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Abstract— This paper presents a deep learning model ‘PP-Net’ which is the first of its kind, having the capability to 
estimate the physiological parameters:  Diastolic blood pressure (DBP), Systolic blood pressure (SBP), and Heart rate 
(HR) simultaneously from the same network using a single channel PPG signal. The proposed model is designed by 
exploiting the deep learning framework of Long-term Recurrent Convolutional Network (LRCN), exhibiting inherent 
ability of feature extraction, thereby, eliminating the cost effective steps of feature selection and extraction, making 
less-complex for deployment on resource constrained platforms such as mobile platforms. The performance 
demonstration of the PP-Net is done on a larger and publically available MIMIC-II database. We achieved an average 
NMAE of 0.09 (DBP) and 0.04 (SBP) mmHg for BP, and 0.046 bpm for HR estimation on total population of 1557 
critically ill subjects. The accurate estimation of HR and BP on a larger population compared to the existing methods, 
demonstrated the effectiveness of our proposed deep learning framework. The accurate evaluation on a huge 
population with CVD complications, validates the robustness of the proposed framework in pervasive healthcare 
monitoring especially cardiac and stroke rehabilitation monitoring. 

 
Index Terms— Heart Rate, Blood pressure, Deep learning, Long-term Recurrent Convolutional Network (LRCN), 

Photoplethysmography (PPG), Times-series prediction. 

 

 

I. INTRODUCTION 

LOOD pressure (BP) and Heart Rate (HR) are the most 

important biomarkers as well as risk indicators for stroke 

and cardiovascular diseases [1-3] which are the leading causes 

of mortality and morbidity worldwide [4]. The accurate 

measurement of these physiological parameters, plays a major 

role in preventing and predicting stroke and cardiac diseases, 

hypertension screening, tracking of clinical progress of ill-

subjects (e.g. post-operative subjects, rehabilitated subjects 

and patients inside the intensive care units) [5-7]. The existing 

methods for BP (Sphygmomanometery and oscillometry)   and 

HR (electrocardiography), require inflatable cuff and multiple 

electrodes attached to the body surface respectively, which are 

obtrusive and inconvenient for continuous and pervasive 

monitoring [8-10].  

The recent technological advancement and development in 

sensor technology have enabled a way to monitor the 

physiological parameters unobtrusively anytime, anywhere 

[11-12]. In this context, photoplethysmogram (PPG), an 

electro-optical technology has emerged as a key factor for 

monitoring the physiological parameters without the need of 
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reference signal and laboratory conditions [13]. It utilizes the 

low-cost, portable pulse oxi-meter which illuminates the skin 

and measures the volumetric variations in the blood caused 

due to light absorption during the cardiac cycle [6]. It encloses 

various information about the body systems including 

cardiovascular system, respiratory system and nervous system 

[14], attracting the researchers towards accurate measurement 

of physiological parameters. The simplicity, portability and 

low-cost of PPG, facilitate the ability to be integrated on 

mobile and wearable devices, providing an alternative for 

pervasive monitoring [7-8]. Despite these advantages, 

susceptible nature of PPG technology towards noise and 

motion artifacts induced by finger or hand movement, causes 

widening of gap between sensor and skin of the user, 

distorting the signal fidelity [15-16]. This impede the robust 

evaluation of physiological parameters, making them 

inefficient for clinical applications [17].  

A number of studies related to HR [18-26] and BP [27-35] 

are performed, utilizing the signal processing and feature-

engineering based learning algorithms to eliminate/attenuate 

the motion artefacts (MA). Although, these methods were 

successful in measuring the BP and HR but employed motion 

reference from external sensor, heuristic thresholds or 

different tuned parameters and a number of features for 

successful estimation of physiological parameter in presence 

of MA which prevent the accurate evaluation of these 

methodologies for different conditions and users [25]. Further, 

these techniques [18-35] have mainly focused on monitoring 

the single physiological parameter i.e. either BP or HR. 

 In this paper, we have developed a deep learning 

framework for simultaneous estimation of HR and BP using a 
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single channel PPG data, collected from diverse population 

with cardiovascular disease (CVD) complications in intensive 

care unit. The convolutional neural network and long short 

term memory network, are the most widely used deep neural 

networks, emerged as key benefits for classification and 

prediction task respectively [36]. The inherent capability of 

these deep networks in extracting the useful features from the 

data while learning phase, provides not only accurate results 

but also cost effective solution compared to conventional 

signal processing and machine learning algorithms [37, 38]. 

The performance evaluation of deep learning algorithms, is 

also examined in our preliminary work for biometric 

identification, heart rate estimation, and rehabilitation 

monitoring, which resulted in accurate performance [39-41] 

for sensory data.  

The proposed framework is developed with customized 

Long-term Recurrent Convolutional Network (LRCN) model, 

utilizing the convolutional neural network (CNN) and long 

short-term memory (LSTM). The joint framework of CNN-

LSTM, leverages the advantages of both the networks with the 

data driven feature extraction, providing an efficient and light-

weight model. The novelty of this work lies in developing an 

efficient deep learning framework PP-Net with generalized, 

light-weight and customized LRCN model, having multi- 

score output capability to estimate three parameters i.e. 

diastolic blood pressure (DBP), systolic blood pressure (SBP) 

and heart rate (HR) simultaneously using a sensor unit i.e. 

