routes to ensure comparability between the recordings. The data were
recorded in accordance with the Helsinki Declaration. All subjects signed a consent form.

2.4. Database

As the ECG signals do not enable us to derive the identity of the subject, we published
the data anonymously via the library of TU Braunschweig with the license CC BY-ND 4.0 (s.
Data Availability Statement and link: https://doi.org/10.24355/dbbs.084-202203170707-0,
accessed on 28 May 2022). The data repository includes the following (see Appendix A):

• ECG reference signal;
• ECG signal acquired from the electrodes on the steering wheel;
• Metadata (e.g., age, height, weight, gender).

2.5. Ground Truth

We applied the simultaneous truth and performance level estimation (STAPLE) algorithm
to determine the position of the R-waves and to derive the HR of the reference ECG [36]. Our
STAPLE was composed of nine state-of-the-art algorithms, developed by Pan and Tompkins [37],
Chernenko [38], Arzeno et al. [23], Manikandan et al. [39], Lentini et al. [40], Sartor et al. [41],
Liu et al. [42], Arteaga-Falconi et al. [43], and Khamis et al. [44]. Based on a weighted majority
voting, STAPLE was used to determine the algorithms’ performances and the positions of
the R-waves. We implemented and execute STAPLE using MATLAB (version R2021a) [36].
The SNR was used to calculate the power of the signal divided by the sum of the power
of noise:

SNR = 10 lg

(

PSignal

PNoise

)

dB (1)

We calculated the SNR of the steering wheel ECG based on the reference ECG fre-
quency, and used the MATLAB function periodogram to estimate the power spectral
density [45]. For each R-wave position in the reference ECG, we computed the duration of
the RR interval (RRI). We calculated the HR as HR = 60/RRI [46].

2.6. Rules for Classification of Usable and Unusable Signals

For the preprocessing, we used a Butterworth bandpass (Figure 3) to remove baseline
wander and noise, with cutoff frequencies of 0.5 Hz and 25 Hz [47]. We considered the RRI
as a time-domain feature. We classified signal segments as usable based on two thresholds:
The first considers the median of the reference HR, which forms a tube around the signal
to exclude excessively high amplitudes. The normal range for HR is between 60 bpm
and 100 bpm [48]. Based on the work of Langendorf et al. [35], we labeled a segment
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as unreliable if the RRI changed by more than 0.08 s. The reference ECG, however, was
considered as reliable disregarding this threshold.

—
—

−
− − −

Figure 3. ECG recordings during rest.

3. Results

The steering wheel ECG inherits characteristic features—e.g., P- and T-waves, as well
as the QRS complex—but the amplitudes of the R-waves are smaller as compared to the
reference ECG (Figure 3).

The average SNR for the scenario rest was the lowest, at −5.49 dB. In the other three
scenarios, the average SNR was −6.75 dB, −6.69 dB, and −6.80 dB for city, highway, and
rural, respectively. As in the work of Allen et al. [49], a raincloud plot (Figure 4) was used to
visualize the distribution of the SNR (left-hand side) and individual data points (right-hand
side). The negative values of the SNRs indicate that the steering wheel ECG is noisier than
the reference signal.

 

Figure 4. Distribution of the SNR for the different scenarios.
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For the rest scenario, we recorded 5 min for each of 19 test subjects = 95 min. The record-
ing followed the reference, and only a few red dots on the x-axis indicate unreliable steering
wheel measures (Figure 5). In total, 53 min (55.79%) were usable for further analysis.

 

Figure 5. The plot of reference and estimated HR for subject 2209 during rest.

As shown in the following figures, we analyzed the recordings of subject 2209, arbi-
trarily chosen as an average example. The SNRs from this test person were 0.84 dB (rest),
−7.25 dB (city), −7.78 dB (highway), and −6.99 dB (rural), and were neither the worst nor
the best values.

The SNR in the city was lower. Starting and stopping driving due to traffic lights or
turns causes motion artifacts when the hands are detached from the steering wheel during
steering movements (Figure 6). For the city scenario, we recorded 15 min for each subject,
yielding 285 min in total. From these recordings, 121 min (42.46%) were reliable.

 

Figure 6. The plot of reference and estimated HR for subject 2209 during the city scenario.
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The highway scenario has additional vibrations due to the higher speed, and the
drivers detach their hands from the steering wheel when indicting a lane change. We
observed that the HR was lower as compared to driving in the city (Figure 7). From the
285 min of recording, 133 min (46.67%) were useable for further analysis.

 

Figure 7. The plot of reference and estimated HR for subject 2209 during the highway scenario.

