Present work deals with the preparation of spark plasma-sintered Cu-Zn aggregate (5, 10 and 20 wt% Zn) with interfacial bonding only starting from elemental powders of Cu and Zn (99·9% purity) and subsequently making of porous template of Cu by dezincification. Sintering is done so as to achieve only interfacial bonding with the aim to maintain maximum potential difference between the Cu and Zn particles during dezincification process in various solutions, viz. 1 N HCl and 3·5 wt% NaCl solutions. X-ray diffraction, optical microscopy and SEM-EDS are carried out to examine microstructural evolution and subsequent changes in hardness with sintering temperatures and different Zn percentages. Dezincification and pore formation are conducted on sintered 0·5 mm thick 12 mm diameter disc samples. The size, distribution and nature of pores in porous templates of Cu are then investigated using optical microscopy and SEM-EDS analysis. © Indian Academy of Sciences.