PPG sensor. The proposed framework PP-Net, is successfully 

tested on ‘MIMIC’ dataset which is the publically available 
largest dataset, consisting intensive care data of patients with 

diverse CVD complications. We have performed the 

validation on 1557 patient’s data wherein we achieved an 
average normalized mean absolute error (NMAE) and 

normalized root mean square error (NRMSE) of 0.059 and 

0.090, and a correlation coefficients of 0.9902 for 

simultaneous estimation of DBP, SBP and HR, demonstrating 

the importance of LRCN in inferring physiological 

information from time-series data collected through PPG 

technology. These results reflect the robustness of PP-Net, in 

spite of having much larger population with diverse CVD 

complications, indicating the potential usage in pervasive 

healthcare monitoring of cardiac and stroke rehabilitated 

subjects, elderly subjects, post-operative subjects. Further, 

efficiency of the proposed methodology is also validated in 

comparison with the existing methodologies for BP and HR 

estimation.     

The rest of the paper is structured as follows:  Section II 

discusses about background details and motivation behind this 

research, section III provides the brief details of proposed 

methodology, section IV presents the obtained results and 

analysis and section V presents the discussion whereas section 

VI concludes the paper with future plans.  

II.  BACKGROUND AND MOTIVATION      

The role of PPG technology in clinical field was first 

presented by Alrick Hertzman in 1937 [42]. With the 

advancements in semiconductor technology, PPG got 

popularization in the clinical applications [43].  It is 

considered as one of the best method, allowing simple, 

unobtrusive and inexpensive way of monitoring the 

physiological parameters ubiquitously [44] which is also 

observed in recent research [8, 14].  

The majority of the studies related to HR estimation have 

evaluated their methodologies on IEEE signal processing cup 

(SPC) dataset which contains 23 healthy subjects’ data. The 
studies by [18-20] have presented signal processing based 

algorithms for successful evaluation of HR estimation. 

However, these algorithms involved a number of signal 

processing step, optimized and heuristic thresholds which are 

highly parameterized for specific conditions, preventing the 

generalization of these methods. Further, these studies [18-

24], [26], have included accelerometer along with PPG signal 

for HR estimation. A few studies [24-26], have applied the 

machine learning and deep learning based algorithms to 

overcome the limitations of existing signal processing based 

algorithms. The study by [24], has applied the feature-

engineering before the estimation of physiological parameter, 

which involves selection and extraction of a number of 

features, making more compute and time intensive. Another 

study by [25], has developed a deep learning based 

personalized method without any need of feature-engineering 

and shown robustness of deep learning algorithm for sensory 

data. The development of personalized model necessitates data 

collection followed by training of model for the each new user 

who wants to use in real-time. A very recent study by [26], 

also applied the deep learning algorithm but performed the 

time-frequency spectral of PPG and then used with the 

accelerometer data as inputs. The usage of two input signals in 

these studies [18-24], [26] increases the processing and 

computational complexity which directly affects the power 

requirement, which is a paramount for enabling the long-terms 

monitoring on mobile applications. Furthermore, all these 

studies have validated their methodologies on a small and 

healthy population. Therefore, validation on diverse 

population with CVD complications is a very important and 

necessary step to facilitate the usage in clinical applications 

especially for critically-ill patients, post-operative, cardiac and 

stroke monitoring.  On the other side, researchers also 

explored about the relationship between BP and PPG [27-35] 

for cuff-less BP estimation. The most of the studies mainly 

focused on utilizing the different machine learning algorithms 

wherein they have employed handcrafted feature-engineering 

before estimating the BP, which is a cumbersome and 

compute-intensive task.  

The inherent capability of deep learning algorithms to 

perform the data-driven feature extraction, precludes the 

necessity of handcrafted feature engineering, making them 

preferred choice for many biomedical applications [36-41]. 

Motivated from the advantages of PPG technology and 

limitations of the existing studies, we focused on developing 

an efficient deep learning framework with generalized, light-

weight and customized model, having multi-score output 

capability to estimate HR and BP (SBP, DBP).  

The proposed deep learning framework is tested on 

University of California, Irvine (UCI) Machine learning 

Repository dataset, derived from publically available largest 

database ‘Multi-parameter Intelligent Monitoring in Intensive
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Fig. 1. Overview of the proposed PP-Net methodology. 

 

 Care (MIMIC-II)’ which is available at Physionet repository 

[45]. This database consists simultaneous recordings of multi-

parameters of Intensive care unit (ICU) patients which include 

physiological signals as well as physiological parameters. We 

extracted simultaneous recordings of electrocardiogram 

(ECG), photoplethysmograph (PPG) and arterial blood 

pressure (ABP) of 12000 subjects for this study which are 

provided in UCI repository. The sampling frequency for these 

signals are 125 Hz.  The ground truth scores for SBP and DBP 

are calculated using the ABP signal, applying the approach 

used in the existing studies [37-35]. For HR scores, 

pantompkin algorithm is used from the BioSigKit Toolbox 

(Matlab) [29], [46]. 