On rural roads, the SNR was lowest (Figure 8). In total, 136 min out of 285 min (47.72%)
were labeled as usable.

 

driver’s 

—
—

driver’s 
—

Figure 8. The plot of reference and estimated HR for subject 2209 during the rural scenario.

4. Discussion

Continuous health monitoring is relevant for detecting cardiovascular diseases in their
early stages [5]. The proposed ECG electrodes in the existing literature are static electrodes
with a smaller surface [8,10,18]. We developed flexible and thin electrodes with a taller
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surface that can be printed easily and cheaply. These electrodes do not disturb the driver’s
behavior and enable subsequent in-vehicle integration.

With our electrodes, we captured a reliable HR from the ECG recordings for about
25% of the driving time. This proportion was dependent on several factors, e.g., skin
properties, scenario, and driving route. We were surprised by the rather low reliability
for the rest scenario (55.79%). This might have been due to the movements of the test
subjects. Moreover, the SNR for the rest scenario had a high variance between the different
test subjects.

As a limitation, our research car was equipped with an automatic transmission. This
prevents dropouts from gear-level shifts. However, our recordings show a proof of concept
for electrodes made of polyurethane. Recordings with further subjects and for a longer
duration may confirm our findings. Furthermore, the driving scenario impacts reliability
only slightly. There was not much difference between the city, highway, and rural scenarios.
This might have been due to the comparable SNRs.

Another limitation of our work is that we focused on the development of thin and
flexible electrodes, in-vehicle data recording, and classification of reliable and unreliable
signal periods, but not on advanced signal analysis. To foster further data analytics
with machine learning or other rule-based algorithms, our data are available at https:
//doi.org/10.24355/dbbs.084-202203170707-0 (accessed on 28 May 2022). The usage of
machine learning approaches—e.g., support-vector machines, k-nearest neighbors, and
convolutional neural networks (CNNs)—could lead to improved data analysis. This
integration could increase the usable recording time and allows data tracking over extended
periods of time to see if heart performance has changed from a baseline.

We consider 45.62% as a lower bound. Integrating additional sensors such as pho-
toplethysmograms (PPGs) [11], cameras [50], radar [51], capacitive ECG [52], and near-
infrared cameras [53] will improve the length of reliable measures, since the redundant
system can instantaneously choose the sensor yielding the best data quality [54]. Fur-
thermore, the shape and size of the driver’s hands have an impact. Skin properties such
as temperature and humidity—resulting from physical and mental activities, as well as
from sweating—differ between individuals [55,56]. In our calculations for the SNR, we
could not identify a change in the SNR between the beginning and end of a longer driving
time. This could occur if sweat accumulates on the electrodes from the hands after a long
drive. However, we expect a better signal from sweating hands, as sweat is composed of
electrolytes and increases the conductivity [55].

Furthermore, the subjects have different driving styles and handgrips [57]. Future
work should also address the integration of biomedical sensors in the CAN-BUS system
and its transmission via 5G [58].

5. Conclusions

Continuous health monitoring is relevant to detecting cardiovascular diseases in their
early stages [5]. Our results show that ECG electrodes attached to the steering wheel can
capture the ECG reliably for about 45.62% of the driving time. If the average driving time
is 30 min per day, we could thus obtain 13.67 min of heart rate recording per day.

This would impact the early detection and prevention of stroke and other signals for
specific periods. Better materials and different shapes of the electrodes might increase
the reliability.
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Appendix A

The demographic data of the test subjects are important to understanding the context
of the recordings.

Table A1. Metadata of the 19 test subjects.

Subject ID Recording Day Age Gender Height Weight Known Diseases

7521 14 September 2021 29 Female 176 68 No

5678 15 September 2021 24 Male 183 84 No

3008 15 September 2021 29 Female 173 64 No

1430 16 September 2021 23 Male 180 75 No

7325 16 September 2021 25 Male 171 75 No

4467 16 September 2021 37 Male 178 74 No

0001 17 September 2021 23 Male 195 120 No

1010 17 September 2021 29 Male 174 100 No

0312 21 September 2021 24 Male 187 80 No

1234 21 September 2021 20 Female 178 70 No

2005 21 September 2021 22 Male 180 70 No

2209 22 September 2021 24 Female 166 67 No

1734 22 September 2021 20 Male 187 75 No

1508 23 September 2021 22 Female 173 78 No

2001 23 September 2021 20 Male 180 145 No

1576 23 September 2021 21 Male 176 67 No

2202 23 September 2021 22 Male 186 82 No

7657 24 September 2021 67 Female 164 63 No

0512 24 September 2021 29 Male 176 83 No
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