III. PROPOSED DEEP LEANING FRAMEWORK 

The proposed framework is designed for estimating the 

physiological parameters: BP and HR simultaneously from the 

PPG sensor to enable the pervasive healthcare monitoring. The 

overview of the proposed deep learning framework is 

illustrated in Fig. 1 which includes three stages: 1) Pre-

processing; 2) Model development; 3) Training and 

Evaluation, which are detailed below. 

A. Stage 1: Pre-processing 

   First, PPG and ECG data are pre-processed to eradicate the 

data of insufficient duration (less than 8 minutes recording), 

resulted in approximately 83% reduction in the dataset. Then, 

data segmentation is performed by taking 8 seconds window 

with 75% overlapping which is considered enough to capture 

the useful information about cardiac activity, observed in the 

existing studies [18-26]. Further, unreliable signals such as 

missing data (Nan), and very high/low BP and HR values 

(SBP 180, SBP 80, DBP 130, DBP 60, HR < 40, HR 

> 220 ) are excluded from the dataset [33], reduced the 

remaining data by approximately 20%. These pre-processing 

steps result in reduction of total subjects from 12000 to 1557. 

Now, final data of approximately 1557 subjects were included 

for evaluation. Further, PPG data are down-sampled with the 

aim of reducing the computational complexity of the LRCN 

model which is suggested in many previous studies [19-21]. 

The down-sampling is performed by scaling factor of 4 while 

preserving the important information, similar to the technique 

applied in [40]. Further, complexity reduction can be useful 

for implementing the model on resource-constrained platforms 

such as mobile phone. Lastly, PPG data and their 

corresponding scores (HR, SBP, and DBP) are normalized. 

B. Stage 2: LRCN Model 

   The proposed deep learning framework, PP-Net, involves 

CNN-LSTM which is jointly called LRCN model. The 

network architecture is designed for multi-score output which 

means it has capability to estimate DBP, SBP and HR 

simultaneously from a PPG signal. Fig. 2 shows the topology 

of the PP-Net model, designed by stacking the CNN, LSTM 

and fully connected layer. In this, CNN is working as a feature 

extractor consisting two 1D convolutional layers, each 

interleaved with ReLU activation, max-pooling and drop-out 

layers. The output features obtained from the previous layer, 

are passed through the LSTM model and then, fed to the fully 

connected layer for predicting the physiological parameters. 

The LSTM model is constructed with two LSTM layers, each 

using tangent activation and dropout layer. The architectural 

information about the proposed model is discussed below. 

 

 
Fig. 2. Topology of the proposed PP-Net Model. 
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Fig. 3. Architecture of the proposed PP-Net model. 

 
 

Fig. 3 shows the architecture of the proposed PP-Net model, 

which is a hybrid architecture.  It consists two 1D 

convolutional layers which are core building blocks of a CNN. 

Each convolutional layer consists of a set of 20 learnable 

filters of size 9 1 sliding across the width by 9 and height by 

1 of the input volume, computing dot product between their 

weights and a small 9 1 region they are connected in the 

input volume. This produces the 20 activation maps, providing 

the responses of corresponding filters at every spatial position 

where each feature map captures different low-level features. 

Subsequently, pooling is applied along the spatial dimensions 

(width, height) by 4×1 using the max operation. This step 

progressively reduces the spatial size of representation by 75% 

while keeping the depth dimension unchanged. The intuitive 

idea behind using this layer is once the features are known 

then their exact location doesn’t matter as much as relative 
location to the other features. This serves two main purposes-

1) amount of parameters/weights are reduced, thus, lessening 

the computational cost; 2) control the over-fitting. 

Next, two LSTM layers of 64 and 128 memory cells using 

hyperbolic tangent, are united with CNN model for use case of 

regression problem. Lastly, one fully connected layer with 3 

output neurons are introduced to find the final prediction 

scores using the linear function where DBP, SBP and HR are 

predicted together through each of the output neuron. These 

architectural parameters are selected using the heuristic grid 

search method similar to [40]. To assure the proposed model is 

not getting too fitted to the training data, dropout layer with 

0.1 probability factor is used after each pooling layer which 

forces the network to be redundant and helps to alleviate the 

over-fitting problem. 

C. Stage 3: Training and Evaluation 

For training the LRCN model, 100 epochs with batch size 

of 100 are used initially wherein it is found that there is no 

improvement in performance beyond the 50 epochs, therefore, 

50 epochs are fixed for further analysis. The optimization 

during the training is performed by Adam optimizer [44] and 

mean squared error (MSE) are used as the loss function to 

evaluate the performance of proposed framework. The LRCN 

model is validated based on testing performance using the k-

fold cross-validation approach owing to the fact that it always 

provides less optimistic and less biased estimation compared 

to simple train/test split method [45]. For this experiment, k is 

set to 10 following the existing studies analysis and 

experimental observation found in [45], stated that k fixed to 

10 generally results in low bias with modest variance. The 

performance evaluation for the PP-Net is done by averaging 

the model scores of all the k testing sets wherein NMAE, 

NRMSE and correlation coefficients are considered as 

effective metrics for prediction tasks [8],[33-35],[18-26]. 

IV. RESULTS AND EXPERIMENTAL ANALYSIS 

The proposed PP-Net framework is realized in Keras 2.0.5 

platform using Theano 1.0.4 as backend engine where 

execution of training and testing are performed utilizing 

Nvidia Quadro P4000 GPU with 8GB dedicated memory, 

deployed in a workstation with a 64- bit Ubuntu operating 

system (18.04), an Intel Xeon Processor @1.80 GHz x 32 and 

64 GB of RAM.  

A. Performance assessment  

   One of the main aim of this work is designing an efficient 

yet light-weight model which can be deployed on resource 

constrained platforms (e.g. mobile phone) to enable long-term 

monitoring. Therefore, at algorithmic level, the LRCN model 

architecture is designed in such a way that it is capable of 

estimating the three parameters: DBP, SBP and HR 

simultaneously from the same network without the need of 

separate model for each parameter. This will help in reducing 

the time and computational complexity for real-time analysis 

as compared to the other existing algorithms which have used 

the same network but performed the separate training [29], 

[35]. Further, input PPG signal is also compressed by applying 

the down-sampling to reduce the data processing complexity 

which will directly affect the computational load of the LRCN 

model. This results in reduction from 1000 samples to 250 

samples in the input data for the proposed LRCN model. 

Table I depicted the performance of the proposed 

methodology for 10 fold test validation method wherein an 

average NMAE of 0.059 and NRMSE of 0.090 are achieved 

for estimation of DBP, SBP and HR simultaneously, 

highlighted in bold [50]. Further, a comparison study between 

the reference and estimated scores of DBP, SBP and HR, are 

conducted and depicted in Fig. 4.  In this, (a) and (b) represent 

the graph of reference and estimated scores for approximately 

twenty thousand test windows wherein DBP, SBP and HR are 

depicted with blue, red and yellow color respectively.  
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Fig. 4. Comparison between reference and estimated output scores where (a) and (b) represent the difference between the reference and 

estimated DBP (Blue), SBP (Red) and HR (Yellow) scores respectively; (c), (d) and (e) show the individual graphical analysis for DBP, SBP and 
HR respectively for reference and estimated scores for 500 test windows; (f) represents the box plot for the correlation coefficients. 

 

It can be clearly visualized from the Figs. 4 (a) and (b) that 

both the graphs exhibit the similar pattern which is also 

demonstrated through the correlation coefficient. Fig. 4(f) 

measures the correlation between the reference and estimated 

scores of DBP, SBP and HR, having correlation coefficient of 

0.9902. Further, we have also performed the comparison 

analysis of reference and estimated scores of DBP, SBP and 

HR separately, illustrated in Fig 4. (c), (d) and (e) for 500 test 

windows (lesser data) for better visualization of the 

performance. The exact error difference between reference 

and estimated output scores for each test window, are 

provided using the histograms which are shown in Fig. 5. 

Furthermore, we have also performed a study to show the 

impact of dataset size on the performance of the proposed 

model wherein we have considered three different datasets, 

created by including subjects having minimum 8 minutes, 6 

minutes and 4 minutes data. These results are reported in 

Table I-B. Since, a previous study by [33] has used the same 

dataset for BP estimation, considering the 10 minutes 

recording. However, our study mainly focused on utilizing the 

dataset created with subject having data of minimum 8 

minutes to include more number of subjects while keeping the 

sufficient duration. 

 
 

 
 

 

 
 

 

 
Fig. 5. Histogram of errors between reference and estimated outputs 
for DBP, SBP and HR depicted in (a), (b) and (c) respectively. 
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TABLE I: PERFORMANCE ANALYSIS OF PROPOSED 

METHODOLOGY (where measurement units of error for BP and HR 

estimation are mmHg and bpm respectively) 
Table I-A 

Parameter Performance 

NMAE NRMSE 

DBP 0.090 0.139 
SBP 0.040 0.061 

HR 0.046 0.069 

Total 0.059 0.090 

Table I-B 

Minimum Data-length 

Per subject  

(minutes) 

Performance 

NMAE NRMSE 

8  0.059 0.090 

6  0.083 0.127 

4  0.091 0.139 

Table I-C 

Model type Performance 

NMAE NRMSE 

Proposed (CNN-LSTM) 0.059 0.090 

CNN 0.127 0.198 

 

 

TABLE II: SIGNIFICANCE OF INPUT DATA COMPRESSION (where 
measurement units of error for BP and HR estimation are mmHg and 

bpm respectively) 
                                                    

                                                  Table II-A 

Parameter Performance  Trade-off 

(absolute 

difference)  
Pre-processed 

250 samples 

Without pre-

processing 
1000 samples 

Performance NMAE 0.059 0.054 0.005 

NRMSE 0.090 0.083 0.007 

Layer     Multiplication  Operations Difference 

250 samples 1000 samples  

Conv layer 1 (C1) 43560 178560 135000 

Conv layer 2 (C2) 187200 892800 705600 
Total 230760 1071360 840600 

                                                        

                                                      Table II- B 

 

 

Parameter 

 

Pre-processed 

250 samples 
(Input 

Compression) 

Without pre-

processing 

1000 samples 
(Inherent 

Down-

sampling) 

 

 

Absolute 
difference 

Performance  NMAE 0.059 0.076 0.017 

NRMSE 0.090 0.114 0.024 

Complexity 

Multiplication 

operations 

C1 43560 44640 1080 

C2 187200 194400 7200 

Total 230760 239040 8280 

B. Significance of CNN-LSTM over CNN  

This study shows the comparative analysis between CNN-

LSTM and CNN model, which is highlighted in Table I-C. 

The CNN model is designed by replacing the LSTM layers in 

the proposed architecture with dense layers having 64 and 128 

number of neurons. It can be seen from Table I-C that CNN-

LSTM model performs better compared to CNN model. This 

is because CNNs suffer from the long chain problem 

(vanishing gradient) wherein information from previous 

computations is rapidly attenuated as it progresses through the 

data flow. To analyze time series data often necessitates 

inferring the sequential/time-variant information wherein 

LSTM proved to be an effective choice. The proposed hybrid 

network leverages the advantages of both the networks where 

CNN helps in extracting the silent features from the raw data 

and LSTM captures the sequential dependency in historical 

trend developed from PPG signals, making the model robust 

for spatial and temporal variance. The similar observation is 

also examined in our previous studies [25, 41]. 
 

C. Significance of Input compression over inherent 
down-sampling 

   As discussed earlier in this section, we have performed the 

input compression through down-sampling to reduce the data 

processing complexity which directly affects the complexity 

of the LRCN model. Thus, a comparative analysis is done by 

considering the compressed (down-sampled) and un-

compressed PPG data as input to analyze the impact of down-

sampling on the performance and complexity of the model. It 

can be noted from Table II-A that the total error difference of 

0.005(NMAE) and 0.007 (NRMSE) between compressed (250 

samples) and un-compressed PPG signal (1000 samples) is 

obtained to reduce the 4 times input data complexity which 

directly impacted the LRCN model complexity. This is shown 

with respect to convolutional layers of the model wherein 

approximately 4 times reduction can be seen in total number 

of operations and similar analogy can be seen for other layers. 

This can be beneficial for real-time deployment on mobile 

platforms having power constraint. 

     Further, it can also be noted that by applying the 

appropriate stride rate, down-sampling can be achieved 

inherently which can eliminate the need of down-sampling 

during the pre-processing step. However, input data 

compression is providing better results in terms of 

performance as well as complexity for the same down-

sampling factor which can be seen from Table II-B. This 

shows input data compression is better option for this 

particular problem in terms of performance as well as 

complexity. 

D. Comparison with Existing Studies  

1) BP estimation    

 To validate the effectiveness of the proposed methodology, 

comparative analysis is performed with the existing works. 

Table III shows the comparative analysis of the proposed 

methodology with the recent studies which have evaluated 

their methodologies on MIMIC database.  It can be noted that 

all these existing studies performed the separate training for 

estimation of DBP and SBP which resulted in development of 

separate models for DBP and SBP estimation for real-time 

execution in inference phase. Also, these existing studies 

listed in Table III, involved feature selection and extraction 

steps before estimation of the corresponding scores which 

increase the complexity and make the system less responsive. 

Moreover, our proposed methodology doesn’t involve any 
feature selection and extraction steps and also performs DBP 

and SBP estimation simultaneously from the same model. This 

reduces the computational complexity and makes the model 

responsive for real-time analysis. Further, our proposed PP-

Net achieved an average  of 3.14 ± 0.13 mmHg for 

1557 subjects on BP estimation which are better compared to 

the existing methods. These results demonstrates the 
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effectiveness of our proposed methodology for real-time 

usability in clinical applications. 

Table IV depicts the existing works which have performed 

the BP estimation using the PPG but evaluated their 

methodologies on different datasets. Since, these studies have 

used different datasets and/or smaller number of subjects for 

evaluation than the proposed methodology, therefore, fair 

comparison can’t be performed for BP estimation. The studies 
performed by [30-31] have utilized the University of 

Queensland Vital Signs Database ( 32 surgical persons) and 

their own datasets [32], [34] respectively , wherein our 

proposed methodology performed better compared to these 

studies despite of having much larger and diverse population 

with CVD complications.   

 
2) HR estimation 

   The performance analysis for HR estimation is depicted in 

Table V along with the exiting studies. It can be noted that the 

existing studies [18-25] have used the SPC dataset which is 

consisting 12 healthy subject’s data while performing 
exercise. The recent study by [26] has involved their own 

dataset (PPG-DaLiA) and other publically available dataset to 

evaluate their methodology. Whereas, our study includes 

intensive care data of 12000 subjects with CVD 

complications, thereby, fair comparisons cannot be made. 

Further, SPC and PPG-DaLiA datasets, do not include the BP 

measurement information which restricts the usage in our 

methodology. However, it can be applied for only estimating 

HR by training with HR data which suppresses the novelty of 

the proposed methodology for estimating multi-physiological 

parameters simultaneously. Thus, we have performed the 

analysis with MIMIC database and tabulated the results 

wherein we have obtained MAE±SD of 2.32±0.11 BPM on 

1557 subjects, showing effectiveness for real-time usability.  

Further, main novelty of the proposed methodology lies in 

having capability to estimate DBP, SBP and HR 

simultaneously from the same network without any need of 

individual training for each parameter (DBP, SBP and HR). 

All the existing studies, utilizing the MIMIC database for BP 

estimation are using the same network architecture for DBP 

and SBP but require separate training for DBP and SBP which 

means there are two different networks with same 

architectures for each parameter (DBP and SBP). Thus, for 

real-time analysis, two separate models are required to 

estimate the DBP and SBP simultaneously or one model with 

twice the time complexity. This shows the tradeoff between 

time and resources for real-time analysis. Similarly, for HR 

estimation, another network or model is require, augmenting 

the time and computation complexity further. Based on the 

aforementioned facts, PP-Net model shown in Fig. 3 is 

considered as less-compute intensive design compared to the 

existing works for implementation on resource constrained 

platforms (mobile phone) for the given application. 

E. Comparison with AAMI and BHS standards 

We have performed the comparative study of the proposed 

methodology with the standard criteria defined by Association 

for the Advancement of Medical Instrumentation (AAMI) and 

British Hypertension society (BHS) for validating the 

effectiveness of the proposed methodology for BP estimation. 

According to AAMI standard, evaluation methodology should 

include minimum 85 subjects and it validates the algorithm if 

mean error (ME) and standard deviation (SD) are within the 

range of 5 mmHg and 8 mmHg. Whereas, BHS standard 

considers performance accuracy in terms of percentage of 

cumulative error which is divided in three categories based on 

the performance, shown in Table VI. The results of the 

proposed model is validated on 1557 subjects which is listed 

in Table VII and Table VIII for BHS and AAMI standards 

respectively. We have obtained ME±SD of -1.25±5.65 mmHg 

and 1.55±5.41 mmHg in AAMI standard for estimation of 

DBP and SBP respectively and grade A in BHS standard for 

both DBP and SBP, which are within the limits of their 

defined criteria. Further, we have presented the correlation and 

Bland-Altman plots for DBP and SBP scores in Fig. 6 wherein 

blue and red color indicate the results of DBP and SBP 

analysis respectively. 

 
Fig. 6. (a) and (b) represent the correlation coefficient and Bland-
Altman graph respectively for DBP (Blue) and SBP (Red) estimation. 
 

F. Complexity analysis 

Deep-learning algorithms mostly involve power-consuming 

MAC operations and intensive-memory which may restrict the 

deployment on resource-constrained platforms such as mobile 

and wearable devices for deeper networks. Therefore, we have 

performed the algorithmic optimization and designed the less-

complex model PP-Net in this methodology. Further analysis 

includes the exploration on complexity of the proposed model 

to keep an eye towards hardware implementation for the real 

time execution during the inference phase which is shown in 

Table IX. The complexity analysis is performed in terms of 

number of MAC operations and memory blocks needed for the 

real-time execution in inference phase.  
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TABLE III: PERFORMANCE ANALYSIS OF THE PROPOSED PP-NET FOR BP ESTIMATION ON MIMIC DATABASE 
(* number of subjects before eradicating the insignificant record of subjects) 

 

Work 

 

Subjects 

 

Method 

 

No. of 

Models 

 

Validation 

Method 

 

Performance  

( mmHg 

DBP SBP 

 

EMBC’16 

Gaurav et. al 
[29] 

 

 

3000 subjects* 

 

 

Feature extraction (46 

features) and Artificial 
Neural Network (ANN) 

 

2  

  

 

Conventional 

method 
 

 

3.21 4.72 

 

4.47 6.85 

 
TBME’16 

Kachuee et. al 

[33] 
 

 
 

1000 subjects 

      
    

 
DWT, PCA, whole based 

and physiological feature 

extraction and 
conventional regression 

algorithms 

 

 
2  

 
10 fold 

validation 

 

5.35 6.14 

 

 

11.17 10.09 

 

BSPC’18 

Mousavi et. al 

[35] 

 

 

441 subjects 

 

FFT, FFT-1, Feature 

extraction, PCA and 

conventional regression 

algorithms 

 

2  

 

10 fold 

validation 

 

2.43 4.173 

 

3.97 8.901 

 

This work 

 

1557 subjects 

   

 

LRCN deep learning 

algorithm 
 

 

1  

 

10 fold 

validation 

 

2.30 0.196 

 

3.97 0.064 

 
TABLE IV: PERFORMANCE ANALYSIS OF THE PROPOSED PP-NET WITH EXISTING WORKS 

 

Work 

 

Database 

 

Subjects 

 

Method 

 

Validation Method 

 

Performance 

 ( mmHg 

DBP SBP 

 

EMBC’ 16 

Gao et. al 
[32] 

 

 

Own dataset 

 

65 healthy 

subjects 

 

DWT, Feature extraction 

and SVM 

 

10 fold validation 

 

4.6 4.3 

 

5.1 4.3 

 
EMBC’ 16 

Duan et. al 

[30] 
 

 
University of 

Queensland Vital 

Signs Database 

 
32 Surgical 

persons 

 
Feature extraction and 

Support vector 

regression 

 
10 fold cross-validation 

 

3.67 5.69 

 

4.77 7.68 

 

ICMLC’17 
Zhang et. al 

[31] 

 

 

University of 
Queensland Vital 

Signs Database 

 

32 Surgical 
persons 

 

Feature extraction and 
Support vector machine 

(SVM) 

 

Conventional method  

 

7.61 6.78 

 

 

11.64 8.22 

 

BSPC’18 

Radha et. al 

[34] 
 

 

Own dataset 

 

90 healthy 

subjects 

 

Feature extraction and 

LSTM 

 

Conventional method 

 

 

4.95 

 

5.95 

 

This work 

 

UCI machine 
learning repository 

(MIMIC II) 

 

1557 
subjects 

 

LRCN deep learning 
algorithm 

 

 

10 fold validation 

 

2.30 0.196 

 

3.97 0.064 

Table IX illustrates the total number of multiply-and-

accumulate (MAC) operations and weight parameters required 

for each layer. Furthermore, we have also conducted the 

comparison with our preliminary work [25], utilized the CNN 

and LSTM algorithm for HR estimation which is listed in 

Table IX (last two column). Our proposed model shown 

52.89% and 51.36% improvement in terms of total number of 

MAC operations and memory blocks for estimation of BP and 

HR simultaneously.  

 

 

Despite the huge improvement in complexity of the model, 

further research is necessary to eliminate the number of 

multipliers involved in the deep learning algorithms. Current 

trends of implementing these deep learning algorithms on 

mobile and wearable devices, made possible to perform real-

time analysis [49]. Further, we have also performed the timing 

analysis wherein our proposed PP-Net model takes 

approximately 1 ms time to estimate DBP, SBP and HR. 
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TABLE V: PERFORMANCE ANALYSIS OF THE PROPOSED PP-NET FOR HR ESTIMATION 

 

V. DISCUSSION 

The advantages of being unified with wearable and mobile 

devices, recent success and promising results obtained in 

recent research, indicate the significance of PPG technology in 

pervasive healthcare monitoring [8], [18-35]. Our results and 

performance analysis validate the effectiveness of our 

proposed deep learning framework for simultaneous 

estimation of physiological parameters: BP and HR using the 

minimal number of PPG sensors. The accurate estimation on 

larger and diverse population are very essential for proving the 

effectiveness of any algorithm in clinical applications. Our 

proposed methodology achieved the good performance on 

much larger population of CVD complications than the 

existing studies, validates the potential usability in clinical 

applications. Further, extensive analysis on algorithmic 

optimization and pre-processing offered an efficient and light-

weight architecture for PP-Net having low computational 

complexity while achieving good performance.  

 
TABLE VI: BHS GRADING SCALE FOR BP MEASUREMENT 

Grade Cumulative error percentage 

 

(mmHg) 
 

(mmHg) 
 

(mmHg) 

A 60 85 95 
B 50 75 90 

C 40 65 85 

 
TABLE VII: COMPARATIVE ANALYSIS WITH THE BHS STANDARD  

Method Physiological 

parameter 

 

(mmHg) 
 

(mmHg) 
 

(mmHg) 

This 

work 

DBP 90% 98% 99% 

SBP 75% 91% 96% 

     

 

Work 

 

Database 

 

Subjects 

 

Method 

 

Validation 

Method 

 

Performance 

 ( BPM 

 

 
TBME’15 

Zhang et. al 

 [18] 

 
SPC dataset 

 
23 subjects 

Signal processing 
method (signal 

decomposition, temporal 

difference, sparse signal 
reconstruction, spectral 

peak tracking) 

 

-  

2.34 2.47 1-12 subjects 

  3.19 3.61  13-23 subjects 

      2.77  3.04 23 subjects 

 

 

TBME’15 
Zhang 

[19] 

 

SPC dataset 

 

23 subjects 

Signal processing 

method (Joint sparse 
spectral reconstruction, 

spectral subtraction and 

peak tracking) 
 

-  

1.28 2.61 1-12 subjects 

 3.05 3.35 13-23 subjects 

      2.17 2.98 

 

 

TBME’16 
Khan et. al 

[20] 

 

SPC dataset 

 

12 subjects 

Signal processing 

method (Ensemble 
empirical mode 

decomposition, adaptive 

filtering, decision 
making processing) 

 

-  

1.02 1.79 1-12 subjects 

 

 
TBME’17 

Tempko  

[21] 

 
SPC dataset 

 
23 subjects 

Signal processing 
method-WFPV algorithm 

(pre-process, de-nosing 

phase decoder and post 
processing) 

 

-  

1.02 1.25 1-12 subjects 

 2.95 3.71 13-23 subjects 

      1.99 2.    48 subjects 

 

 
Sensors letters’ 

19 

Zhu et. al 
[24] 

 

 
SPC dataset 

 
12 subjects  

 
Neural network, linear 

regression, post 

processing 

-  

1.03 1.82 12 subjects 

 
BSPC’19 

KR et. al 

[22] 
 

 
SPC dataset 

 
12 subjects 

Signal processing 
method (Cascaded three 

stage adaptive filters and 

FFT) 

-  

0.92 1.17 1-12 subjects 

 

TBioCAS’19 
Biswas et. al 

[25] 

 

 

SPC dataset and 
Own dataset 

 

25 subjects 
(23+2) 

 

CNN and LSTM 

 

5 fold validation 

 

1.99 4.64 12 subjects 

0.86 1.86  13-23 subjects 

1.47 3.37  23 subjects 

 
 

This work 

 

UCI repository 

database 
 

 

12000 

subjects 

 

LRCN 

 

10 fold validation 

 

2.32 0.095 
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TABLE VIII: COMPARATIVE ANALYSIS WITH THE AAMI 

STANDARD (Where ME represents mean of errors between reference 

and estimated scores) 

Method Physiological 

parameter 

ME 

(mmHg) 

SD 

(mmHg) 

Subjects 

This work DBP -1.25 5.65 1557 
SBP 1.55 5.41 1557 

AAMI BP    
     

 

TABLE IX: COMPLEXITY ANALYSIS OF THE PROPOSED PP-NET 
Layers Multipliers  

Operations 

Adders 

operations 

Weight 

parameters 

Conv-1 43560 38720+20 200 

Conv-2 187200 166400+20 3620 

LSTM-1 327680 326400+256 21760 

LSTM-2 4194304 4186112 98816 

Dense-1 384 381+3 387 

Total  4753128  4718013 124783 

Proposed  9.47 M 124783 

      [25] 20.1 M 256578 

 

This study is a step towards developing an efficient yet 

light-weight generalized solution for estimating the multi-

physiological parameters simultaneously in unobtrusive way 

to enable the pervasive monitoring in health-care applications. 

The proposed methodology can be applied for continuous 

monitoring of ICU patients and remote-health monitoring 

including elderly care, cardiac and stroke rehabilitation, 

hypertension screening, post-operative subjects monitoring in 

home environment. The proposed methodology can be 

extended for estimation of physiological parameters (HR, BP) 

in ambulant environment as well as for other physiological 

parameters (SpO2, HR, BP, and RR) but requires the 

corresponding dataset for designing the deep learning model 

for the specified applications. Moreover, our proposed deep 

learning framework achieved the following goals: 1) The 

proposed PP-Net model is able to predict HR, SBP and DBP 

simultaneously, providing three in one solution with minimal 

number of sensor units, making it cost effective solution; 2) 

The development of generalized framework, eliminates the 

need of training the model for each new user before their use, 

thereby, making the proposed methodology more robust.; 3) 

The proposed methodology estimates physiological 

parameters from minimum number of sensor units, in a very 

simple and unobtrusive way, hence, offering a safer and 

potentially more convenient mode of health monitoring which 

enable practical usability for real-time analysis; 4) Continuous 

measurement increases the potential for early detection of 

patient deterioration, leading to improved outcomes; 5) The 

capability of estimating BP and HR simultaneously, utilizing 

the same network architecture and same parameters, facilitate 

the implementation on resource constrained platform for real 

time execution such as mobile and embedded platforms 

(wearable devices); 6) An average NMAE of 0.059 and  

NRMSE  of 0.090 are achieved for BP and HR estimation on 

larger population, illustrate the effectiveness of our proposed 

methodology.  

VI. CONCLUSION 

    This paper presents a deep learning framework PP-Net for 

simultaneous estimation of HR and BP (DBP, SBP) using a 

single channel PPG data. The obtained results of an average 

NMAE of 0.059 and NRMSE of 0.090 with correlation 

coefficients of 0.9902 for estimation of DBP, SBP and HR, 

simultaneously on a larger population of CVD complications, 

showing the efficiency of the proposed model in pervasive 

healthcare monitoring. The multi-score output capability of 

proposed PP-Net framework provides a less-complex solution 

than the existing methodologies which have estimated HR and 

BP by utilizing the different methodologies and neural models.  

In addition, the proposed model performed the data driven 

feature extraction during the training which eliminated the 

cost effective steps of feature selection and extraction 

separately. Moreover, PP-Net is a light-weight (low-complex) 

model providing many in one solution in unobtrusive way 

using a sensor, offering a cost effective, safer and convenient 

mode of health monitoring in/out of clinical setting. In future, 

we plan to extend this work by including the other 

physiological parameters such as respiratory rate (RR) and 

SpO2 and targeting the mobile platforms for the inference 

mode. 
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